SECTION C.11.3�MAPPING SYSTEM TAMMAC�(mtm) FUNCTIONS

�

�

This page intentionally left blank.

�

�
function: � tc " mtm_end_of_sequences " \l 3 � mtm_end_of_sequences�
IFA7367�
�
CALLING SEQUENCE:

Status = mtm_end_of_sequences ()

PARAMETERS:

Name	I/O	Type	Description

Status	O	int	One (1) denotes that no more sequences exist; zero (0) denotes that the read is not at the end of the sequences; and any other value is the result of an error condition.

DESCRIPTION:

Purpose. This function checks to see if any more sequences exist in the route information data.

The mtm_end_of_sequences routine must be called initially, or after end_of_waypoints has returned one (1) for the current sequence, meaning that no more waypoints exist. This routine must be called each time prior to requesting the next sequence name to make sure that another sequence remains. If a Status of one (1) is returned, then no more sequences exist. If a Status of zero (0) is returned, then at least one (1) additional sequence exists. The return of any other value is the result of an error condition; therefore, additional read routines should not be called.

EXAMPLE:

#include ìmaps/mtm.hî�{�	int status;�	char *outLabel;�	char *outName;�	double outLat, outLon;��	status = mtm_start_read ();��	while (!mtm_end_of_sequences())�		{�			status = mtm_get_next_sequence (outName);��			while (!mtm_end_of_waypoints ())�				{�					status = mtm_get_next_waypoint (outLabel,outLat,outLon);�				}�		}��		status = mtm_end_read ();�}

�

�
function: � tc " mtm_end_of_waypoints " \l 3 � mtm_end_of_waypoints�
IFA7368�
�
CALLING SEQUENCE:

Status = mtm_end_of_waypoints ()

PARAMETERS:

Name	I/O	Type	Description

Status	O	int	One (1) denotes that no more waypoints are in the current sequence; zero (0) denotes that the read is not at the end of the waypoints in the sequence; and any other value is the result of an error condition.

DESCRIPTION:

Purpose. This function looks ahead to check if any more waypoints exist for the current sequence.

The mtm_end_of_waypoints routine must be called each time prior to calling for the next waypoint to make sure that another waypoint remains. If a Status of one (1) is returned, then no more waypoints exist in the sequence. If a Status of zero (0) is returned, then at least one (1) additional waypoint exists in the sequence. The return of any other value is the result of an error condition; therefore, additional read routines should not be called.

EXAMPLE:

See the example provided for the mtm_end_of_sequences function.

�

function: � tc " mtm_end_read " \l 3 � mtm_end_read�
IFA7369�
�
CALLING SEQUENCE:

Status = mtm_end_read ()

PARAMETERS:

Name	I/O	Type	Description

Status	O	int	One (1) denotes a successful read; any other value is the result of an error condition.

DESCRIPTION:

Purpose. This function ends the read operation of the route information by the caller and deletes the route information.

The mtm_end_read routine must be called after all sequences and points have been read. If a Status of one (1) is returned, then the read has been completed successfully. In the event that another value is returned, an error has occurred and, therefore, the caller should assume that all data read for the sequences and points is invalid.

EXAMPLE:

See the example provided for the mtm_end_of_sequences function.

�

�
function: � tc " mtm_end_write " \l 3 �mtm_end_write�
IFA7370�
�
CALLING SEQUENCE:

Status = mtm_end_write ()

PARAMETERS:

Name	I/O	Type	Description

Status	O	int	One (1) denotes successful completion; any other value is an error status.

DESCRIPTION:

Purpose. This function ends the write of the route information by the platform MPM.

The mtm_end_write routine must be called after all sequences and points have been written. If a Status of one (1) is returned, then the write has been completed successfully. In the event that another value is returned, an error has occurred and, therefore, the MPM should assume that all data written for the sequences and points is invalid.

EXAMPLE:

#include ìmaps/mtm.hî

{�	int status;�	char *SeqName = ìSeq Name”;�	char *inLabel1 = ìlabel1î;�	char *inLabel2 = ìlabel2î;�	double inLat,inLon;��	inLat = 20.0;�	inLon = 30.0;��	status = mtm_start_write ();�	status = mtm_start_sequence(SeqName);�	status = mtm_write_point (inLabel1, inLat, inLon);�	inLat = 22.0;�	inLon = 32.0;�	status = mtm_write_point (inLabel2, inLat, inLon);��	status = mtm_end_write ();�}

�

�
function: � tc " mtm_get_next_sequence " \l 3 � mtm_get_next_sequence�
IFA7371�
�
CALLING SEQUENCE:

Status = mtm_get_next_sequence (&Name)

PARAMETERS:

Name	I/O	Type	Description

Name	O	char *	Returns a pointer to a 32-byte sequence name.

Status	O	int	One (1) is a status that the name has been returned successfully; any other value is the result of an error condition.

DESCRIPTION:

Purpose. This function returns the sequence name to the caller.

The mtm_get_next_sequence routine should be called only after a status of zero (0) is returned by the mtm_end_of_sequences routine, but prior to calling get_next_waypoint to retrieve waypoints for the sequence. A 32-byte sequence, or route name is returned along with a status. If a Status of one (1) is returned, then the read of the sequence name was successful. The return of any other value is the result of an error condition; therefore, additional read routines should not be called.

EXAMPLE:

See the example provided for the mtm_end_of_sequences function.

�

function: � tc " mtm_get_next_waypoint " \l 3 � mtm_get_next_waypoint�
IFA7372�
�
CALLING SEQUENCE:

Status = mtm_get_next_waypoint (&Label, &Latitude, &Longitude)

PARAMETERS:

Name	I/O	Type	Description

Label	O	char *	Returns a pointer to a six (6)-byte label.

Latitude	O	double *	Latitude is in degrees. Valid values are -90 (90(S) to +90 (90(N), inclusive.

Longitude	O	double *	Latitude is in degrees. Valid values are -180 (180(W) to +180 (180(E), inclusive.

Status	O	int	One (1) is a status that the name has been returned successfully; any other value is the result of an error condition.

DESCRIPTION:

Purpose. This function returns the waypoint label and location to the caller.

The mtm_get_next_waypoint routine should be called only after a status of zero (0) is returned by the mtm_end_of_waypoints. A label and a location are returned along with a status. If a Status of one (1) is returned, then the read of the waypoint was successful. The return of any other value is the result of an error condition; therefore, additional read routines should not be called.

EXAMPLE:

See the example provided for the mtm_end_of_sequences function.

�

�
function: � tc "mtm_start_read" \l 3 �mtm_start_read�
IFA7373�
�
CALLING SEQUENCE:

Status = mtm_start_read ()

PARAMETERS:

Name	I/O	Type	Description

Status	O	int	One (1) denotes that route information exists; any other value denotes that route information does not exist, or that an error has occurred.

DESCRIPTION:

Purpose. This function begins the route information read operations.

The mtm_start_read routine must be called prior to invoking additional read routines. If a Status of one (1) is returned, then route information data exists. In the event that another value is returned, either route information data does not exist, or an error has occurred; therefore, additional read routines should not be called.

EXAMPLE:

See the example provided for the mtm_end_of_sequences function.

�

�
function: � tc " mtm_start_sequence " \l 3 � mtm_start_sequence�
IFA7374�
�
CALLING SEQUENCE:

Status = mtm_start_sequence (Name)

PARAMETERS:

Name	I/O	Type	Description

Name	I	char *	This is the name of the sequence. It is 32 ASCII characters.

Status	O	int	One (1) denotes a successful write; any other value is an error status.

DESCRIPTION:

Purpose. This function allows the platform MPM to start a new sequence or route name to be used in TAMMAC mission planning.

The mtm_start_sequence routine must be called after the mtm_start_write routine and prior to calling any write point functions. If a Status of one (1) is returned, then the sequence name has been written successfully. In the event that another value is returned, an error has occurred and, therefore, the platform MPM should not invoke any additional route information routines.

EXAMPLE:

See the example provided for the mtm_end_write function.

�

function: � tc " mtm_start_write " \l 3 �mtm_start_write�
IFA7375�
�
CALLING SEQUENCE:

Status = mtm_start_write ()

PARAMETERS:

Name	I/O	Type	Description

Status	O	int	One (1) is a good status; anything else is a result of an error condition.

DESCRIPTION:

Purpose. This function initiates the writing of route information by the MPM. It prepares the code to accept route information.

The mtm_start_write routine must be called prior to any other write functions being called. If a Status of one (1) is returned, the platform MPM may continue the operation of writing route information. In the event that another value is returned, an error has occurred and, therefore, the platform MPM should not invoke any additional route information routines.

EXAMPLE:

See the example provided for the mtm_end_write function.

�

�
�
function: � tc "mtm_write_point" \l 3 �mtm_ write_point�
IFA7376�
�
CALLING SEQUENCE:

Status = mtm_write_point (Label, Latitude, Longitude)

PARAMETERS:

Name	I/O	Type	Description

Label	I	char *	This is the label of the point which will be displayed. This label is six (6) ASCII characters.

Latitude	I	double	Latitude is in degrees. Valid values are -90 (90(S) to +90 (90(N), inclusive.

Longitude	I	double	Longitude is in degrees. Valid values are -180 (180(W) to +180 (180(E), inclusive.

Status	O	int	One (1) denotes a successful write; any other value is an error status.

DESCRIPTION:

Purpose. This function allows the platform MPM to write the points of the sequence or route name to be used in TAMMAC mission planning.

The mtm_write_point routine must be called after the mtm_start_sequence routine. It needs to be called once for every point in the route or sequence. If a Status of one (1) is returned, then the point has been written successfully. In the event that another value is returned, an error has occurred and the platform MPM should not invoke any additional route information routines.

EXAMPLE:

See the example provided for the mtm_end_write function.

�

This page intentionally left blank.

Document No. 160008-IDD-6.2 - February 1998

C.11.3-� PAGE �5�

