SECTION G.16.2�UTILITY INTERPROCESS�COMMUNICATIONS�(UIT) ADA BINDINGS
�
�

This page intentionally left blank.
�
function: � tc " uit_birth" \l 3 �uit_birth�IFA10001��CALLING SEQUENCE:
results := UIT_BIRTH (FD, APP_ID)
PARAMETERS:
Name	I/O	Type	Description
FD	I	INT_32_TYPE	Socket file descriptor.
APP_ID	I	UIT_APPTYPE_PTR 	Application name.
RESULTS	O	ST_STATUS	Returns SUCCESS or FAILURE.
DESCRIPTION:
This function registers the application instantiation with the local TAMPS executive.
EXAMPLE:
with UIT;
use UIT;
with ST_SYSDEFS;
use ST_SYSDEFS;
with UIT_IPC;
use UIT_IPC;
with UNSIGNED;
use UNSIGNED;
with BASE_TYPES;

FD 	: BASE_TYPES.INT_32_TYPE;
APP_ID 	: UIT_APPTYPE_PTR;
RESULTS 	: ST_STATUS;
APP_NAME 	: STRING(1..22) := "APPLICATION_NAME_TYPE"

function CHAR_TO_U_CHAR is new
 UNCHECKED_CONVERSION(CHARACTER,C_UNSIGNED_CHAR);

begin

APP_ID := new UIT_APPTYPE;

for i in 1..21 loop
 APP_ID(i) := CHAR_TO_U_CHAR((APP_NAME(i)));
end loop;

RESULTS := UIT_BIRTH (FD, APP_ID);

NOTE: The strings can also be passed without using
unchecked conversion. See UIT_HEADER for an example.
�
function: � tc " UIT_DEATH" \l 3 �UIT_DEATH�IFA10002��CALLING SEQUENCE:
results := UIT_DEATH (FD, APP_ID)
PARAMETERS:
Name	I/O	Type	Description
FD	I	INT_32_TYPE	Socket file descriptor.
APP_ID	I	UIT_APPTYPE_PTR 	Application name.
RESULTS	O	ST_STATUS	Returns SUCCESS or FAILURE.
DESCRIPTION:
This function registers the termination of an application with the local TAMPS executive.
EXAMPLE:
with UIT;
use UIT;
with ST_SYSDEFS;
use ST_SYSDEFS;
with UIT_IPC;
use UIT_IPC;
with BASE_TYPES;

FD 	: BASE_TYPES.INT_32_TYPE;
APP_ID 	: UIT_APPTYPE_PTR;
RESULTS 	: ST_STATUS;

RESULTS := UIT_DEATH (FD, APP_ID);

�
function: � tc " UIT_HEADER" \l 3 �UIT_HEADER�IFA10003��CALLING SEQUENCE:
uit_HEAD (TYPE_C, SOURCE_APP, DEST_PID, DEST_APP, DEST_HOST, HEADER)
PARAMETERS:
Name	I/O	Type	Description
TYPE_C	I	UIT_TYPETYPE 	Message type.
SOURCE_APP	I	UIT_APPTYPE_PTR 	Source application name.
DEST_PID	I	UIT_PIDTYPE 	Destination process ID or UIT_ALL_PID.
DEST_APP	I	UIT_APPTYPE_PTR 	Destination application name.
DEST_HOST	I	UIT_HOSTTYPE 	Destination host ID: ULT_LOCAL_HOST or ULT_ALL_HOST.
HEADER	O	UIT_HEADER_PTR 	Message header.
DESCRIPTION:
This function creates the header record for a message, and returns SUCCESS or FAILURE. The calling application provides the message type (type), the character string name of the calling process (source_app), the destination pid number (either the #define UIT_ALL_PID or a specific pid number), the destination application character string (dest_app), the destination host (either #define UIT_LOCAL_HOST or #define UIT_ALL_HOST to send either to the local machine or to any machine on the network), and an empty header structure. This function returns a filled-in header structure.
EXAMPLE:
with SYSTEM;
use SYSTEM;
with UIT;
use UIT;
with UIT_IPC;
use UIT_IPC;
with UIT_MESSAGE;
use UIT_MESSAGE;

TYPE 	: UIT_TYPETYPE;
SOURCE_APP 	: UIT_APPTYPE;
DEST_PID 	: UIT_PIDTYPE;
DEST_APP 	: UIT_APPTYPE;
DEST_HOST 	: UIT_HOSTTYPE;
HEADER 	: UIT_HEADER_PTR;

UIT_HEADER (TYPE, SOURCE_APP'ADDRESS, DEST_PID,
DEST_APP'ADDRESS, DEST_HOST'ADDRESS, HEADER);
�
function: � tc " uit_NEXBIRTH" \l 3 �uit_NEXBIRTH�IFA10004��CALLING SEQUENCE:
results := uit_NEXBIRTH (FD, APP_ID)
PARAMETERS:
Name	I/O	Type	Description
FD	I	INT_32_TYPE	Socket file descriptor.
APP_ID	I	UIT_APPTYPE_PTR 	Application name.
RESULTS	O	ST_STATUS	Returns SUCCESS or FAILURE.
DESCRIPTION:
This function registers the application instantiation with the network executive. This is not normally used by application programs.
EXAMPLE:
with UIT;
use UIT;
with ST_SYSDEFS;
use ST_SYSDEFS;
with UIT_IPC;
use UIT_IPC;
with BASE_TYPES;

FD 	: BASE_TYPES.INT_32_TYPE;
APP_ID 	: UIT_APPTYPE_PTR;
RESULTS 	: ST_STATUS;

RESULTS := UIT_NEXBIRTH (FD, APP_ID);
�
function: � tc " uit_NEXDEATH" \l 3 �uit_NEXDEATH�IFA10005��CALLING SEQUENCE:
results := uit_NEXDEATH (FD, APP_ID)
PARAMETERS:
Name	I/O	Type	Description
FD	I	INT_32_TYPE	Socket file descriptor.
APP_ID	I	UIT_APPTYPE_PTR 	Application name.
RESULTS	O	ST_STATUS 	Returns SUCCESS or FAILURE.
DESCRIPTION:
This function registers the termination of an application with the network executive. This function is not normally used by an application program.
EXAMPLE:
with UIT;
use UIT;
with ST_SYSDEFS;
use ST_SYSDEFS;
with UIT_IPC;
use UIT_IPC;
with BASE_TYPES;

FD 	: BASE_TYPES.INT_32_TYPE;
APP_ID 	: UIT_APPTYPE_PTR;
RESULTS 	: ST_STATUS;

RESULTS := UIT_NEXDEATH (FD, APP_ID);
�
function: � tc " uit_READ" \l 3 �uit_READ�IFA10006��CALLING SEQUENCE:
results := uit_READ (FD, HEADER, BODY)
PARAMETERS:
Name	I/O	Type	Description
FD	I	INT_32_TYPE	Socket file descriptor.
HEADER	O	UIT_HEADER_PTR 	Message header.
BODY	O	ADDRESS	Message body.
RESULTS	O	ST_STATUS	Returns SUCCESS or FAILURE.
DESCRIPTION:
This function performs a blocking read for an incoming message, and returns 1 for SUCCESS or -1 for FAILURE. The calling application provides the socket file descriptor, a pointer to an empty header, and a pointer to a pointer for the body. This function should be called in situations where an application requires the receipt of a message for further processing as it waits until a message is received on the socket. Use UIT_READNW for periodic checking of the socket for messages.
EXAMPLE:
with SYSTEM;
use SYSTEM;
with UIT;
use UIT;
with ST_SYSDEFS;
use ST_SYSDEFS;
with UIT_IPC;
use UIT_IPC;
with BASE_TYPES;

FD 	: BASE_TYPES.INT_32_TYPE;
HEADER 	: UIT_HEADER_PTR;
BODY 	: ADDRESS;
RESULTS 	: ST_STATUS;

RESULTS := UIT_READ (FD, HEADER, BODY);
�
function: � tc " uit_READNW" \l 3 �uit_READNW�IFA10007��CALLING SEQUENCE:
results := uit_READNW (FD, HEADER, BODY)
PARAMETERS:
Name	I/O	Type	Description
FD	I	INT_32_TYPE	Socket file descriptor.
HEADER	O	UIT_HEADER_PTR 	Message header.
BODY	O	ADDRESS	Message body.
RESULTS	O	ST_STATUS	Returns SUCCESS or FAILURE.
DESCRIPTION:
This function performs a blocking read for an incoming message with no waiting. It returns a 1 if the read was successful, a 0 if there are no messages pending for read, or a -1 for errors. It has the same functionality as uit_read, except it does not wait for messages to appear on the socket. This function is used to periodically check for incoming messages.
EXAMPLE:
with SYSTEM;
use SYSTEM;
with UIT;
use UIT;
with ST_SYSDEFS;
use ST_SYSDEFS;
with UIT_IPC;
use UIT_IPC;
with BASE_TYPES;

FD 	: BASE_TYPES.INT_32_TYPE;
HEADER 	: UIT_HEADER_PTR;
BODY 	: ADDRESS;
RESULTS 	: ST_STATUS;

RESULTS := UIT_READNW (FD, HEADER, BODY);
�
function: � tc " UIT_REGISTERINITDONE" \l 3 �UIT_REGISTERINITDONE�IFA15139��CALLING SEQUENCE:
STATUS := UIT_REGISTERINITDONE (-1, "APPNAME", DISPLAYPTR)
PARAMETERS:
Name	I/O	Type	Description
FD	I	INT_32_TYPE	Descriptor of IPC socket.
NAME	I	ADDRESS	Application name.
DISPLAY	I	DISPLAY_PTR	X display connection.
STATUS	O	ST_STATUS	ST_SUCCESS if all is okay.
DESCRIPTION:
This function registers a work process to send an "initialization done" message to the WSE application manager after X initialization is complete. This message will bring down the Start-Up Dialog. If the IPC socket descriptor for the application is not known then a -1 can be used to open a temporary socket. If this function or the UIT_SENDINITDONE function are not sent by the application then the WSE application manager will leave the Start-Up Dialog up for as long as the application is running. This differs from the UIT_SENDINITDONE function which will notify the WSE application manager that the start-up dialog can be brought down immediately.
EXAMPLE:
with SYSTEM;
with ST_SYSDEFS;
with BASE_TYPES;

FD	: BASE_TYPES.INT_32_TYPE;
NAME	: STRING(1..X);
DISPLAY	: ??.DISPLAY_PTR;
STATUS	: ST_SYSDEFS.ST_STATUS;

STATUS := UIT_REGISTERINITDONE(FD,
				 NAME'ADDRESS,
				 DISPLAY);

�
FUNCTION: � tc " UIT_ROLE_COMPARE" \l 3 �UIT_ROLE_COMPARE�IFA10008��CALLING SEQUENCE:
results := uit_ROLE_COMPARE (FD, APPNAME, ROLE, WAIT_TIME, ACTIVE)
PARAMETERS:
Name	I/O	Type	Description
FD	I	INT_32_TYPE	Socket ID.
APPNAME	I	ADDRESS 	Name of the application making the request.
ROLE	I	ADDRESS 	Target role to compare.
WAIT_TIME	I	INT_32_TYPE 	Loop iteration.
ACTIVE	O	INT_32_PTR 	Pointer to flag to store result.
results	O	ST_STATUS	Returns SUCCESS or FAILURE.
DESCRIPTION:
This function requests a list of roles and the currently active roles for the user from the network executive. It then compares the passed role to the available roles to determine if the passed role is active. A status of SUCCESS is returned if the role is active and FAILURE if the role is not active.
Since this function requires a connection to the network executive, it should not be called unless the calling application has executed a uit_start successfully.
The fourth parameter, wait_time, indicates how long to wait for a response from the network executive. A non-blocking read is performed within a loop iterated to wait_time. This may result in a message being missed if the loop iterates too few times. A standard value for this is 1000000.
The fifth parameter, active, is a pointer to the memory to store the result of the role compare. If the role being compared is active for the user, the flag will be set to TRUE. If not active, the flag will be set to FALSE.
EXAMPLE:
with SYSTEM;
use SYSTEM;
with UIT;
use UIT;
with BASE_TYPES;

FD 	: BASE_TYPES.INT_32_TYPE;
APPNAME 	: constant STRING := "app" & ASCII.NUL;
ROLE 	: constant STRING := "role" & ASCII.NUL;
WAIT_TIME 	: BASE_TYPES.INT_32_TYPE;
ACTIVE 	: BASE_TYPES.INT_32_TYPE;
STATUS 	: ST_STATUS;

STATUS := UIT_ROLE_COMPARE (FD, APPNAME'ADDRESS, ROLE'ADDRESS,
WAIT_TIME, ACTIVE'ADDRESS);
�
FUNCTION: � tc " UIT_ROLE_NAME_ID" \l 3 �UIT_ROLE_NAME_ID�IFA10009��CALLING SEQUENCE:
ROLE_ID := uit_ROLE_NAME_ID (FD, APPNAME, ROLENAME)
PARAMETERS:
Name	I/O	Type	Description
FD	I	INT_32_TYPE	Socket ID connected by UIT_START.
APPNAME	I	ADDRESS 	Name of application making the request.
ROLENAME	I	ADDRESS 	Target role to compare.
ROLE_ID	O	INT_32_TYPE	ID of the specified role, or -1 if the role was not found.
DESCRIPTION:
This function finds the current ID of the specified role and returns the value to the calling program. If the function does not find the specified role in the set of valid roles, a -1 is returned; otherwise, the ID of the specified role is returned. This function can be used to send alerts to specific roles instead of to particular people.
Since this function requires a connection to the network executive, it should not be called unless the calling application has executed a uit_start successfully.
EXAMPLE:
with SYSTEM;
use SYSTEM;
with UIT;
use UIT;
with UIT_IPC;
use UIT_IPC;
with UIT_MESSAGE;
use UIT_MESSAGE;
with BASE_TYPES;

FD 	: BASE_TYPES.INT_32_TYPE;
APPNAME 	: constant STRING := "app" & ASCII.NUL;
ROLENAME 	: constant STRING := "role" & ASCII.NUL;
ROLE_ID 	: BASE_TYPES.INT_32_TYPE;

ROLE_ID := UIT_ROLE_NAME_ID (FD, APPNAME'ADDRESS,
ROLENAME'ADDRESS);
�
function: � tc " uit_SEND" \l 3 �uit_SEND�IFA10010��CALLING SEQUENCE:
results := uit_SEND (FD, HEADER, BODY, SIZE)
PARAMETERS:
Name	I/O	Type	Description
FD	I	INT_32_TYPE	Socket file descriptor.
HEADER	I	UIT_HEADER_PTR 	Message header.
BODY	I	ADDRESS 	Message body.
SIZE	I	INT_32_TYPE	Size of body.
results	O	ST_STATUS	Returns SUCCESS or FAILURE.
DESCRIPTION:
This function performs a blocking send of a message. The calling application provides the socket file descriptor, a pointer to the message header, a pointer to the message body, and the size of the message.
EXAMPLE:
with SYSTEM;
use SYSTEM;
with UIT;
use UIT;
with ST_SYSDEFS;
use ST_SYSDEFS;
with UIT_IPC;
use UIT_IPC;
with UIT_MESSAGE;
use UIT_MESSAGE;
with BASE_TYPES;

FD 	: BASE_TYPES.INT_32_TYPE;
HEADER 	: UIT_HEADER;
BODY 	: ADDRESS;
SIZE 	: BASE_TYPES.INT_32_TYPE;
RESULTS 	: ST_STATUS;

RESULTS := UIT_SEND (FD, HEADER, BODY, SIZE);
�
function: � tc " UIT_SENDINITDONE" \l 3 �UIT_SENDINITDONE�IFA15140��CALLING SEQUENCE:
STATUS := UIT_SENDINITDONE (-1, "APPNAME", 0)
PARAMETERS:
Name	I/O	Type	Description
FD	I	INT_32_TYPE	Descriptor of IPC socket.
NAME	I	ADDRESS	Application name.
PID	I	UIT_PIDTYPE	Process ID to be sent.
STATUS	O	ST_STATUS	ST_SUCCESS if all is okay.
DESCRIPTION:
This function immediately sends an "initialization done" message to the WSE application manager. This message will bring down the Start-Up Dialog. If the IPC socket descriptor for the application is not known, then a -1 can be used to open a temporary socket. If the Process ID is less than a 0 then the current application PID is used. If this function, or the UIT_REGISTERINITDONE function is not sent by the application, then the WSE application manager will leave the Start-Up Dialog up for as long as the application is running. This differs from the UIT_REGISTERINITDONE function which registers the request to wait until X-initialization is complete.
EXAMPLE:
with SYSTEM;
with ST_SYSDEFS;
with BASE_TYPES;

FD	: BASE_TYPES.INT_32_TYPE;
NAME	: STRING(1..X);
PID	: BASE_TYPES.INT_32_TYPE;
STATUS	: ST_SYSDEFS.ST_STATUS;

STATUS := UIT_SENDINITDONE(FD,
 NAME'ADDRESS,
 PID);

�
function: � tc " uit_SENDNW" \l 3 �uit_SENDNW�IFA10011��CALLING SEQUENCE:
results := uit_SENDNW (FD, BUFR, SIZE)
PARAMETERS:
Name	I/O	Type	Description
FD	I	INT_32_TYPE	Socket file descriptor.
BUFR	I	ADDRESS	Message buffer.
SIZE	I	INT_32_TYPE	Size of buffer.
results	O	ST_STATUS	Number of bytes sent.
DESCRIPTION:
This function performs a send with no wait of a message. The calling application provides the socket file descriptor, a pointer to the message buffer, and the size of the message buffer. It is up to the calling application to examine the number of bytes sent and to handle incomplete transmissions.
EXAMPLE:
with SYSTEM;
use SYSTEM;
with UIT;
use UIT;
with UIT_IPC;
use UIT_IPC;
with UIT_MESSAGE;
use UIT_MESSAGE;
with BASE_TYPES;

FD 	: BASE_TYPES.INT_32_TYPE;
BUFR 	: ADDRESS;
SIZE 	: BASE_TYPES.INT_32_TYPE;
RESULTS 	: BASE_TYPES.INT_32_TYPE;

RESULTS := UIT_SENDNW (FD, BUFR, SIZE);
�
function: � tc " uit_START" \l 3 �uit_START�IFA10012��CALLING SEQUENCE:
reTURN := uit_START (FD, SRVNAME, HOSTNAME)
PARAMETERS:
Name	I/O	Type	Description
FD	O	INT_32_PTR	Address of Socket file descriptor.
SRVNAME	I	ADDRESS 	Service name.
HOSTNAME	I	ADDRESS 	Name of host with service.
results	O	ST_STATUS	Returns SUCCESS or FAILURE.
DESCRIPTION:
This function opens the connection to srvname, and returns SUCCESS or FAILURE, as well as the file descriptor. The parameters srvname and hostname are character strings. Applications should use the values "wrt-srv" for srvname and the name of the host to connect to either the local host or the network executive host as defined by the environment variable NEXSERVER.
EXAMPLE:
with SYSTEM;
use SYSTEM;
with UIT;
use UIT;
with ST_SYSDEFS;
use ST_SYSDEFS;
with BASE_TYPES;

FD 	: BASE_TYPES.INT_32_TYPE;
SRVNAME 	: constant STRING := "srvname" & ASCII.NUL;
HOSTNAME 	: constant STRING := "hostname" & ASCII.NUL;
RETURN 	: ST_STATUS;

RETURN := UIT_START (FD'ADDRESS, SRVNAME'ADDRESS, HOSTNAME'ADDRESS);
�
function: � tc " uit_TERM" \l 3 �uit_TERM�IFA10013��CALLING SEQUENCE:
results := uit_TERM (FD)
PARAMETERS:
Name	I/O	Type	Description
FD	I	INT_32_TYPE	Socket file descriptor.
results	O	ST_STATUS	Returns SUCCESS or FAILURE.
DESCRIPTION:
This function terminates the connection identified by the socket file descriptor.
EXAMPLE:
with UIT;
use UIT;
with ST_SYSDEFS;
use ST_SYSDEFS;
with BASE_TYPES;

FD 	: BASE_TYPES.INT_32_TYPE;
RESULTS 	: ST_STATUS;

RESULTS := UIT_TERM (FD);

Document No. 160008-IDD-6.2 - February 1998

IDD.DOC,APNDX.B,Rev 14

G.16.2-�

Document No. 168021-IDD - September 1992

IDD.DOC,APNDX.B,Rev 14

