SECTION C.1.2
AIRCRAFT MISSION PLANNING
DATABASE ACCESS
(adt) FUNCTIONS
�
�

This page intentionally left blank.
�
function: � tc " adt_deleteGenericMission" \l 3 �adt_deleteGenericMission�IFA9140��CALLING SEQUENCE :
status = adt_deleteGenericMission(msn_name, planner, platform)
PARAMETERS :
Name	I/O	Type	Description
msn_name	I	char *	Name of mission to retrieve.
planner	I	char *	Name of owner of mission.
platform	I	char *	Name of platform.
status	O	ST_STATUS	Return value of function.
DESCRIPTION :
This function will delete the mission from the Sybase Core tables based on the mission name, planner name, and platform name. If this function returns ST_FAILURE, then the mission was not found, or the caller did not have permission to delete the identified mission.
EXAMPLE :
#include "a_msn_plan/adt_proto.h"

ST_STATUS	status;

status = adt_deleteGenericMission("TESTX", "WAR ACE", "MY_MISSLE-4X");

�
function: � tc " adt_deleteMPMGraphics" \l 3 �adt_deleteMPMGraphics�IFA9113��CALLING SEQUENCE:
status = adt_deleteMPMGraphics(acft_name, mission_id, route_id)
PARAMETERS:
Name	I/O	Type	Description
acft_name	I	char *	String that identifies the platform name.
mission_id	I	int	Unique mission ID.
route_id	I	int	Route ID associated with graphics.
"return"	O	ST_STATUS	Set to ST_SUCCESS if delete works.
DESCRIPTION:
This function uses the given parameters to locate graphics associated with a given aircraft, mission, and route and removes them from the LT_GRAPHICS Sybase table. If route_id is set to AT_NOT_SET then the function will remove all graphics associated with a given mission and not merely a given route.
EXAMPLE:
#include "a_msn_plan/adt_proto.h"
#include "a_msn_plan/apt_enum.h"
#include "system/st_sysdefs.h"

ST_STATUS	status;
int		mission_id;

.
.
.

status = adt_deleteMPMGraphics("F/A-18", mission_id, AT_NOT_SET);
�
function: � tc " adt_listMissions" \l 3 �adt_listMissions�IFA9141��CALLING SEQUENCE :
mission_list = adt_listMissions(msn_name, planner, platform)
PARAMETERS :
Name	I/O	Type	Description
msn_name	I	char *	Name of mission.
planner	I	char *	Name of planner.
platform	I	char *	Name of platform.
op_area	I	char *	Name of op area.
mission_list 	O	LIST *	List of ART_MISSION_ SUMMARY_T.
DESCRIPTION :
This function will return a list of ART_MISSION_SUMMARY_T nodes based on the msn_name, planner, and platform. A "*" may be used for any of these parameters as a wild card. Therefore, the caller may call mission_list = adt_listMissions("*", "*", "*", "*"); in order to retrieve all generic MPM missions in the “tamps” database. All lists are compared against the permissions of the requester.
EXAMPLE :
#include "a_msn_plan/adt_proto.h"
#include "util/ult_proto.h"

LIST 	*lp_start, *lp;
APT_MISSION_SUMMARY_T	*summary_rec;

/* get all mission names for a particular planner and platform */
lp_start = adt_listMissions("*", "WAR ACE", "MY_MISSLE-4X", "*");

if (lp_start == NULL)
	return; /* no missions found */

for (lp = lp_start->next; lp != lp_start; lp = lp->next)
{
	if (lp->data != NULL)
	{
		summary_rec = (ART_MISSION_SUMMARY_T *)lp->data;
		printf("%s", summary_rec->name);
	}
}
�
function: � tc " adt_obsoleteChk" \l 3 �adt_obsoleteChk �IFA9200��CALLING SEQUENCE:
adt_numObsItems = adt_obsoleteChk(msn_plan, dispErrMsg)
PARAMETERS:
Name	I/O	Type	Description
msn_plan	I	APT_MSNPLN_T	Mission needing obsolete check.
dispErrMsg	I	Boolean	If TRUE, display error popups.
adt_numObsItems 	O	int 	Number of obsolete items found.
DESCRIPTION:
This function receives as input the entire mission requiring an obsolete data check and a boolean value indicating whether to display the errors. This function returns the number of items that were obsolete. This routine is called from adt_retrieveMission during an open mission operation.
EXAMPLE:
...
numObs = adt_obsoleteChk(msn_plan, dispErrMsg)
...

�
function: � tc " adt_obtainUniqueMissionID" \l 3 �adt_obtainUniqueMissionID�IFA9114��CALLING SEQUENCE:
status = adt_obtainUniqueMissionID(acft_name, &mission_id)
PARAMETERS:
Name	I/O	Type	Description
acft_name	I	const char *	Name of platform.
mission_id	O	int *	Unique ID for mission across all missions.
"return"	O	ST_STATUS	Set to ST_SUCCESS if all is okay.
DESCRIPTION:
This function will search the saved mission within the “tamps” database and provide a unique mission ID to the MPM for use with graphics, etc. This ID is reserved within the database, so it should be used. If it turns out not to be needed or is temporary, then the MPM should call ait_releaseUnqiueMissionID.

It is recommended that all MPMs use the function to obtain a unique mission ID if they are not using TAMPS Core mission save capabilities.
EXAMPLE:
#include "a_msn_plan/adt_proto.h"
#include system/st_sysdefs.h"

int mission_id;
ST_STATUS status;

.
.
.

status = adt_obtainUniqueMissionID("Harm", &mission_id);

.
.
.
�
FUNCTION: � tc " adt_ReadDefaultData" \l 3 �adt_ReadDefaultData�IFA9214��CALLING SEQUENCE:
status = adt_ReadDefaultData (APT_AIRCRAFT_T *pACdef, char *aircraftType, char *aircraftVariant)
PARAMETERS:
Name	I/O	Type	Description
pACdef	O	APT_AIRCRAFT_T *	Pointer to the APT_AIRCRAFT_T structure. This structure will be updated to contain the new data.
aircraftType	I	char *	Character string that defines the aircraft type.
aircraftVariant	I	char *	Character string that defines the aircraft variant.
status	O	ST_STATUS	ST_SUCCESS or ST_FAILURE.
DESCRIPTION:
This function will read the TAMPS_ACFT_DEFS_LMTS Sybase table to retrieve specific aircraft configuration data. If the default source setting found on the “New Mission” or “Aircraft Defaults” dialogs is set to “Planner” or “Mission,” then the TAMPS_ACFT_MSN_DEFAULTS Sybase table will also be queried to retrieve defaults saved by the planner or mission, respectively. Once the data has been retrieved, the corresponding fields in the APT_AIRCRAFT_T structure will be populated.
EXAMPLE:
#include “system/st_sysdefs.h”
#include “a_msn_plan/apt_route.h”
#include “a_msn_plan/adt_proto.h”
#include "a_msn_plan/ait_proto.h"

void mpm_Func (void)
{
	APT_AIRCRAFT_T acDefs;

	if (adt_ReadDefaultData (&acDefs, ait_getVehicleName(), ait_getVehicleVariant())
	 == ST_FAILURE) {
		printf(“error: reading default data.\n”);
		return;
	}
	if (ait_UpdateDefaultMMI (&acDefs) == ST_FAILURE) {
		printf(“error: updating Default MMI.\n”);
		return;
	}
	...
	}
�
FUNCTION: � tc " adt_regFunc" \l 3 �adt_regFunc�IFA5024��CALLING SEQUENCE:
status = adt_regFunc(function_type,function)
PARAMETERS:
Name	I/O	Type	Description
function_type	I	ADT_FUNCTION	Function to register.
function	I	void(*)()	Pointer to the function.
"return"	O	ST_STATUS	ST_SUCCESS or ST_FAILURE.
DESCRIPTION:
This function registers specific functions for mission plan MPM-specifc save or retrieve functions. The registered function is developed by the MPM and compiled with the core software.

SAVE functions will receive a linked LIST of data and the msn_id. It is the responsibility of the MPM to insure that the data structure contains sufficient data for processing and that any tables required for MPM-specific data be installed as part of the MPM TAMPS initialization.

RETRIEVE functions will return a linked LIST of data and the msn_id. It is the responsibility of the MPM to ensure that the software can handle data in the LIST format and that any tables required for storing and retrieving MPM-specific data be installed as part of the MPM TAMPS initialization.

ADT_FUNCTION values are located in dbase/adt_defines.h. Values include :

	ADT_DEFAULTS_SAVE,ADT_DEFAULTS_RETRIEVE for mission defaults.
	ADT_FLT_EVENT_SAVE,ADT_FLT_EVENT_RETRIEVE for flight events.
	ADT_MPM_POINT_SAVE,ADT_MPM_POINT_RETRIEVE for non-navpoint 	points.
EXAMPLE:
Registering mission plan point save and retrieve functions.
Note: the point_data element in the APT_ACTION_POINT_T structure is a void pointer. MPM software accessing data returned via the registered function must cast this into a LIST structure.

#include "a_msn_plan/adt_proto.h"
#include "a_msn_plan/adt_defines.h"

/* declare save (testit) and retrieve (testit2) MPM point functions */
void testit(LIST *,short);
void testit2(LIST **,short);

main(int argc,
	char **argv)
{

	/* initialization code */

	/* register a function to save an mpm defined structure
	if(adt_regFunc(ADT_MPM_POINT_SAVE,testit) != ST_SUCCESS)
	{
	/* error handling */
	}

	if(adt_regFunc(ADT_MPM_POINT_RETRIEVE,(void (*)(LIST *,short))testit2) 	!= ST_SUCCESS)
	{
	/* error handling */
	}

} /* end of main */

/* sample registered save point function */
void testit(LIST *lpr,short msn_id)
{
 printf("&&&&&&&&&&&&************** in test it************&&&&&&&&&&&&&&\n");
 return;
}

/* sample registered retrieve point function */
void testit2(LIST **lpr,short msn_id)
{
	char *dummy;
	LIST *llpr;

	llpr = ult_lst_create_list();

	dummy = malloc(20*sizeof(char));

	if(dummy == NULL)
	{
	printf("malloc failed");
	}
	else
	{
	sprintf(dummy,"test data");
	ult_lst_enque (llpr,dummy);
	}

	*lpr = llpr;

	return;
}
�
function: � tc " adt_releaseUniqueMissionID" \l 3 �adt_releaseUniqueMissionID�IFA9115��CALLING SEQUENCE:
status = adt_releaseUniqueMissionID(acft_name, mission_id)
PARAMETERS:
Name	I/O	Type	Description
acft_name	I	const char *	Name of platform.
mission_id	I	int	Unique ID being released for use.
"return"	O	ST_STATUS	Set to ST_SUCCESS if all is okay.
DESCRIPTION:
This function releases an ID that was obtained by a call to ait_obtainUniqueMissionID to be reused by other users of the system.
EXAMPLE:
#include "a_msn_plan/adt_proto.h"
#include "system/st_sysdefs.h"
ST_STATUS status;

.
.
.

status = adt_releaseUniqueMissionID("Harm", mission_id);

.
.
.

�
function: � tc " adt_retrieveGenericMission" \l 3 �adt_retrieveGenericMission�IFA9142��CALLING SEQUENCE :
mission = adt_retrieveGenericMission(msn_name, planner, platform)
PARAMETERS :
Name	I/O	Type	Description
msn_name	I	char *	Name of mission to retrieve.
planner	I	char *	Name of owner of mission.
platform	I	char *	Name of platform.
mission	O	ART_GENERIC_	Pointer to retrieve misson.
		MSNPLN_T *	
DESCRIPTION :
This function will retrieve the given mission from the Sybase Core tables based on the mission name, planner name, and platform name. If this function returns NULL, then the mission was not found, or a retrieve error occurred. The mission will not be automatically displayed to the screen upon retrieval (see agt_drawMission to do this). Memory is allocated for the mission and associated routes and action points.
EXAMPLE :
#include "a_msn_plan/adt_proto.h"

ART_GENERIC_MSNPLN_T	*mission;

mission = adt_retrieveGenericMission("my_mission", "WAR ACE", "MY_MISSLE-4X");

if (mission == NULL)
	return; 	/* no mission */

agt_drawMission(mission);
art_flushRouteDisplayBuffers();

�
function: � tc " adt_retrieveMPMGraphics" \l 3 �adt_retrieveMPMGraphics�IFA9111��CALLING SEQUENCE:
status = adt_retrieveMPMGraphics(acft_name, mission_id, route_id, display_it, composite_object_list)
PARAMETERS:
Name	I/O	Type	Description
acft_name	I	char *	String that identifies the platform name.
mission_id	I	int	Unique mission ID used to locate graphics.
route_id	I	int	Route ID associated with graphics.
display_it	I	short	True if graphics should be displayed.
composite_object_list	O	LIST *	List of MT_COMPOSITE_OBJ.
"return"	O	ST_STATUS	Return status from function.
DESCRIPTION:
This function may be used by an MPM to retrieve MPM-related graphics. The function will use the passed in parameters to locate the graphics in the TAMPS_LDT_* tables The graphics will be returned in a linked list of MT_COMPOSITE_OBJs. If the display_it flag is set to TRUE, then the named layer will be created and the graphics will be displayed in the window.
Typically, an MPM would not need to call this function to obtain its own route graphics from a saved mission. Since an MPM will be generating its graphics at 'run' time when the route is displayed, there should be no need to speed the time to retrieve the graphics from the database table. It is for this reason that this function does not attempt to restore all of the originally named buckets, but merely restores the layer in which to place the graphics. This function is useful for strike package and other MPMs to retrieve route graphics from other missions.
EXAMPLE:
#include "a_msn_plan/adt_proto.h"
#include "maps/mpt_proto.h"
#include "util/ult_proto.h"

/* within the MPM somewhere */
int mission_id;
int route_id;
LIST *graphics	= NULL; /* list of type MT_COMPOSITE_OBJ */
ST_STATUS status = ST_SUCCESS;

.
.
.

/* route graphics have previously been saved under mission ID 9 and route ID 0
 * for the named platform.
 */
mission_id = 9;
route_id = 0;

status = adt_retrieveMPMGraphics("F/A-18",
			mission_id, route_id, TRUE, graphics);

.
.
.
�
function: � tc " adt_retrieveMsnPlatforms" \l 3 �adt_retrieveMsnPlatforms�IFA9276��CALLING SEQUENCE:
platform_list = adt_retrieveMsnPlatforms()
PARAMETERS:
Name	I/O	Type	Description
platform_list	O	LIST *	List of char * containing platform names.
DESCRIPTION:
This function will return a list of the platforms that currently have missions stored in the TAMPS database table TAMPS_MISSION_PLAN. The list consists of elements of char *. The calling function is responsible for freeing the elements and the list.
EXAMPLE:
#include "util/ult_structs.h"
#include "a_msn_plan/adt_proto.h"
#include "util/ult_proto.h"

void myPlatformList (void)
{
	LIST	*list	=	NULL,
		*lp	=	NULL;

	char	*name	=	NULL;

	list = adt_retrieveMsnPlatforms ();

	/* loop thru list and print platform names */

	 for (lp = list->next; lp != list; lp = lp->next) {

		if (lp->data && lp->data != ULT_LST_ROOT) {
			name = (char *) lp->data;
			printf ("Name is: %s\n", name);

		}

	}

	/* Since this is a simple list, ult_lst_free()
			will clean up memory. */
		ult_lst_free(list);
	}

�
function: � tc " adt_saveGenericMission" \l 3 �adt_saveGenericMission�IFA9143��CALLING SEQUENCE :
status = adt_saveGenericMission(mission)
PARAMETERS :
Name	I/O	Type	Description
mission	I	ART_GENERIC_	Pointer to generic mission.
		MSNPLN_T *	
status	O	ST_STATUS	Return value of function.
DESCRIPTION :
This function is used to save the generic mission to the TAMPS Core mission planning Sybase tables. Once saved, the mission may be opened and viewed by other MPMs and planners if the permission settings allow.
EXAMPLE :
#include "a_msn_plan/adt_proto.h"

ST_STATUS	status;

/* Assume WPN_Mission is an allocated and filled global mission pointer */

status = adt_saveGenericMission(WPN_mission);
�
function: � tc " adt_saveMPMGraphics" \l 3 �adt_saveMPMGraphics�IFA9112��CALLING SEQUENCE:
status = adt_saveMPMGraphics(acft_name, mission_id, route_id, comp_object_list)
PARAMETERS:
Name	I/O	Type	Description
acft_name	I	char *	String that identifies the platform name.
mission_id	I	int	Unique mission ID.
route_id	I	int	Route ID associated with graphics.
comp_object_list	I	LIST *	List of MT_COMPOSITE_OBJs.
"return"	O	ST_STATUS	Set to ST_SUCCESS if call is successful.
DESCRIPTION:
This function takes a built list of MT_COMPOSITE_OBJs and saves them to a Sybase table for later use by other MPMs or strike packages.
EXAMPLE:
#include "a_msn_plan/adt_proto.h"
#include "util/ult_proto.h"
#include "maps/mt_proto.h"

int 		mission_id;
ST_STATUS 	status;
LIST		*graphics;

/* use the code example found in IDD reference for ait_RegisterMPMGraphics()
 * to build a list of MT_COMPOSITE_OBJs.
 * Resulting list would be in the 'graphics' variable
 */

/* all MPMs should use this function to assure that their mission IDs are
 * unique across the system.
 */
status = ait_obtainUniqueMissionID(&mission_id);

status = adt_saveMPMGraphics("F/A-18", mission_id, 0, graphics);

�

This page intentionally left blank.

Document No. 160008-IDD-6.2 - February 1998

Document No. 160008-IDD-6.0 - September 1993

C.1.2-� PAGE �18�

