SECTION G.11.1�OBJECT HIERARCHY UTILITY�(OHT) ADA BINDINGS
��

This page intentionally left blank.�
FUNCTION: � tc " OHT_ACTIVATEACTION" \l 3 �OHT_ACTIVATEACTION�IFA11018��CALLING SEQUENCE:
STATUS := OHT_ACTIVATEACTION (ACTION, OBJECTS)
PARAMETERS:
Name	I/O	Type	Description
ACTION	I	ADDRESS 	String containing the action class name.
OBJECTS	I	LIST_PTR	A linked list of BUCKET_OBJECT structures on which to perform the specified action.
STATUS	O	ST_STATUS	Returns SUCCESS or FAILURE.
DESCRIPTION:
This function performs the specified object action on the list of specified objects. These objects must be of type BUCKET_OBJECT. Currently this function will be called mostly from the Data Bucket Manager software.
EXAMPLE:
with OHT;
use OHT;
with ST_SYSDEFS;
use ST_SYSDEFS;

ACTION 	: ADDRESS;
OBJECTS 	: LIST_PTR;
STATUS 	: ST_STATUS;

OHT_ACTIVATEACTION (ACTION, OBJECTS, STATUS);
�
FUNCTION: � tc " OHT_ADDACTIONATTR" \l 3 �OHT_ADDACTIONATTR�IFA11023��CALLING SEQUENCE:
STATUS := OHT_ADDACTIONATTR (OBJPTR, ACTION, TABLE, COLUMN, VALUE)
PARAMETERS:
Name	I/O	Type	Description
OBJPTR	I	OBJECT_CLASS_	Pointer to anObject Class Data
		DATA_PTR	structure allocated from OHT_CREATEOBJECTCLASSDATA.
ACTION	I	ADDRESS	String containing the action class name.
TABLE	I	ADDRESS	String containing the action attribute table name.
COLUMN	I	ADDRESS	String containing the action attribute column name.
VALUE	I	ADDRESS	String containing the action attribute value.
STATUS	O	ST_STATUS	Returns SUCCESS or FAILURE.
DESCRIPTION:
This function adds Object Action Attributes (table, column, value) tuples to the specified Object Action associated with the specified Object Class data structure. This function is intended to be used in conjunction with OHT_CREATEOBJECTCLASSDATA and OHT_ADDOBJECTACTION to create "In Memory" objects.
EXAMPLE:
with OHT;
use OHT;
with ST_SYSDEFS;
use ST_SYSDEFS;

OBJPTR 	: OBJECT_CLASS_DATA_PTR;
ACTION 	: ADDRESS;
TABLE 	: ADDRESS;
COLUMN 	: ADDRESS;
VALUE 	: ADDRESS;
STATUS 	: ST_STATUS;

STATUS := OHT_ADDACTIONATTR (OBJPTR, ACTION, TABLE, COLUMN, VALUE);
�
FUNCTION: � tc " OHT_ADDGEOGRAPHIC" \l 3 �OHT_ADDGEOGRAPHIC�IFA11021��CALLING SEQUENCE:
STATUS := OHT_ADDGEOGRAPHIC (OBJPTR, SYMFILE, SYMID, SYMCLR, PLOTCLR, PICKFIELD)
PARAMETERS:
Name	I/O	Type	Description
OBJPTR	I	OBJECT_CLASS_	Pointer to a Object Class Data
		DATA_PTR	structure allocated from oht_createObjectClassData().
SYMFILE	I	ADDRESS	String containing the symbol set file name for "In Memory" Object.
SYMID	I	INT_32_TYPE	"In Memory" Object symbol ID.
SYMCLR	I	INT_32_TYPE	"In Memory" Object symbol color.
PLOTCLR	I	INT_32_TYPE	"In Memory" Object plot color.
PICKFIELD	I	ADDRESS	String containing the TABLE.COLUMN for the pick resolution field for the "In Memory" Object.
STATUS	O	ST_STATUS	Returns SUCCESS or FAILURE.
DESCRIPTION:
This function adds the appropriate geographic display data to the specified Object Class Data structure. This function is intended to work with the OHT_CREATEOBJECTCLASSDATA function to build "In Memory" Object more easily.
EXAMPLE:
with OHT;
use OHT;
with ST_SYSDEFS;
use ST_SYSDEFS;
with BASE_TYPES;

OBJPTR 	: OBJECT_CLASS_DATA_PTR;
SYMFILE 	: ADDRESS;
SYMID 	: BASE_TYPES.INT_32_TYPE;
SYMCLR 	: BASE_TYPES.INT_32_TYPE;
PLOTCLR 	: BASE_TYPES.INT_32_TYPE;
PICKFIELD 	: ADDRESS;
STATUS 	: ST_STATUS;

STATUS := OHT_ADDGEOGRAPHIC (OBJPTR, SYMFILE, SYMID, SYMCLR, PLOTCLR PICKFIELD);�
FUNCTION: � tc " OHT_ADDOBJECTACTION" \l 3 �OHT_ADDOBJECTACTION�IFA11022��CALLING SEQUENCE:
STATUS := OHT_ADDOBJECTACTION (OBJPTR, ACTION)
PARAMETERS:
Name	I/O	Type	Description
OBJPTR	I	OBJECT_CLASS_	Pointer to an Object Class Data
		DATA_PTR	structure allocated from oht_createObjectClassData.
ACTION	I	ADDRESS 	String containing the action class name.
STATUS	O	ST_STATUS 	Returns SUCCESS or FAILURE.
DESCRIPTION:
This function adds an Object Action to the specified Object Class data structure. This function is intended to work with the OHT_CREATEOBJECTCLASSDATA function to build "In Memory" Object more easily.
EXAMPLE:
with OHT;
use OHT;
with ST_SYSDEFS;
use ST_SYSDEFS;

OBJPTR 	: OBJECT_CLASS_DATA_PTR;
ACTION 	: ADDRESS;
STATUS 	: ST_STATUS;

STATUS := OHT_ADDOBJECTACTION (OBJPTR, ACTION);
�
FUNCTION: � tc " OHT_BROWSER" \l 3 �OHT_BROWSER�IFA11001��CALLING SEQUENCE:
BROWSER_LIST := OHT_BROWSER(OBJECT_ID)
PARAMETERS:
Name	I/O	Type	Description
OBJECT_ID	I	INT_32_TYPE	Object ID.
BROWSER_LIST	O	LIST_PTR 	Pointer to the root node of a linked list of pointers to structures containing the name and ID for each of the object's children.
DESCRIPTION:
This function receives as input an object ID and returns a list of pointers to the names of the object's children along with the associated IDs. If an object ID of 0 is received as input, the names of root's children are returned in the list. If no children exist, NULL is returned. If the ID input is invalid, NULL is returned and the global oht_errno is set. Note: after data in list structure is no longer needed, the caller needs to call ult_lst_free to free the space allocated by oht_browser.
EXAMPLE:
with OHT;
use OHT;
with OT_DEFINES;
use OT_DEFINES;
with ULT_LIST;
use ULT_LIST;
with BASE_TYPES;

OBJECT_ID 	: BASE_TYPES.INT_32_TYPE;
BROWSER_LIST 	: LIST_PTR;

BROWSER_LIST := OHT_BROWSER (OBJECT_ID);
�
FUNCTION: � tc " OHT_CREATEOBJECTCLASSDATA" \l 3 �OHT_CREATEOBJECTCLASSDATA�IFA11020��CALLING SEQUENCE:
OBJCLSDATA := OHT_CREATEOBJECTCLASSDATA (OBJID, OBJNAME)
PARAMETERS:
Name	I/O	Type	Description
OBJID	I	INT_32_TYPE	ID for the new "In Memory" Object.
OBJNAME	I	ADDRESS 	Name for the new "In Memory" Object.
OBJCLSDATA	O	OBJECT_CLASS_	Pointer to the new "In Memory"
		DATA_PTR	Object Class data structure.
DESCRIPTION:
This function creates and initializes a new "In Memory" Object Class Data structure. This function returns a pointer to the allocated structure and provides default values for certain required object fields. This function should be used in conjunction with OHT_ADDGEOGRAPHIC, OHT_ADDOBJECTACTION, and OHT_ADDACTIONATTR.
EXAMPLE:
with OHT;
use OHT;
with ST_SYSDEFS;
use ST_SYSDEFS;
with BASE_TYPES;

OBJID 	: BASE_TYPES.INT_32_TYPE;
OBJNAME 	: ADDRESS;
OBJCLSDATA 	: OBJECT_CLASS_DATA_PTR;

OBJCLSDATA := OHT_CREATEOBJECTCLASSDATA (OBJID, OBJNAME);
�
FUNCTION: � tc " OHT_FREEACTIONCLASSDATA" \l 3 �OHT_FREEACTIONCLASSDATA�IFA11019��CALLING SEQUENCE:
STATUS := OHT_FREEACTIONCLASSDATA (ACTION_PTR)
PARAMETERS:
Name	I/O	Type	Description
ACTION_PTR	I	OUT_ACTION_	Pointer to the action class data to
		CLASS_PTR	be freed.
STATUS	O	ST_STATUS	Returns ST_SUCCESS or ST_FAILURE.
DESCRIPTION:
This function frees all memory allocated by previous calls to OHT_GETACTIONCLASSDATA.
EXAMPLE:
with ST_SYSDEFS;
use ST_SYSDEFS;
with OHT;
use OHT;
with OUT_STRUCTS;
use OUT_STRUCTS;

ACTION 	: ADDRESS;
PACTCLASS 	: OUT_ACTION_CLASS_PTR;
PACTCLASS 	:= OHT_GETACTIONCLASSDATA (ACTION);
.
.
.
STATUS := OHT_FREEACTIONCLASSDATA (PACTCLASS);

�
FUNCTION: � tc " OHT_FREEOBJACTIONATTRS" \l 3 �OHT_FREEOBJACTIONATTRS�IFA11026��CALLING SEQUENCE:
STATUS := OHT_FREEOBJACTIONATTRS (OBJATTRS)
PARAMETERS:
Name	I/O	Type	Description
OBJATTRS	I	LIST_PTR	Linked list of OUT_ACTION_
			DATA structures.
STATUS	O	ST_STATUS 	Returns SUCCESS or FAILURE.
DESCRIPTION:
This function frees the linked list of object action attributes returned by OHT_GETOBJACTIONATTRS.
EXAMPLE:
with OHT;
use OHT;
with ST_SYSDEFS;
use _ST_SYSDEFS;

OBJATTRS 	: LIST_PTR;
STATUS 	: ST_STATUS;

STATUS := OHT_FREEOBJACTIONATTRS (OBJATTRS);
�
FUNCTION: � tc " OHT_FREEOBJECTCLASSDATA" \l 3 �OHT_FREEOBJECTCLASSDATA�IFA11002��CALLING SEQUENCE:
ERROR_CODE := OHT_FREEOBJECTCLASSDATA (OBJECT_DATA_LIST)
PARAMETERS:
Name	I/O	Type	Description
OBJECT_DATA_LIST	I	LIST_PTR	Pointer to root node of linked list of Object Class Data structure pointers.
ERROR_CODE 	O	ST_STATUS	Returns SUCCESS or FAILURE.
DESCRIPTION:
This function frees all memory associated with the linked list of pointers to Object Class data structures generated by calls to oht_getObjectClassData.
EXAMPLE:
with OHT;
use OHT;
with ST_SYSDEFS;
use ST_SYSDEFS;
with ULT_LIST;
use ULT_LIST;

OBJECT_DATA_LIST 	: LIST_PTR;
ERROR_CODE 	: ST_STATUS;

ERROR_CODE := OHT_FREEOBJECTCLASSDATA (OBJECT_DATA_LIST);
�
FUNCTION: � tc " OHT_GETACTIONCLASSDATA" \l 3 �OHT_GETACTIONCLASSDATA�IFA11015��CALLING SEQUENCE:
PACTCLASS := OHT_GETACTIONCLASSDATA (ACTION)
PARAMETERS:
Name	I/O	Type	Description
ACTION	I	ADDRESS	String containing the action class name.
PACTCLASS	O	OUT_ACTION_	Pointer to a structure that contains
		CLASS_PTR 	the Action Class data for the requested Action Class.
DESCRIPTION:
This function is a public interface function to request Action Class Data from the Object Hierarchy Server for a particular action. This function parses the string returned by Server, formats and loads data into an OUT_ACTION_CLASS structure, and returns the structure pointer to the caller. The calling function is responsible to free the returned structure by calling OUT_FREEACTIONCLASSDATA.
EXAMPLE:
with OHT;
use OHT;
with ST_SYSDEFS;
use ST_SYSDEFS;
with OUT_STRUCTS;
use OUT_STRUCTS;

ACTION 	: ADDRESS;
PACTCLASS 	: ADDRESS;

PACTCLASS := OHT_GETACTIONCLASSDATA (ACTION);
�
FUNCTION: � tc " OHT_GETANCESTORS" \l 3 �OHT_GETANCESTORS�IFA11003��CALLING SEQUENCE:
ANCESTORS := OHT_GETANCESTORS (OBJECT_ID)
PARAMETERS:
Name	I/O	Type	Description
OBJECT_ID	I	INT_32_TYPE	Object ID.
ANCESTORS	O 	LIST_PTR	Pointer to the root node of the linked list of pointers to the ancestors' object IDs.
DESCRIPTION:
This function receives as input an object ID and returns a list of pointers to the IDs of its ancestors. If the ID input is invalid or a malloc error occurred, a NULL pointer is returned. The closest ancestor is the first entry in the list; root (ID 0) will always be the last entry in the list. Note: after data in the list structure is no longer needed, the caller needs to call ult_lst_free to free the space allocated by oht_getAncestors.
EXAMPLE:
with OHT;
use OHT;
with ULT_LIST;
use ULT_LIST;
with BASE_TYPES;

OBJECT_ID 	: BASE_TYPES.INT_32_TYPE;
ANCESTORS 	: LIST_PTR ;

ANCESTORS := OHT_GETANCESTORS (OBJECT_ID);
�
FUNCTION: � tc " OHT_GETCHILDREN" \l 3 �OHT_GETCHILDREN�IFA11004��CALLING SEQUENCE:
CHILDREN := OHT_GETCHILDREN (OBJECT_ID)
PARAMETERS:
Name	I/O	Type	Description
OBJECT_ID	I	INT_32_TYPE	Object ID.
CHILDREN	O	LIST_PTR	Pointer to the root node of the linked list of pointers to the children's object IDs.
DESCRIPTION:
This function receives as input an object ID and returns a list of pointers to the IDs of its children. If no children exist for the object ID input, a NULL pointer is returned. If the ID input is invalid or in the event of failure, NULL is returned. Note: after data in the list structure is no longer needed, the caller needs to call ult_lst_free to free the space allocated by oht_getChildren.
EXAMPLE:
with OHT;
use OHT;
with ULT_LIST;
use ULT_LIST;
with BASE_TYPES;

NAME 	: Type;
OBJECT_ID 	: BASE_TYPES.INT_32_TYPE;
CHILDREN	: LIST_PTR;

CHILDREN := OHT_GETCHILDREN (OBJECT_ID);
�
FUNCTION: � tc " OHT_GETNAME" \l 3 �OHT_GETNAME�IFA11005��CALLING SEQUENCE:
STATUS := OHT_GETNAME (OBJECT_ID, NAME)
PARAMETERS:
Name	I/O	Type	Description
OBJECT_ID	I	INT_32_TYPE	Object ID for which caller wishes to retrieve corresponding object name.
NAME	O	ADDRESS	Pointer to space allocated by caller to hold object name (a maximum of 31 characters) which corresponds to object ID.
STATUS	O	ST_STATUS	Returns SUCCESS or FAILURE to find name for given ID (global oht_errno is set in the event of failure).
DESCRIPTION:
This function copies the NULL-terminated string containing the name of the object that corresponds to the object ID input to the function. If the ID is invalid (i.e., it is not indexed), FAILURE is returned, the string is NULL-terminated, and the global oht_errno is set.
EXAMPLE:
with OHT;
use OHT;
with ST_SYSDEFS;
use ST_SYSDEFS;
with OT_DEFINES;
use OT_DEFINES;
with BASE_TYPES;

OBJECT_ID 	: BASE_TYPES.INT_32_TYPE;
NAME 	: STRING(1..31);
STATUS 	: ST_STATUS;

STATUS := OHT_GETNAME (OBJECT_ID, NAME'ADDRESS);
�
FUNCTION: � tc " OHT_GETOBJACTIONATTRS" \l 3 �OHT_GETOBJACTIONATTRS�IFA11025��CALLING SEQUENCE:
ACTATTRS := OHT_GETOBJACTIONATTRS (OBJPTR, ACTION)
PARAMETERS:
Name	I/O	Type	Description
OBJPTR	I	OBJECT_CLASS_	Pointer to an Object Class Data
		DATA_PTR	structure.
ACTION	I	ADDRESS 	String containing the action class name.
ACTATTRS	O	LIST_PTR	Linked list of OUT_ACTION_DATA structures for the Action Class attributes associated with the specified Object Class Data structure.
DESCRIPTION:
This function returns a linked list of the object action attributes for the specified object class data and object action. The calling function is responsible for freeing the list by calling OHT_FREEOBJACTIONATTRS.
EXAMPLE:
with OHT;
use OHT;
with ST_SYSDEFS;
use ST_SYSDEFS;

OBJPTR 	: OBJECT_CLASS_DATA_PTR;
ACTION 	: ADDRESS;
ACTATTRS 	: LIST_PTR;

ACTATTRS := OHT_GETOBJACTIONATTRS (OBJPTR, ACTION);
�
FUNCTION: � tc " OHT_GETOBJECTCLASSDATA" \l 3 �OHT_GETOBJECTCLASSDATA�IFA11006��CALLING SEQUENCE:
OBJECT_DATA_STRUCT := OHT_GETOBJECTCLASSDATA (OBJECT_ID, SELECT_FLAG, ERROR_CODE)
PARAMETERS:
Name	I/O	Type	Description
OBJECT_ID	I	INT_32_TYPE	Object ID.
SELECT_FLAG	I	INT_16_TYPE	Indicator specifying which Object Class data to return; predefined in out_defines.a.
ERROR_CODE	O	ST_STATUS_PTR	Address of error return code.
OBJECT_DATA_	O	OBJECT_CLASS_	Pointer to Object Class data
STRUCT		DATA_PTR	structure.
DESCRIPTION:
This function services a request for information about an object from the Object Class data file, which is managed by the Object Hierarchy Server process. The function accepts an object ID which references the Object Class data being requested, as well as a selection criteria flag used to indicate which fields to return. The function returns a pointer to an Object Class data structure. An error status flag is set by the function: 0 indicates no errors were encountered, -1 indicates an error was encountered in servicing the request. If no data is found or an error was encountered, a NULL pointer is returned and the global oht_errno is set. The caller needs to call oht_freeObjectClassData to free the space allocated by the function once data is no longer needed.
EXAMPLE:
with OHT;
use OHT;
with OHT_ERROR;
use OHT_ERROR;
with OT_DEFINES;
use OT_DEFINES;
with ULT_LIST;
use ULT_LIST;
with ST_SYSDEFS;
use ST_SYSDEFS;
with UNCHECKED_CONVERSION;
with TEXT_IO;
with BASE_TYPES;

 OBJECT_ID 	: BASE_TYPES.INT_32_TYPE := 11;
	SELECT_FLAG 	: BASE_TYPES.INT_16_TYPE := 22;
	ERROR_CODE 	: ST_STATUS;
	OBJECT 	: OBJECT_CLASS_DATA_PTR;
	type STR is
	 record
	 STRN 	: STRING(1..15);
 end record;
	type STR_PTR is access STR;
	NEW_STR : STR_PTR;

	function ADDR_TO_STR_PTR is new
		 UNCHECKED_CONVERSION(ADDRESS, STR_PTR);

begin

OBJECT := OHT_GETOBJECTCLASSDATA(OBJECT_ID,SELECT_FLAG,
				ERROR_CODE'ADDRESS);

ADDR_TO_INT(OBJECT.ID_FIELD)));
NEW_STR := ADDR_TO_STR_PTR(OBJECT.ID_FIELD);
TEXT_IO.PUT_LINE("OBJECT.ID_FIELD IS " & NEW_STR.STRN);
�
FUNCTION: � tc " OHT_GETOBJECTID" \l 3 �OHT_GETOBJECTID�IFA11007��CALLING SEQUENCE:
ID := OHT_GETOBJECTID (NAME)
PARAMETERS:
Name	I/O	Type	Description
NAME	I	ADDRESS 	Pointer to NULL-delimited character string containing object name.
ID	O 	INT_32_TYPE	Object ID associated with name.
DESCRIPTION:
This function returns the object ID associated with an object name received as input.
EXAMPLE:
with OHT;
use OHT;
with BASE_TYPES;

NAME 	: constant STRING := "NAME" & ASCII.NUL;
ID 	: BASE_TYPES.INT_32_TYPE;

ID := OHT_GETOBJECTID (NAME'ADDRESS);
�
FUNCTION: � tc " OHT_GETPARENT" \l 3 �OHT_GETPARENT�IFA11008��CALLING SEQUENCE:
PARENT_ID := OHT_GETPARENT (OBJECT_ID)
PARAMETERS:
Name	I/O	Type	Description
OBJECT_ID	I	INT_32_TYPE	Object ID.
PARENT_ID	O	INT_32_TYPE	Parent ID of object identified by input parameter.
DESCRIPTION:
This function receives as input an object ID and returns the ID corresponding to the parent object. The parent ID of the first-level objects will be 0, indicating that the parent is root. The ID returned for invalid object IDs is -1. Note: a root ID of 0 is considered invalid since root has no parent.
EXAMPLE:
with OHT;
use OHT;
with BASE_TYPES;

OBJECT_ID 	: BASE_TYPES.INT_32_TYPE;
PARENT_ID 	: BASE_TYPES.INT_32_TYPE;

PARENT_ID := OHT_GETPARENT (OBJECT_ID);
�
FUNCTION: � tc " OHT_GETSIBLINGS" \l 3 �OHT_GETSIBLINGS�IFA11009��CALLING SEQUENCE:
SIBLINGS := OHT_GETSIBLINGS (OBJECT_ID)
PARAMETERS:
Name	I/O	Type	Description
OBJECT_ID	I	INT_32_TYPE	Object ID.
SIBLINGS	O	LIST_PTR 	Pointer to the root node of the linked list of pointers to the siblings' object IDs.
DESCRIPTION:
This function receives as input an object ID and returns a list of pointers to the IDs of its siblings. If no siblings exist for the object ID, a NULL pointer is returned. Note: After data in the list is no longer needed, the caller needs to call ult_lst_free to free the space allocated by oht_getSiblings.
EXAMPLE:
with OHT;
use OHT;
with ULT_LIST;
use ULT_LIST;
with BASE_TYPES;

OBJECT_ID 	: BASE_TYPES.INT_32_TYPE;
SIBLINGS 	: LIST_PTR;

SIBLINGS := OHT_GETSIBLINGS (OBJECT_ID);
�
FUNCTION: � tc " OHT_INITIALIZE" \l 3 �OHT_INITIALIZE�IFA11010��CALLING SEQUENCE:
ERROR := OHT_INITIALIZE (CONTEXT)
PARAMETERS:
Name	I/O	Type	Description
CONTEXT	I	XT_APP_CONTEXT	X-Window application context.
ERROR	O	ST_STATUS	Returns SUCCESS or FAILURE.
DESCRIPTION:
This function connects an application with the Object Hierarchy data server, and initializes the Object Hierarchy client layer with a copy of the Object Hierarchy index such that requests for Object Class data can be issued by the application. If an error is encountered, -1 is returned; otherwise, 0 is returned. The global error number, oht_errno, may be checked.
EXAMPLE:
with OHT;
use OHT;
with ST_SYSDEFS;
use ST_SYSDEFS;
with UET_ERROR;
use UET_ERROR;

ERROR 	: ST_STATUS;

ERROR := OHT_INITIALIZE (XtAppContext'ADDRESS);
�
FUNCTION: � tc " OHT_ISACTIONCLASS" \l 3 �OHT_ISACTIONCLASS�IFA11016��CALLING SEQUENCE:
STATUS := OHT_ISACTIONCLASS (ACTION)
PARAMETERS:
Name	I/O	Type	Description
ACTION	I	ADDRESS 	String containing the action class name.
STATUS	O	ST_STATUS	Returns SUCCESS or FAILURE.
DESCRIPTION:
This function determines whether the specified action class is a valid member of the action classes returned from the Object Server. The function returns SUCCESS if the specified action is valid, FAILURE otherwise. The oht_defines.h file contains constants for all CORE actions.
EXAMPLE:
with OHT;
use OHT;
with ST_SYSDEFS;
use ST_SYSDEFS;
with OUT_STRUCTS;
use OUT_STRUCTS;

ACTION 	: ADDRESS;
STATUS 	: ST_STATUS;

STATUS := OHT_ISACTIONCLASS (ACTION);
�
FUNCTION: � tc " OHT_REGACTIONCLASSFUNCTION" \l 3 �OHT_REGACTIONCLASSFUNCTION�IFA11017��CALLING SEQUENCE:
STATUS := OHT_REGACTIONCLASSFUNCTION (ACTION, ACTCLASSFUNC)
PARAMETERS:
Name	I/O	Type	Description
ACTION	I	ADDRESS 	String containing the action class name.
ACTCLASSFUNC	I	ADDRESS	Pointer to the function that will perform the specified Action.
STATUS	O	ST_STATUS	Returns SUCCESS or FAILURE.
DESCRIPTION:
This function allows application software to register the function that will perform the specified action. Most of the functions registered will be registered by the Core. The function returns FAILURE if the action is not valid, SUCCESS otherwise.
EXAMPLE:
with OHT;
use OHT;
with ST_SYSDEFS;
use ST_SYSDEFS;

ACTION 	: ADDRESS;
ACTCLASSFUNC 	: ADDRESS;
STATUS 	: ST_STATUS;

STATUS := OHT_REGACTIONCLASSFUNCTION (ACTION, ACTCLASSFUNC, ACTION_DATA);
�
FUNCTION: � tc " OHT_REGISTERCALLBACK" \l 3 �OHT_REGISTERCALLBACK�IFA11011��CALLING SEQUENCE:
STATUS := OHT_REGISTERCALLBACK (FUNCNAME, VALUE)
PARAMETERS:
Name	I/O	Type	Description
FUNCNAME	I	ADDRESS 	Pointer to the function to be called whenever the index needs to be updated.
VALUE	I	ADDRESS	Pointer to the data to be passed to the application function.
STATUS	O	ST_STATUS	Returns SUCCESS or FAILURE.
DESCRIPTION:
This function registers an application function to be called whenever the internal copy of the Object Hierarchy index needs to be updated. The calling function may optionally specify a value to be passed to the application function.
EXAMPLE:
with OHT;
use OHT;
with ST_SYSDEFS;
use ST_SYSDEFS;

VALUE : ADDRESS;
STATUS : ST_STATUS;

STATUS := OHT_REGISTERCALLBACK (FUNCNAME'ADDRESS, VALUE);
�
FUNCTION: � tc " OHT_TERMINATE" \l 3 �OHT_TERMINATE�IFA11012��CALLING SEQUENCE:
ERROR := OHT_TERMINATE ()
PARAMETERS:
Name	I/O	Type	Description
ERROR	O	ST_STATUS	Returns SUCCESS or FAILURE.
DESCRIPTION:
This function closes the communication socket with the Object Hierarchy data server. If an error is encountered, -1 is returned; otherwise, 0 is returned.
EXAMPLE:
with OHT;
use OHT;
with ST_SYSDEFS;
use ST_SYSDEFS;

ERROR 	: ST_STATUS;

ERROR := OHT_TERMINATE;
�
FUNCTION: � tc " OHT_VALIDACTION" \l 3 �OHT_VALIDACTION�IFA11024��CALLING SEQUENCE:
STATUS := OHT_VALIDACTION (OBJPTR, ACTION)
PARAMETERS:
Name	I/O	Type	Description
OBJPTR	I	OBJECT_CLASS_	Pointer to an Object Class Data
		DATA_PTR	structure.
ACTION	I	ADDRESS 	String containing the action class name.
STATUS	O	ST_STATUS	Returns SUCCESS or FAILURE.
DESCRIPTION:
This function determines whether the specified object action is valid for this object. The function returns SUCCESS if the action is valid; FAILURE otherwise.
EXAMPLE:
with OHT;
use OHT;
with ST_SYSDEFS;
use ST_SYSDEFS;

OBJPTR 	: OBJECT_CLASS_DATA_PTR;
ACTION 	: ADDRESS;
STATUS 	: ST_STATUS;

STATUS := OHT_VALIDACTION (OBJPTR, ACTION);
�
FUNCTION: � tc " OHT_VALIDATENAME" \l 3 �OHT_VALIDATENAME�IFA11013��CALLING SEQUENCE:
VALID := OHT_VALIDATENAME (NAME)
PARAMETERS:
Name	I/O	Type	Description
NAME	I	ADDRESS	Pointer to allocated string containing proposed object name.
VALID	O	ST_STATUS	Returns SUCCESS or FAILURE depending on whether name is unique.
DESCRIPTION:
This function verifies that the object name input is unique in the event that a new object is being added to the Object Hierarchy.
EXAMPLE:
with OHT;
use OHT;
with OT_DEFINES;
use OT_DEFINES;
with ST_SYSDEFS;
use ST_SYSDEFS;

NAME 	: constant STRING := "NAME" & ASCII.NUL;
VALID 	: ST_STATUS;

VALID := OHT_VALIDATENAME (NAME'ADDRESS);

�
FUNCTION: � tc " OHT_VALIDATEOBJID" \l 3 �OHT_VALIDATEOBJID�IFA11014��CALLING SEQUENCE:
VALID := OHT_VALIDATEOBJID (OBJECT_ID)
PARAMETERS:
Name	I/O	Type	Description
OBJECT_ID	I	INT_32_TYPE	Value of an object ID that caller wishes to verify references an object stored in the Object Class data file.
VALID	O	ST_STATUS	Returns SUCCESS or FAILURE.
DESCRIPTION:
This function checks to determine whether the object ID received as input corresponds to an object currently stored in the Object Class data file. If it is a valid object ID, a 0 is returned; otherwise, -1 is returned. Note: a root ID of 0 is considered invalid input, since this ID does not point to an actual Object Class data record.
EXAMPLE:
with OHT;
use OHT;
with OHT_ERROR;
use OHT_ERROR;
with ST_SYSDEFS;
use ST_SYSDEFS;
with BASE_TYPES;

OBJECT_ID 	: BASE_TYPES.INT_32_TYPE;
VALID 	: ST_STATUS;

VALID := OHT_VALIDATEOBJID (OBJECT_ID);

�

This page intentionally left blank.

Document No. 160008-IDD-6.2 - February 1998

G.11.1-� PAGE �1�

