�Tactical Automated Mission �Planning System (TAMPS)

Version 6.2

SoftWare Development

Configuration Management

pROCEdures�

Distribution authorized to U.S. Government agencies and their contractors only; by specific authority of the Commander, Naval Air Warfare Center Weapons Division. Other requests for this document shall be referred to: Commander, Naval Air Warfare Center Weapons Division, Code 41130TE, Point Mugu, CA.

DESTRUCTION NOTICE: Destroy by any method that will prevent disclosure of contents or reconstruction of this document.

�

Tactical Automated Mission �Planning System (TAMPS)�Version 6.2

software Development

 Configuration

Management

procedures

Version 3

19 MayJanuary, 1997

Prepared for

PMA-233�Tactical Automated Mission Planning Program�Washington, D.C. 20361

Distribution authorized to U.S. Government agencies and their contractors only; by specific authority of the Commander, Naval Air Warfare Center Weapons Division. Other requests for this document shall be referred to: Commander, Naval Air Warfare Center Weapons Division, Code 41130TE, Point Mugu, CA 93042-5001.

DESTRUCTION NOTICE: Destroy by any method that will prevent disclosure of contents or reconstruction of this document.

�
Table of Contents

� TOC \o "1-3" �1 – Introduction	� GOTOBUTTON _Toc350698114 � PAGEREF _Toc350698114 �1��

2 – Configuration management overview	2

2.1 – baselines	2

2.2 – reference directories	3

2.3 – development/cm processes	3

2.3.1 – SOR Developments	5

2.3.2 – STR Development	5

2.3.3 – DTR Development	7

2.3.4 – Delivery from MPM	7

2.3.5 – Acceptance Build and Test	8

2.3.6 – Integration Build and Test	8

2.3.7 – Fleet Delivery Build	9

2.4 – user interface	9

2.5 – on-line forms	10

2.6 – reports	10

3 – Configuration management activities details	11

3.1 – Developer cm activities	11

3.2 – Test cm activities	15

3.3 – qa cm activities	17

3.4 – System engineer activities	18

3.5 – str administrator activities	21

3.6 – Configuration Manager activities	22

4 – Forms Details	25

4.1 – dtr form	25

4.2 – str form	27

4.3 – pea form	28

4.4 – external delivery form	31

5 – user interface	32

5.1 – setup to execute ccc/harvest	32

5.2 – ccc/harvest gui	32

5.3 – command line interface	32

5.3.1 – command line context	33

5.3.2 – script parameters	33

6 – development scenario	34

Appendix a – scripts	37

Appendix b – Reports 	42

appendix c – glossary	46

�

�
1 – Introduction

This 6.2 Software Development Configuration Management (CM) Plan provides the following information:

Overview of CM methodology

Configuration management activity for each step of the development process

Activities associated with each group in the development cycle

CM activity responsibility

Link to associated SW development activity as defined in 6.2 SW Development Process document

�
2 – Configuration Management Overview

The TAMPS software configuration management activities involve managing of the TAMPS software and documents, establishing and maintaining baselined versions of the application, providing change management procedures and providing visibility as to the status of the development life cycle.

2.1 - Baselines

The CM system maintains five distinct working baselines: Dev Work, Development, Acceptance, Integration, and CM Baseline. These five baselines start as virtual copies of the initial starting baseline. For the TAMPS 6.2 project the initial baseline will be a version of 6.1 TAMPS. In these working baselines, only the changes from the initial baseline will be physically stored.

Figure 2-1 shows the relationships of these baselines for the TAMPS 6.2 project.

�

Figure 2-1 6.2 CM baselines

If there are multiple active projects (e.g., 6.2 and 6.1.1), there will be a set of working baselines for each project. When interacting with the CM system, TAMPS personnel must specify the project that they are working on.

These working baselines are used to isolate changes to specific baselines until they are ready to be incorporated into other baselines. Changes are first introduced to the Dev Work Baseline and then migrated at the appropriate time to the Development, Acceptance, Integration and CM Baselines. Developers access the Dev Work Baseline as they design, code, and unit test TAMPS applications. When changes are ready for function tests, they are moved to the Development Baseline. Daily development builds are performed using the Development baseline. Changes completed by development and reviewed/approved by test and the TAMPS system engineer, as well as internally and externally developmed MPM code, are moved by CM to the Acceptance Baseline where acceptance builds and acceptance tests are performed. Changes which pass initial acceptance tests are moved by CM to the Integration Baseline where integration builds and integration tests are performed. Changes which have been tested by test and approved by the system engineer are moved by CM to the CM Baseline. Final CM builds are performed from the CM Baseline.

2.2 - Reference Directories

Associated with the Development, Acceptance, Test, and CM baselines are corresponding external reference directory hierarchies. These reference directories are updated only by the CM system and contain complete copies in standard file format of the corresponding baseline. These reference directories are used by development and CM to perform controlled builds of TAMPS and to provide rapid read only access to the components. Development has write access to the development reference directory for the purpose of performing daily builds and storing the built objects of the build. CM is the only group with write access to the acceptance, integration, and CM reference directories. Procedureally, the reference directories will be ìsynchronizedî with the curent version of their associated baselines prior to builds being performed. A script is available to verify that the files in the reference directories are in sysnchronization with their corresponding baseline.

Any of these baselines can be checkpointed to create a fixed static baseline for delivery to external sites or the test lab. Deliveries are created by checking out all components associated with a checkpoint of a baseline to the corresponding reference directory and performing a build.

2.3 - Development/CM Processes

The CM change management procedures are closely linked with the development process. The CM process is oriented to tracking the status of each SOR, STR and DTR associated with a development life cycle, tracking the changes made to the software to address the SOR, STR or DTR, and controlling the sequence of development activities.

The CM system is first utilized when a SOR, STR or DTR is assigned to the project. At different phases of the development process there are different actions that are performed by project personnel for SOR, STR and DTR. Figure 2-2 below shows the life cycle model.

�

Figure 2-2 CM Development Life Cycle

The development life cycle can divided into the following seven functional activities:

	(SOR development

	(STR development

	(DTR development

	(Delivery from external site

	(Acceptance build and test

	(Integration build and test

	(Fleet delivery build

The following sections will describe each of these functional activities and the development and CM processes that occur at each state in the life cycle.

2.3.1 - SOR Development

When a SOR is assigned to the project, the following sequence of SOR specific activities will be performed:

(The SOR is created in the CM system by CM and initially placed in the SOR Code state.

(Software is checked out by development from the project Dev Work Baseline of the CM system to the userís local work area for update and changes are made. The developer performs local builds using files in the userís local work area and the shared development reference directories. When changes are complete, the updated software is checked in to the Dev Work Baseline of the CM system by development in preparation for SOR code inspection. The SOR is moved by development to the SOR Inspection state. QA and the system engineer are automatically notified through electronic mail by the CM system.

(At conclusion of a successful inspection, the SOR is moved by the system engineer to the SOR Unit Test state. If the SOR does not pass the inspection, the SOR will be returned by the system engineer to the SOR Code state.

(Upon completion of unit test by development, the SOR is moved by development to the Function Test state. Changes associated with that SOR are automatically moved by the CM system to the Development Baseline. Test is automatically notified through electronic mail by the CM system. If major problems are found during unit test, the SOR will be returned by development to the SOR Code state for further work. If minor problems are found, additional code modifications can be made for that SOR while it is in the Unit Test state.

(At successful completion of function tests the SOR is moved by development to the Turn-in Inspection state. If the function tests identify problems, the SOR is moved by development back to the SOR Code state. The system engineer and test are automatically notified through electronic mail by the CM system when the SOR is moved to either the Turn-in Inspection state or the SOR Code state.

(After review by QA, test and system engineer and approval by the system engineer, the SOR is moved by CM to the Acceptance Build state. All changes associated with the SOR will be included in the next acceptance build performed by CM.

2.3.2 - STR Development

Associated with a STR, the following sequence of STR specific activities will be performed:

(When a STR is identified, information describing the STR is entered by the person reporting the problem or STR administrator into the CM system. Periodically, the STR data base will be uploaded by the STR administrator to the TAMPS server. The STR may be viewed on-line by all and updated by designated individuals through a forms interface provided by the CM system.

(If the TRB determines that a STR should be reviewed by development, an engineer is assigned by the TRB and the STR is moved by the STR administrator to the STR Correction Design state. At this time the assigned engineer will be notified through electronic mail by the CM system that the analysis should begin. (Note: A STR assigned to the project after soft freeze may enter the life cycle at a state later than the STR Correction state depending on the level of effort associated with the correction. This decision will be made by the TRB and the initial state set by the STR administrator. In any case a PEA will be generated by development.)

(Development analyzes the STR and prepares the design to address the system problem. The design is documented by development in a preliminary engineering analysis (PEA) that is entered into an on-line PEA form provided by the CM system. When the design is complete, the STR is moved by development to the PEA Inspection state and the system engineer, test, and QA automatically notified through electronic mail by the CM system.

(The system engineer, test and QA will review the on-line PEA and either approve or reject the STR/PEA. Comments associated with the approval or rejection may be added by test, QA or the system engineer to the PEA form. An approved STR will be moved by the system engineer to the STR Reviewed state. A rejected STR will be moved by the system engineer to the STR Correction state. In both cases development will be notified through electronic mail by the CM system of the approval or rejection.

(When a STR is selected for inclusion in the current baseline, the selected STR is moved by the system engineer from the STR Reviewed state to the STR Code state. Some STRs may have been reviewed at a STR Fleet Users Interface Working Group (FUIWG) before being selected for inclusion in the current baseline.

(Software is checked out for update by the developer from the project Dev Work Baseline of the CM system to the userís local work area and changes are made. The developer performs local builds using files in the userís local work area and the shared development reference directories. When changes are complete, the updated software is checked in by the developer to the project Dev Work Baseline of the CM system and associated with the appropriate STR. The developer portions of the on-line STR and PEA forms may be updated by the developer as code development occurs. When the developer is finished coding, the developer moves the STR to the STR Inspection state. QA, test, and the system engineer are automatically notified through electronic mail by the CM system.

(At conclusion of a successful inspection, the STR is moved by the system engineer to the STR Function Test state. Changes associated with the STR are automatically moved by the CM system to the Development Baseline. If the STR does not pass the inspection, the STR will be returned by the system engineer to the STR Code state.

(The developer performs function tests associated with the STR and updates the software and PEA as necessary. If major changes are required to fix the STR and another inspection is needed, the developer will move the STR back to the STR Code state. When the function tests are complete, the STR will be moved by the developer to the Turn-in Inspection state and QA, test and the system engineer are automatically notified through electronic mail by the CM system.

(After review by QA, test, and the system engineer and approval by the system engineer, the STR is moved by CM to the Acceptance Build state. The changes associated with the STR will be included in the next acceptance build. If the STR does not pass inspection, the STR will be returned by the system engineer to the STR Code state.

(After soft freeze occurs, new problems found are classified as STRs. STRs selected for correction after soft freeze may enter the development life cycle at the decision of the system engineer at the STR Correction Design, PEA Inspection, STR Reviewed, or STR Code states.

2.3.3 - DTR Development

When a DTR is identified during the test phase, the following sequence of DTR specific activities will be performed:

(Infornation describing the DTR is entered by test or the person reporting the problem into the CM system. The DTR may be viewed on-line by all and updated by designated individuals through a forms interface provided by the CM system. The DTR form will reference the associated STR or SOR. The CM system will verify that the referenced SOR or STR is valid and exists within the CM system. When created by test, the DTR is placed by the CM system into the DTR Code state and the developer assigned to the associated STR or SOR automatically notified through electronic mail by the CM system.

(Software is checked out for update by the developer from the project Dev Work Baseline of the CM system to the userís local work area and changes are made. The developer performs local builds using files in the userís local work area and the shared development reference directories. When changes are complete, the updated software is checked in by the developer to the project Dev Work Baseline of the CM system and associated with the appropriate DTR. The developer portion of the on-line DTR form may be updated by the developer as code development occurs. When the developer is finished coding and testing the correction, the developer moves the DTR to the Turn-in Inspection state. Changes associated with the DTR are automatically moved by the CM system to the Development Baseline.

(After review by QA, test and the system engineer and approval by the system engineer, the DTR is moved by CM to the Acceptance Build state. The changes associated with the DTR will be included in the next acceptance build. If the DTR does not pass inspection, the DTR will be returned by the system engineer to the DTR Code state and development automatically notified through electronic mail by the CM system.

2.3.4 - Delivery from External Site

When a new version of externally developed software is delivered from the external site, the following sequence of activities are performed:

(A unique External Delivery ID is created by CM. This External Delivery ID will be used to group the changes introduced in that delivery. The External Delivery ID will function like a SOR, STR, or DTR in that it will be moved through states in the development life cycle. Initially the Delivery ID will be in the Ext Delivery state.

(The external code is checked in by CM to the Development Baseline. Any changes to the external components identified by the CM system will be associated with the External Delivery ID. For initial testing, the external site personnel can perform builds using the Development Baseline.

(The External Delivery ID and its associated changes are moved by CM to the Acceptance Build state. All changes associated with the External Delivery ID are automatically moved by the CM system to the Acceptance Baseline.

(Any later deliveries that are to be included directly in the integration build are still introduced at the Ext Delivery state. However CM will move the associated External Delivery ID to the Acceptance Build state and then directly to the Integration Build state. (This is required to properly introduce the external changes to the Development and Acceptance Baselines.) The actual acceptance build need not be performed.

2.3.5 - Acceptance Build and Test

When a new acceptance build is to be performed, the following sequence of activities are performed:

(Any remaining SORs, STRs, and DTRs in the Turn-in Inspection state that have been approved by the system engineer are moved by CM to the Acceptance Build state. (Some SORs, STRs, and DTRs may have already been moved to the Acceptance Build state as they were approved.) Any remaining External Delivery IDs in the Ext Delivery state are moved by CM to the Acceptance Build state.

(CM will checkout the latest version of each component in the Acceptance Baseline to the acceptance reference directory. A controlled CM build is performed using this reference directory. When test is ready to exercise a modification or set of modifications, the appropriate SORs, STRs, DTRs, and/or External Delivery IDs are moved by CM or test to the Acceptance Test state.

(When a SOR/STR/DTR is successfully tested, test will approve the SOR/STR/DTR and the system engineer automatically notified through electronic mail by the CM system.

(When Core freeze is to occur, the system engineer will review all SORs/STRs/DTRs in the Acceptance Test state that have been approved by test. The system engineer will approve or reject each SOR/STR/DTR.

(Those SORs/STRs/DTRs approved by the system engineer will be moved by CM to the Integration Build state and all associated changes automatically moved by the CM system to the Integration Baseline. Test, development and the system engineer are automatically notified through electronic mail by the CM system. Those SORs/STRs/DTRs rejected by the system engineer will be moved back by CM to the Turn-in Inspection state.

2.3.6 - Integration Build and Test

When a new integration build is to be performed, the following sequence of activities are performed:

(All SORs, STRs, DTRs, and External Delivery IDs in the Integration Build state or later will be included in the build. Any additional updates to externally developed code are also moved by CM to the Integration Build state and Integration Baseline at this time.

(CM will checkout the latest version of each component in the Integration Baseline to the integration reference directory. A controlled CM build is performed using this reference directory. When test is ready to exercise a modification or set of modifications, the appropriate SORs, STRs, DTRs, and/or External Delivery IDs are moved by CM or test to the Integration Test state.

(When a SOR/STR/DTR is successfully tested, test will move it to the Integration Inspection state and the system engineer automatically notified through electronic mail by the CM system.

(After review by QA, test and the system engineer and approval by the system engineer, the SOR/STR/DTR is eligible to be moved by CM to the CM Baseline for inclusion in the next Fleet Delivery build.

(As test identifies problems during integration test, new DTR's are created, placed in the DTR Code state, and the developers assigned to the associated SOR or STR automatically notified through electronic mail by the CM system. When a problem is found, the associated SOR or STR may be left in the Integration Test state, moved to the Test Hold state, or rejected (i.e., moved) back to its respective Code state.

(If rejected back to the Code state by the system engineer, the changes associated with that SOR or STR will be removed by the CM system from the Integration and Acceptance Baselines. Any subsequent acceptance and integration builds would not include these changes.

(A SOR or STR placed in the Test Hold state by the system engineer will be moved back to the Integration Test state by test once the DTR to fix the identified SOR/STR problem has been completed and the changes incorporated into the Acceptance and Integration Baseline. The changes associated with a SOR or STR in the Test Hold state will remain in the Integration and Acceptance Baselines. Any subsequent acceptance and integration builds would include these changes.

2.3.7 - Fleet Delivery Build

When a new CM Baseline is to be created and a fleet delivery build to be performed, the following activities are performed:

(All approved SORs/STRs//DTRs in the Integration Inspection state are moved by CM to the Soft Freeze state. This causes all associated changes to be moved to the CM Baseline.

(The latest version of each component in the CM Baseline are checked out by CM to the CM reference directory. A controlled CM build is performed using this reference directory.

(A snapshot of the CM Baseline is created by CM and designate this with the appropriate baseline name (e.g., TAMPS 6.2 Build 1).

(A series of baselines are created by CM as the development and system test cycle continues.

(During system test any problems found will be documented with STRs. Any STRs selected for correction by the TRB will flow through the development life cycle as previously described and be incorporated into the next CM Baseline.

2.4 - User Interface

The CM system provides a graphical user interface (GUI) and a command line interface. Some functions may be performed only through the GUI while other functions are only available through the command line. In general most administrative functions occur through the GUI while day-to-day operations have been set up to run from the command line.

The command line functions are actually script files that have been built to support the CM methodology implemented for the TAMPS project and described in this document.

The description of each script is contained in provided in section 4.

2.5 - On-Line Forms

The CM system provides the ability to access certain information through site specific forms. The form is a on-line interface to information stored within the CM relational data base. Associated with each form is a table in the CM relational data base. The form allows the user to enter information, edit existing information, query on information within the form, and generate reports based on information in the forms.

Forms are provided for the following information:

	(STR

	(PEA

	(DTR

	(External Delivery

These forms provide fields for all of the information currently maintained in the hard copy version of that form plus additional information to be used during the development life cycle. Each form is divided into pages or sections. In general there is a definition page or pages that is filled in by the creator of the form and is not modified by any other user. There are additional pages that are filled in by designated groups at different phases of the lifecycle.

For example, a DTR is created by test. Test fills in the description of problem, the associated SOR/STR and the assigned developer. When the DTR is worked on, the developer might provide a description of what was changed and what tests were run. When test retested the DTR, test might fill in some test result comments.

The detailed layout of each form is contained in section 5.

2.6 - Reports

The CM system maintains a central data base of information captured during the development life cycle. A number of fixed format reports have been defined. These reports can be generated by any user of the CM system by executing supplied script files or automatically through a cron job. This set of reports will increase as additional needs are identified. In addition to these predefined reports, there is an ad-hoc reporting facility that allows a user of the CM system to query the forms based on user specified values in the fields. Reports may be viewed on-line or directed to printer or disk file.

The detailed layout of each report is contained in section 6.

�
3 – Configuration Management Activities Detail

This portion of the CM plan identifies the specific CM activities to be performed by the development, test, system engineering, QA, and CM groups during the development life cycle. Each of the activities is related to a process defined in the TAMPS 6.2 Software Development Process document. The activities described in this document are associated with tasks beginning after the PDR and continuing through OTRR.

3.1 – Developer CM activities

1. STR Correction	Development Process: (3.3-37) To determine the method for correcting a

 Design	 system problem.

	CM Requirement: STR must be in STR Correction Design state.

	CM activity: The developer modifies the development portion of the on-line STR form as necessary. A preliminary engineering analysis (PEA) on-line form is created and modified through the CM interface and associated with the STR. At completion of the STR analysis/design, the developer will move the STR to the PEA Inspection state.

	CM Outputs: PEA created. STR updated. STR moved to PEA Inspection state. When STR/PEA moved to PEA Inspection state, system engineer and QA notified by CM system that PEA ready for review.

2. STR Code	Development Process: (3.4-55) To develop code to correct system problems.

	CM Requirement: STR must be in STR Code state.

	CM activity: The developer checks out for update software components from the Dev Work Baseline to the userís local work area. At check out time, the developer specifies the STR to be associated with changes to those components. A copy of the software components are available external to the CM system in the development reference directory for rapid read-only access. When the developer completes the changes, the updated components are checked in to the CM system and associated with the appropriate STR. The development portion of the STR and PEA form may be updated by the developer as needed. When all changes have been made and checked in, the STR is moved to the STR Inspection state by the developer.

	CM Outputs: Code changes stored within CM system. STR/PEA updated as necessary. STR moved to STR Inspection state. When STR moved to STR Inspection state,QA and system engineer notified by CM system.

3. STR Inspection	Development Process: (3.4-57) Validate completeness and content of developerís code.

	CM Requirement: STR must be in STR Inspection state.

	CM activity: At completion of a successful inspection, the system engineer will move the STR to the STR Function Test state. If the STR requires additional code development and an additional inspection, the system engineer will move the STR back to the STR Code state. If minor changes are required, the developer may perform the updates while the STR is in the STR Inspection state prior to a second inspection and/or moving the STR to the STR Function Test state.

	CM Outputs: Additional code changes stored within CM system as necessary. STR updated as necessary. STR moved to STR Function Test state or (back to) STR Code state. If moved to STR Function Test, all changes associated with STR are automatically moved by CM system to Development Baseline.

4. STR Function Test	Development Process: (3.4-59) To verify STR code corrects the STR problem.

	CM Requirement: STR must be in STR Function Test state.

	CM activity: The developer performs functional tests associated with the STR. If any code changes are necessary, the developer will move the STR back to the STR Code state. When the developer completes the function test, the STR is moved to the Turn-in Inspection state by the developer. The system engineer and test are notified automatically by the CM system.

	CM Outputs: STR/PEA updated as necessary. STR moved to Turn-in Inspection or (back to) STR Code state. If STR moved to Turn-in Inspection state, system engineer and test notified by CM system.

5. SOR Code	Development Process: (3.4-55) To develop code to implement new requirements.

	CM Requirement: SOR must be in SOR Code state.

	CM activity: The developer checks out for update software components from the Dev Work Baseline to the userís local work area. At check out time, the developer specifies the SOR to be associated with changes to those components. A copy of the software components are available external to the CM system in the development reference directory for rapid read-only access. When the developer completes the changes, the updated components are checked in to Dev Work Baseline of the CM system and associated with the appropriate SOR. The development portion of the SOR form may be updated by the developer as needed. When coding is complete, the SOR is moved to the SOR Inspection state by the developer. QA and the system engineer are notified by the CM system of the pending SOR inspection.

	CM Outputs: Code changes stored within CM system. SOR updated as necessary. SOR moved to SOR Inspection state. When SOR moved to SOR Inspection state, appropriate people notified by CM system.

6. SOR Inspection	Development Process: (3.4-57) To validate completeness and content of developed code.

	CM Requirement: SOR must be in SOR Inspection state.

	CM activity: At completion of a successful inspection, the system engineer will move the SOR to the SOR Unit Test state. If the SOR requires additional code development and an additional inspection, the system engineer will move the SOR back to the SOR Code state. If minor changes are required, the developer may perform the updates while the SOR is in the SOR Inspection state prior to a second inspection and/or moving the SOR to the SOR Unit Test state.

	CM Outputs: Additional code changes stored within CM system as necessary. SOR updated as necessary. SOR moved to SOR Unit Test state or (back to) SOR Code state.

7. SOR Unit Test	Development Process: (3.4-58) To execute the unit test plan and procedures.

	CM Requirement: SOR must be in SOR Unit Test state.

	CM activity: The developer performs unit tests associated with the SOR. If any code changes are necessary, the developer checks out the software components from the Development Baseline for update. At check out time, the developer specifies the SOR to be associated with changes to those components. When the developer completes the changes, the updated components are checked in to the Development Baseline of the CM system and associated with the SOR. The developer portion of the SOR form may be updated by the developer as needed. If major changes are required to fix the SOR, the developer will move the SOR back to the SOR Code state. When the developer completes the unit test, the SOR is moved to the SOR Function Test state by the developer and test is notified automatically by the CM system.

	CM Outputs: SOR updated as necessary. SOR moved to SOR Function Test state or (back to) SOR Code state. If SOR moved to SOR Function Test state, test notified by CM system and changes associated with SOR automatically moved by CM system to Development Baseline.

8. SOR Function Test	Development Process: (3.4-59) To verify the SOR software satisfies the SOR software requirements (SOF).

	CM Requirement: SOR must be in SOR Function Test state.

	CM activity: The developer performs function tests associated with the SOR. If any code changes are necessary, the developer will move the SOR back to the SOR Code state. When the developer completes the function test and the SOR Function Test Report has been generated, the SOR is moved to the Turn-in Inspection state by the developer. The system engineer and test are notified automatically by the CM system.

	CM Outputs: SOR moved to Turn-in Inspection state or (back to) SOR Code state. If SOR moved to Turn-in Inspection state, system engineer and test notified by CM system.

9. Correct DTRs	Development Process: (3.5-64, 3.5-69) To correct problems found during acceptance and integration test.

	CM Requirement: DTR must be in DTR Code state.

	CM activity: The developer checks out software components from the Dev Work Baseline for update. At check out time, the developer specifies the DTR to be associated with changes to those components. A copy of the software components are available external to the CM system in the development reference directory for rapid read-only access. When the developer completes the changes, the updated components are checked in to the Dev Work Baseline of the CM system and associated with the appropriate DTR. The developer portion of the DTR form may be updated by the developer as needed. When coding and unit test are complete, the DTR is moved to the Turn-in Inspection state by the developer. The system engineer and test are notified automatically by the CM system.

	CM Outputs: Code changes stored within Dev Work Baseline of CM system. DTR updated as necessary. DTR moved to Turn-in Inspection state. When DTR moved to Turn-in Inspection state, system engineer and test notified by CM system and changes associated with DTR automatically moved by the CM system to the Development Baseline.

	�

3.2 – Test CM activities

1. PEA	Development Process: (3.3-38) To validate completeness and content of the

 Inspection	STR design.

	CM Requirement: STR must be in PEA Inspection state.

	CM activity: Test, QA, and the system engineer review the on-line STR and PEA forms as part of the inspection process. At completion of the PEA inspection, test, QA, and the system engineer will through the CM system electronically approve or reject the PEA. The PEA may be modified to include evaluation comments. The system engineer may move the STR back to the STR Correction Design state if desired.

	CM Outputs: PEA approved or rejected. Approval/rejection comments added to PEA. When PEA approved/rejected, development notified by the CM system. STR may be moved back to STR Correction Design state.

2. Turn-in Inspection	Development Process: (3.4.6.1) To inspect SOR, STR, and DTR, software and test reports. To determine software suitability for inclusion in the product Core Freeze baseline.

	CM Requirement: SOR/STR/DTR must be in Turn-in Inspection state.

	CM activity: Test, QA, and system engineer review the code changes and on-line STR, DTR and PEA forms as part of the inspection process. At completion of the inspection, the system engineer will through the CM system electronically approve or reject the SOR/STR/DTR. The on-line forms may be modified to include evaluation comments. The system engineer may move the SOR/STR/DTR back to their respective SOR Code, STR Code, and DTR Code states if additional changes are required.

	CM Outputs: SOR/STR/DTR approved or rejected. Approval/rejection comments added to form. When SOR/STR/DTR approved/rejected, developer and development management notified by the CM system. SOR/STR/DTR may be moved back to SOR Code, STR Code, or DTR Code state. Approved SOR/STR/DTR will be included in next development build.

3. SOR/STR/DTR	Development Process: (3.5-63) To verify SOR operation, STR correction, and

 Acceptance Tests	DTR modifications to determine acceptability for Core Freeze.

	CM Requirement: Acceptance build completed.

	CM activity: When test is ready to exercise a modification or set of modifications, the appropriate SORs, STRs, and/or DTRs are moved to the Acceptance Test state. When a SOR/STR/DTR is successfully tested, test will approve it and the system engineer automatically notified by the CM system. If a problem is found, a DTR will be created. Information describing the DTR is entered into a DTR form in the CM system. The DTR will reference the associated SOR or STR. The DTR will be placed in the DTR Code state and development notified automatically by the CM system. When a DTR is written, the associated SOR or STR will be moved back to the SOR/STR/DTR Code state.

	CM Outputs: DTRs created. SOR/STR/DTR moved to Acceptance Test state and approved or the SOR/STR moved back to SOR/STR/DTR Code state. Test comments added to PEA or DTR form. When SOR/STR/DTR approved or moved to another state, system engineer and development notified by the CM system.

4. SOR/STR	Development Process: (3.5-68) To test the integrated system according to the

 Regression Tests	ITP.

	CM Requirement: Integration build completed.

	CM activity: When test is ready to exercise a modification or set of of modifications, the appropriate SORs, STRs, and/or DTRs are moved to the Integration Test state. When successfully tested, test will move the SOR/STR/DTR to the Integration Inspection state and the system engineer automatically notified by the CM system. If a problem is found, a DTR will be created. Information describing the DTR is entered into a DTR form in the CM system. The DTR will reference the associated SOR or STR. The DTR will be placed in the DTR Code state and development notified automatically by the CM system. When a DTR is written, the associated SOR or STR may be left in the Integration Test state, moved to the Test Hold state, or moved back to the Code state. If moved back to the Code state, the changes associated with that SOR/STR will be removed from the Integration Baseline. Any subsequent integration builds will not include these changes. A problem moved to the Test Hold state will be moved back to the Integration Test state by the tester once the associated DTR has been fixed and moved through the life cycle to the Integration Test state.

	CM Outputs: DTRs created. SOR/STR/DTR moved to Integration Inspection state, Test Hold state, or moved back to Code state. Test comments added to PEA or DTR form. When SOR/STR/DTR moved to another state, the systeme engineer and development notified by the CM system.

�
3.3 – QA CM activities

1. PEA	Development Process: (3.3-38) To validate completeness and content of the

 Inspection	STR design.

	CM Requirement: STR must be in PEA Inspection state.

	CM activity: Test, QA, and the system engineer review the on-line STR and PEA forms as part of the inspection process. At completion of the PEA inspection, test, QA, and the system engineer will through the CM system electronically approve or reject the PEA. The PEA may be modified to include evaluation comments. The system engineer may move the STR back to the STR Correction Design state if desired.

	CM Outputs: PEA approved or rejected. Approval/rejection comments added to PEA. When PEA approved/rejected, development notified by the CM system. STR may be moved back to STR Correction Design state.�

3.4 – System Engineer CM activities

1. PEA	Development Process: (3.3-38) To validate completeness and content of the

 Inspection	STR design and verification plan.

	CM Requirement: STR must be in PEA Inspection state.

	CM activity: Test, QA, and the system engineer review the on-line STR and PEA forms as part of the inspection process. At completion of the PEA inspection, test, QA, and the system engineer will through the CM system electronically approve or reject the PEA. The PEA may be modified to include evaluation comments. The system engineer may move the STR back to the STR Correction Design state if desired.

	CM Outputs: PEA approved or rejected. Approval/rejection comments added to PEA. When PEA approved/rejected, development notified by the CM system. STR may be moved back to STR Correction Design state

2. STR assignment	Development Process: (3.4-54) Peer Review/CDR

	CM Requirement: STR must be in STR Reviewed state.

	CM activity: When STR selected for inclusion in current baseline, the STR is moved by the system engineer to the STR Code state.

	CM Outputs: STR moved to STR Code Test state.

3. STR Inspection	Development Process: (3.4-57) Validate completeness and content of developerís code.

	CM Requirement: STR must be in STR Inspection state.

	CM activity: At completion of a successful inspection, the system engineer will move the STR to the STR Function Test state. If the STR requires additional code development and an additional inspection, the system engineer will move the STR back to the STR Code state. If minor changes are required, the developer may perform the updates while the STR is in the STR Inspection state prior to a second inspection and/or moving the STR to the STR Function Test state.

	CM Outputs: Additional code changes stored within CM system as necessary. STR updated as necessary. STR moved to STR Function Test state or (back to) STR Code state. If moved to STR Function Test state, changes associated with STR moved automatically by CM system to Development Baseline.

4. SOR Inspection	Development Process: (3.4-57) To validate completeness and content of developed code.

	CM Requirement: SOR must be in SOR Inspection state.

	CM activity: At completion of a successful inspection, the system engineer will move the SOR to the SOR Unit Test state. If the SOR requires additional code development and an additional inspection, the system engineer will move the SOR back to the SOR Code state. If minor changes are required, the developer may perform the updates while the SOR is in the SOR Inspection state prior to a second inspection and/or moving the SOR to the SOR Unit Test state.

	CM Outputs: Additional code changes stored within CM system as necessary. SOR updated as necessary. SOR moved to SOR Unit Test state or (back to) SOR Code state.

5. Turn-in Inspection	Development Process: (3.4.6.1) To inspect SOR, STR, and DTR, software and test reports. To determine software suitability for incorporation in the product Core Freeze baseline.

	CM Requirement: SOR/STR/DTR must be in Turn-in Inspection state.

	CM activity: Test, QA, and the system engineer review the code changes and on-line DTR and PEA forms as part of the inspection process. At completion of the inspection, the system engineer will through the CM system electronically approve or reject the SOR/STR/DTR. The on-line forms may be modified to include evaluation comments. The system engineer may move the SOR/STR/DTR back to their respective SOR Code, STR Code, and DTR Code states if additional changes are required

	CM Outputs: SOR/STR/DTR approved or rejected. Approval/rejection comments added to form. When SOR/STR/DTR approved/rejected, development notified by the CM system. SOR/STR/DTR may be moved back to SOR Code, STR Code, or DTR Code state. Approved SOR/STR/DTR will be included in next development build.

6. Core Freeze	Development Process: (3.3-65) To incorporate SORs/STRs/DTRs into the Core Freeze Baseline (Integration Baseline).

	CM Requirement: SORs/STRs/DTRs must be in Acceptance Test state and have been approved by test.

	CM activity: The system engineer will determine which SORs/STRs/DTRs will be included in the Integration Baseline and approve them through the CM system. Approved SORs/STRs/DTRs will be moved to the Integration Build state by the configuration manager. All changes associated with the selected SORs/STRs/DTRs will be moved to the Integration Baseline. Development and test will be automatically notified by the CM system.

	CM Outputs: SOR/STR/DTR approved and moved to Integration Build state. Associated changes moved to Integration Baseline. Development and test notified by the CM system.

7. Integration	Development Process: (3.5-70) To determine suitability for Core proceeding to

 Inspection	Soft Freeze.

	CM Requirement: SOR/STR/DTR must be in Integration Inspection state.

	CM activity: Test, QA, and the system engineer review the code changes and on-line DTR and PEA forms as part of the inspection process. At completion of the inspection, the system engineer will through the CM system electronically approve or reject the SOR/STR/DTR. The on-line forms may be modified to include evaluation comments. The system engineer may move the SOR/STR/DTR back to their respective SOR Code, STR Code, and DTR Code states if desired.

	CM Outputs: SOR/STR/DTR approved or rejected. Approval/rejection comments added to form. When SOR/STR/DTR approved/rejected, development notified by the CM system. SOR/STR/DTR may be moved back to SOR Code, STR Code, or DTR Code state. Approved SOR/STR/DTR will be included in next development build.�

3.5 – STR Administrator CM activities

1. STR Administration	Development Process: Any time after soft freeze.

	CM Requirement: STR identified..

	CM activity: When a STR is identified the information describing the STR is entered into the CM system. The person reporting the STR may submit the problem as hardcopy or enter the information directly into the CM system. If STR provided as hardcopy, the STR administrator will enter the STR into the CM system. Periodically a subset of the STR information in the CM system will be extracted and uploaded by the STR administrator to the TAMPS STR data base..

	CM Outputs: STR added to CM system. STR data base on TAMPS server updated with latest STR information.

2. STR assignment	Development Process: (3.3-37) Assign STR for STR Correction Design

	CM Requirement: STR must be defined in CM system.

	CM activity: When STR selected by TRB for development detailed analysis, STR is moved by STR administrator from TAMPS STRs environment to STR Correction Design state in TAMPS 6.2 environment. Assigned developer automatically notified by the CM system.

	CM Outputs: STR moved to STR Correction Design Test state.

3. Soft freeze	Development Process: (3.6-71) To incorporate SORs/STRs/DTRs into the CM baseline.

	CM Requirement: SORs/STRs/DTRs must be in Integration Inspection state and have been approved by system engineer.

	CM activity: All open DTRs are converted by the STR administrator to STRs. A utility is provided to map fields from the on-line DTR form to the corresponding STR form.

	CM Outputs: DTRs converted to STRs.�

3.6 – Configuration Manager activities

1. Acceptance Build 	Development Process: (3.3-62) To incorporate SORs/STRs/DTRs code under

 and Load	CM control, build a acceptance baseline, and successfully load the baseline on Fleet representative hardware.

	CM Requirement: SORs/STRs/DTRs must be in Acceptance Build state or be in Turn-in Inspection state and have been approved by system engineer.

	CM activity: Any remaining SORs/STRs/DTRs in the Turn-in Inspection state that have been approved by the system engineer and any External Delivery IDs in the External Delivery state are moved by CM to the Acceptance Build state. All changes associated with the selected SORs/STRs/DTRs and External Delivery IDs will be moved to the Acceptance Baseline. CM will checkout the latest version of each component in the Acceptance Baseline to the acceptance reference directory. A controlled build is performed by CM using this reference directory. When test is ready to perform tests, the appropriate SORs/STRs/DTRs are moved by CM to the Acceptance Test state.

	CM Outputs: SOR/STR/DTR moved to Acceptance Build and then Acceptance test states. Associated changes moved to Acceptance Baseline.

2. MPM Integration	Development Process: (3.5-66) To provide the other system components necessary to build the TAMPS system.

	CM Requirement: External Delivery ID defined and in External Delivery state.

	CM activity: CM will load (check in) externally developed source and/or binary software into the Development Baseline. The CM system will store any changes to the code. Any changes stored will be associated with a unique External Delivery ID associated with that build.

	CM Outputs: Externally developed source and/or binaries loaded into CM system.

3. Core Freeze	Development Process: (3.3-65) To incorporate SORs/STRs/DTRs into the Core Freeze Baseline (Integration Baseline).

	CM Requirement: SORs/STRs/DTRs must be in Acceptance Test state and have been approved by system engineer.

	CM activity: The system engineer will determine which SORs/STRs/DTRs and External Delivery IDs will be included in the Integration Baseline and approve them through the CM system. Those to be included will be moved to the Integration Build state by CM. All changes associated with the selected SORs/STRs/DTRs will be moved to the Integration Baseline. Test, Development and the system engineer will be automatically notified by the CM system.

	CM Outputs: SOR/STR/DTR moved to Integration Build state. Associated changes moved to Integration Baseline. Test, development, and the system engineer notified by the CM system.

4. Integration Build	Development Process: (3.5-67) To build and successfully load product software on target hardware.

	CM Requirement: All new SORs/STRs/DTRs and External Delivery IDs to be included must have been moved to the Integration Build state.

	CM activity: CM will checkout the latest version of each component in the Integration Baseline to the integration reference directory. A controlled build is performed by CM using this reference directory. After the build is completed, built objects will be checked back into the CM system for baselining. The system engineer, test, and development will be notified automatically by the CM system when the built components are checked in to the CM system. When test is ready to perform tests, the appropriate SORs/STRs/DTRs are moved by CM to the Integration Test state.

	CM Outputs: Integration build performed. Built objects updated in CM system. System engineer, test, and development notified by the CM system. SORs/STRs/DTRs moved to Integration Test state.

5. Soft Freeze	Development Process: (3.6-71) To incorporate SORs/STRs/DTRs into the CM Baseline.

	CM Requirement: SORs/STRs/DTRs must be in Integration Inspection state and have been approved by system engineer.

	CM activity: All approved SORs/STRs/DTRs in the Integration Inspection state will be moved to the Soft Freeze state by CM. All changes associated with the selected SORs/STRs/DTRs will be moved to the CM Baseline. CM will checkout the latest version of each component in the CM Baseline to the CM reference directory. A controlled build is performed by CM using this reference directory. After the build is completed, built objects will be checked back into the CM system for baselining. The system engineer, test, and development will be notified automatically by the CM system when the built components are checked in to the CM system.

	CM Outputs: SOR/STR/DTR moved to CM Build state. Associated changes moved to CM Baseline. CM build performed. Built objects updated in CM system. System engineer, test, and development notified by the CM system.

�
4 – Forms Details

This section provides a detailed layout of each form defined in the CM system.

4.1 - DTR Form

				replace with dtr ìoriginationî

				replace with dtr ìdescriptionî

�

				replace with dtr ìdevelopmentî

	

				replace with dtr ìtestî

�
4.2 - STR Form

			replace with str ìoriginationî

			replace with str ìdescriptionî				replace with str ìtestî

�
4.3 - PEA Form

			replace with pea ìoriginationî

			replace with pea ìdescriptionî

�

			replace with pea ìanalysisî

				replace with pea ìdesignî

�

				replace with pea ìdocuments affectedî

replace with pea ìtestî

�
4.4 - External Delivery Form

					replace with External delivery form

�
5 - User Interface

The CM system provides a graphical user interface (GUI) and a command line interface. Some functions may be performed only through the GUI while other functions are only available through the command line. In general most day-to-day operations have been set up to run from the command line.

Appendix A describes each of the command line scripts available. Appendix B describes each of the report command line scripts.

5.1 Setup to Execute CCC/Harvest

In order to access CCC/Harvest the following environment variable must be set:

(from the C Shell)

 setenv HARVESTHOME /harvest

 setenv PATH $HARVESTHOME/bin:$PATH

(from Bourne or Korn Shell)

HARVESTHOME=/harvest

PATH=$HARVESTHOME/bin:$PATH

export HARVESTHOME PATH

5.2 CCC/Harvest GUI

In general, the CCC/Harvest GUI will be used to enter and review the on-line forms and to obtain status information about the state of the development cycle. To invoke CCC/Harvest through the GUI enter the following:

	harvest -wb &

5.3 CCC/Harvest Command Line Interface

The command line interface consists of a number of script files that invoke specific CCC/Harvest functions such as checkout, checkin, create package, and promote package. Another set of script files is available to generate predefined reports. The list of available script files can be generated by entering:

	hscripts

 or

	hreports

Each scripts has built in help information that describes the functionality, inputs and outputs. The help information can be displayed as follows:

	<script name> -h

5.3.1 Command Line Context

Many of the script files require that the CCC environment, CCC (life cycle) state, CCC package, and CCC viewpath be specified in order to perform the requested function. These values can be specified for each invocation of the script or defined as global variables. It is recommended that global variables be defined to streamline use of the CCC/Harvest command line. The following environment variables should be defined:

	CCCENVIRONMENT

	CCCSTATE

	CCCPACKAGE

A CCC script hsetcontext is provided to set the values for these environment variables. hsetcontext creates a file .setCCCcontext in the userís home directory that should be sourced from the userís .cshrc file. The file .setCCCcontext can be automatically sourced after each update by hsetcontext by creating the following alias:

 alias hsetcontext ë$HARVESTHOME/bin/hsetcontext \!*; source $HOME/.setCCCcontextí

CCCENVIRONMENT defines the environment or project that will be accessed. This should in most cases be set to TAMPS_6.2. CCCSTATE defines the state the user is working in. CCCPACKAGE is the name of the current package the user is working on. This will be updated frequently by the user.

5.3.2 Script Parameters

When entering parameters to scripts, the user may need to enclose the parameters in quotes (ì) based on the value. The following rules apply:

1. Parameters with embedded special characters or spaces must be enclosed in quotes.

	Example: hchkin -de ìthis is a descriptionî file1.com

2. File names with embedded wildcard characters (*) should be enclosed in quotes if the wild card string is to be passed to CCC for expansion.

	Example1: hcoup -vp /TAMPS_Rep/src/dbinstall ì*.cî

The string *.c will be passed to CCC for expansion. All files in the directory /TAMPS_Rep/src/dbinstall within the CCC will be checked out for update to the local work directory.

	Example2: hcoup -vp /TAMPS_Rep/src/dbinstall *.c

The string *.c will be expanded by the Unix shell to match files in the userís working directory. All file names that are found locally will be passed to CCC and checked out for update to the local work directory.

�
6 - Development Scenario

This section provides an example scenario of typical activities that would be performed during a portion of the development cycle. Note that this example will follow a single STR through the life cycle. In actual development cycles there will be many SORs/STRs/DTRs being developed in parallel that are at different stages of the life cycle.

1. Create new STR (user)

Using the CCC GUI interface, a new STR is created by positioning to the STR Submitted state of the TAMPS STRs environment and executing the Submit STR process.

2. Assign STR to project (STR Administrator)

Using CCC GUI interface, the STR Administrator positions to the STR Submitted state of the TAMPS STRs environment and executes the Move STR to TAMPS process with STR T-4030. STR T-4030 will be moved to the TAMPS_6.2 environment and plced in the STR_Correction_Design state.

3. Set CCC context (developer)

	hsetcontext

	 Environment: TAMPS_6.2

	 State: STR_Correction_Design

	 Package: T-4030

4. Create PEA and perform STR design (developer)

Using the CCC GUI interface, developer creates PEA by executing process Create PEA and enters information through the CCC Form editor interface. When PEA is ready for inspection, the developer will promote the STR/PEA to the PEA_Inspection state as follows:

	hpromote T-4030

5. Approve and promote STR to STR Reviewed state (QA, test, system engineer)

Following a successful inspection of the PEA, test and QA will approve the PEA using the Approve PEA process. After approvals are complete, the system engineer will promote the STR to STR_Reviewed state using the Promote to STR Reviewed process.

6. Initiate implementation cycle (system engineer)

When the STR is selection for implementation in the next baseline, the STR is moved to the STR_Code state:

	hpromote -ns STR_Code T-4030

7. Update CCC context state to STR_Code (developer)

	hsetcontext . STR_Code .

8. Check out files for update (developer)

Files file1.c, file2.c, and file3.c are checked out from /TAMPS_Rep/src/dbinstall to the current working directory. The files will be reserved for update in CCC/Harvest for package T-4030. CCC stores information about these files in a CCC signature file in the local working directory.

	hcoup -vp /TAMPS_Rep/src/dbinstall file1.c file2.c file3.c

9. Modify, build and unit test (developer)

The user will edit the files, recompile, relink, and test the changes. At any time in the development process the user may wish to determine what files have been checked out for update to local working directories. To get this information invoke:

	hchkres

This will recursively scan the directory hierarchy, from the current working directory, and display all files in the users directories that were checked out for update.

The user may also wish to determine what files have been modified in the local working directories. To get this information invoke:

	hchkmods

This will recursively scan the directory hierarchy, from the current working directory, and display all files in the users directories that have been modified. If the user wishes to see the actual changes made to these files, invoke:

	hdiff -de -vp /TAMPS_Rep/src/dbinstall ì*.cî

This will display the actual changes for all *.c files in the current directory from the version checked out from CCC.

10. Check in changed items (developer)

	hchkin -de ìModified the left hand algorithm.î ì*.cî

All files with the ì.cî extension will be checked into CCC. CCC maintains in the signature file the package and viewpath that the files were associated with. These files will be ìunreservedî in CCC and available for others to check out for update.

11. Update PEA form (developer)

The developer will log in to CCC through the GUI and update the PEA form.

12. Promote STR to STR Inspection state (developer)

	hpromote T-4030

13. Promote to STR Function Test (system engineer)

After a successful inspection, the system engineer will promote the STR to the Function Test state:

	hpromote T-4030 -s STR_Inspection

14. Promote to Turn-in Inspection (developer)

Following a successful function test, the developer will promote the STR to the Turn-In Inspection state:

	hpromote T-4030 -s STR_Function_Test

�

Appendix A – Scripts

The following is a brief description of the command line script files that are available from the CM system:

1. hchkin	Description: Checkin changed items.

	Invocation: hchkin [-e {environment}] [-s {state}] [-p {package}]

			 [-vp {view path}] [-r] [-de {description}] [-h]

			 file1 [file2 file3 ... argn]

	Input:	-e - environment - Defaults to CCCENVIRONMENT.

		-s - state - Defaults to CCCSTATE.

		-p - package to associate change with - Defaults to CCCPACKAGE.

		-vp - viewpath to which to checkin - Defaults to info in signature file.

		-r - perform recursive checkin.

		-de - description of change - User prompted for info if omitted.

		-h - display help text.

		file1 to n -files to checkin. Required. Wildcards valid.

	Output:	Report to standard output. Files checked in and lock released.

	Example: hchkin -p str2345 -de ìChanges to correct str2345î *.c

2. hchkmods	Description: Find all files below the current directory that have been

 modified in the users working directory.

	Invocation: hchkmods [directory path] [-h]

	Input:	directory path - directory path from which to begin search

from - Defaults to current directory.

-h - display help text.

	Output:	Report to standard output.

	Example: hchkmods /users/jeff/tamps

3. hchkres	Description: Find all files below the current directory that have been

 checked out for update.

	Invocation: hchkres [directory path] [-h]

	Input:	directory path - directory path from which to begin search

from - Defaults to current directory.

-h - display help text.

	Output:	Report to standard output.

	Example: hchkres /users/pat/src/dbinstall

4. hcobr	Description: Checkout items for browse.

	Invocation: hcoup [-e {environment}] [-s {state}]

			 [-vp {view path}] [-r] [-h]

			 file1 [file2 file3 ... argn]

	Input:	-e - environment - Defaults to CCCENVIRONMENT.

		-s - state - Defaults to CCCSTATE.

		-vp - viewpath from which to checkout.

		-r - perform recursive checkout.

		-h - display help text.

		file1 to n - files to checkout. Required. Wildcards valid.

	Output:	Report to standard output. Files checked out for browse to current

		directory.

	Example: hcobr -vp /tamps/src//dbinstall xy*.c

5. hcoup	Description: Checkout items for update.

	Invocation: hcoup [-e {environment}] [-s {state}] [-p {package}]

			 [-vp {view path}] [-r] [-h]

			 file1 [file2 file3 ... argn]

	Input:	-e - environment - Defaults to CCCENVIRONMENT.

		-s - state - Defaults to CCCSTATE.

		-p - package to associate change with - Defaults to CCCPACKAGE.

		-vp - viewpath from which to checkout.

		-r - perform recursive checkout.

		-h - display help text.

		file1 to n - files to checkout. Required. Wildcards valid.

	Output:	Report to standard output. Files checked out for update to current

		directory.

	Example: hcoup -p str2345 -vp /tamps/src//dbinstall xy*.c

6. hdemote	Description: Move package (SOR, STR, or DTR) from one state to a previous

		 state.

	Invocation: hdemote [-e {environment}] [-s {state}] [-ns {next state}] [-h]

			 package1 [package2 package3 ... packagen]

	Input:	-e - environment - Defaults to CCCENVIRONMENT.

		-s - state - Defaults to CCCSTATE.

		-ns - next state to demote to - Defaults to default previous state.

		-h - display help text.

		package1 to n - packages to demote - Defaults to CCCPACKAGE.

	Output:	Report to standard output. Packages moved to previous state.

	Example: hdemote -ns ìSTR Codeî STR123 STR234 STR567

7. hdiff	Description: Show summary or detailed differences to specified items in the

		 userís working directories to those stored within the CM system.

	Invocation: hdiff [-r] [-d {directory}] [-de] [-h] file1 [file2 file3 ... filen]

	Input:	-r - perform recursive search for specified files.

		-d - directory path to begin search from - Defaults to current directory.

		-de - provide detailed difference report - defaults to summary of

		 changed files.

		-h - display help text.

		file1 to n - files to search for. Required. Wildcards valid.

	Output:	Report to standard output.

	Example: hdiff -r -d /users/fred//tamps/src/dbinstall xy*.c

8. hpromote	Description: Move package (SOR, STR, or DTR) from one state to another.

	Invocation: hpromote [-e {environment}] [-s {state}] [-ns {next state}] [-h]

			 package1 [package2 package3 ... packagen]

	Input:	-e - environment - Defaults to CCCENVIRONMENT.

		-s - state - Defaults to CCCSTATE.

		-ns - next state to promote to - Defaults to default next state.

		-h - display help text.

		package1 to n - packages to promote - Defaults to CCCPACKAGE.

	Output:	Report to standard output. Packages moved to next state.

	Example: hpromote -ns ìSTR Inspectionî STR123 STR234 STR567

9. hreports	Description: Display list of report script files.

	Invocation: hreports

	Input:	none

Output:	Report to standard output.

	Example: hreports

10. hsigget	Description: Display information about files in the current directory that

have been checked out from CCC.

	Invocation: hsigget [-v] [-a attribute1 attribute2 ...] [-h] [files]

	Input:	-v - Generates report with preselected subset of attributes

		 (filename, status, tag, version,and package)

-a - attributes - specifies one or more attributes to be reported.

 Valid attributes are environment, state, viewpath, package,

 item, user, author, crtime, modtime, size, version,

 versionid, status, and tag.

-h - display help text.

	Output:	Report to standard output.

	Example: hsigget -v

		 hsigget -a viewpath state package user

11. hscripts	Description: Display list of script files.

	Invocation: hscripts

	Input:	none

Output:	Report to standard output.

	Example: hscript

12. hsetcontext	Description: Set CM context. Sets CM system variables CCCENVIRONMENT,

		 CCCSTATE, and CCCPACKAGE for use by other CM script files.

	Invocation: hsetcontext {environment} {state} {package} [-h]

	Input:	environment - {{environment}/{ìî}/{.}]} - if ì.î or ìîî entered,

				CCCENVIRONMENT is unchanged.

		state - {{state}/{ìî}/{.}]} - if ì.î or ìîî entered, CCCSTATE is unchanged.

		package - {{package}/{ìî}/{.}]} - if ì.î or ìîî entered, CCCPACKAGE is							unchanged.

		-h - display help text.

		If environment, state, or package not entered, user will be prompted for 	parameters.

	Output:	Report to standard output. File .setCCCcontext created in userís home 	directory. Execute ìsource .setCCCcontextî to set environment

		variables.

	Example: hsetcontext ìTAMPS_6.2î ìSTR_Codeî ìstr2345î

13. hsynchit	Description: Resynchronizes from specified view path in CM system to current

		 directory.

	Invocation: hsynchit [view path] [-h]

	Input:	view path - path within CM repository that will be synchronized with

		current directory - User prompted for info if omitted.

		-h - display help text.

	Output:	Report to standard output. Out-of-date files checkedout to curent

		directory

	Example: hsynchit /tamps/src

14. hunedit	Description: Unreserve an item.

	Invocation: hunedit [-e {environment}] [-s {state}] [-r] [-h]

			 file1 [file2 file3 ... argn]

	Input:	-e - environment - Defaults to CCCENVIRONMENT.

		-s - state - Defaults to CCCSTATE.

		-r - perform recursive unreserve.

		-h - display help text.

		file1 to n -files to unreserve. Required. Wildcards valid.

	Output:	Report to standard output. Files lock released.

	Example: hunedit *.c

�
Appendix B – Reports Details

The following is a brief description of the fixed format reports that are available from the CM system:

1. Baseline 	Description: Summary of differences between any two specified

 Comparison	baselines (e.g., Dev Work, Development, Integration, TAMPS61, etc).

 Report

	Through GUI: Execute List View Differences process from workbench. Specify views to be compared.

2. Build Component 	Description: Summary of all components and versions of the

 Report	components that were used to perform a build.

	Parameters: none

.

Invocation: hbldcomponents (Invoke from top of build directory hierarchy.)

3. Component	Description: List of all components checked out for update.

 Checkout Report	

	Through GUI: Execute Version Chooser from workbench to select (filter) versions based on Tag equal to RESERVED. Generate report to Session log with List button.

4. Detailed Change	Description: Display actual changes made to TAMPS components to correct

 Report	specified SORs, STRs, and/or DTRs.

	Through GUI: Execute List Changes process from workbench. Specify packages to be reported on.

5. DTR Detail Report	Description: Formated version of the on-line DTR form. Provides all information maintained with the DTR form including current state and approval status/comments.

	Invocation: hdtrdetail {DTR name} {environment name} [-h]

6. DTR Status	Description: List the DTRs in each state of the specified environment.

	Parameters: Select DTRs based on environment.

	Invocation: hdtrstatus {environment}]

	Sample report:

==

 TAMPS DTR Status Report

==

Environment:	ìTAMPS 6.2î

Date:	ìThu Feb 27 20:04:33 GMT 1997î

Generated by:	ìharvestî

State	DTR		SOR/STR	Reported By	Date Reported	Developer

====	===		=======	=========	===========	========

DTR Code	DTR-1		SOR2346	rich		10-JAN-97	fred

DTR Code	DTR-2		SOR2346	rich		11-JAN-97	fred

IntegrationTest	DTR-3		SOR4455	rich		10-JAN-97	sam

7. External	Description: Formated version of the on-line External Delivery form. Provides

 Delivery Detail	all information maintained with the form.

	Invocation: hextdetail {External delivery name} {environment name} [-h]

8. External 	Description: List the external deliveries in each state of the specified

 Delivery Status	environment.

 Report

	Parameters: Select deliveries based on environment.

	Invocation: hextstatus {environment} [-h]

	Sample report:

==

 TAMPS 6.2 External Delivery Status Report

==

Environment:	ìTAMPS 6.2î

Date:	ìThu Feb 27 20:04:33 GMT 1997î

Generated by:	ìharvestî

State	Ext ID		Date		Organization	Version		Baseline

====	=====		====		==========	======	=======

Ext Delivery	ED-1009	5/20/97		MDA		1.3		6.2b

Acceptance Test	ED-1008	5/18/97		MDA		1.2		6.2b

Integration Test	ED-1007	5/15/97		MDA		1.1		6.2a

Integration Test	ED-1006	5/10/97		MDA		1.0		6.2a

9. Package	Description: Summary count of all packages in each state.

 Distribution Report

	Parameters: Select packages based on environment.

	Invocation: hpkgdist {environment} [-h]

	Sample report:

==

 TAMPS Package Distribution Report

==

Environment:	ìTAMPS 6.2î

Date:	ìThu Feb 27 20:04:33 GMT 1997î

Generated by:	ìharvestî

State		No. of STRs	

====		=========

PEA Inspection		4

STR Code		4

STR Correction Design		3	

STR Inspection		2

STR Reviewed		0

 (

 (

10. Package Status	Description: List of all packages in specified environment.

	Parameters: Select packages based on environment.

	Invocation: hpkgstatus {environment} [-h]

	Sample report:

==

 TAMPS 6.2 Package Status Report

==

Environment:	ìTAMPS 6.2î

Date:	ìThu Feb 27 20:04:33 GMT 1997î

Generated by:	ìharvestî

State	Package	

====	======

SOR Code	SOR-1

SOR Inspection	SOR-2

SOR Inspection	SOR-3

STR_Code	T-4065

STR_Code	T-4066

11. PEA Detail Report	Description: Formated version of the on-line PEA form. Provides all information maintained with the PEA form.

	Invocation: hpeadetail {STR name} {environment name} [-h]

12. STR Detail Report	Description: Formated version of the on-line STR form. Provides all information maintained with the STR form including current state and approval status/comments.

	Invocation: hstrdetail {STR name}

13. STR Status	Description: List of all STRs matching search criteria.

	Parameters: Select STRs based on environment, STR state, priority, and/or originator.

	Invocation: str_status [-en {environment}] [-s {state}] [-pr {priority}]

			 [-or {originator}]

	Sample report:

==

 TAMPS STR Status Report

==

Environment:	ìTAMPS 6.2î

Date:	ìThu Feb 27 20:04:33 GMT 1997î

Generated by:	ìharvestî

State	STR		Priority		Originator	Action		Developer

====	===		=====		=======	=====		========

STR Code	STR-1		1		rich		TRW		fred

STR Inspection	STR-2		1		rich		Lockheed	fred

STR Inspection	STR-3		2		rich		Lockheed	sam

14. Summary Change	Description: Summary of all changes made to TAMPS components to

 Report	correct specified SORs/STRs/DTRs.

	Through GUI: Execute Version Chooser from workbench to select (filter) versions based on desired criteria. Generate report to Session log with List button.

�
Appendix C – Glossary

Acceptance Baseline

Baseline from which Acceptance builds are performed. This baseline contains all changes that have been turned over from development and passed Turn-in Inspection.

Automatic Notification

At defined points in the development life cycle, certain events will cause electronic mail to be sent to designated individuals. For example, when a SOR is promoted to the SOR Inspection state, the individuals responsible for the inspection will be sent an e-mail.

Baseline

A baseline is a CM maintained version of the TAMPS application. A baseline may change over time such as the Development Baseline or Integration Baseline. A baseline may also be a frozen version of the TAMPS application such as Release 6.1.

CM

Configuration management. Refers both to the discipline of performing the control activity and the individuals or group that perform the control function.

CM Baseline

Baseline from which CM builds are performed to create the Fleet Releases of TAMPS.

Dev Work Baseline

This is the working version of the TAMPS code. Developers update code in this baseline as they perform their assigned tasks. This baseline is volitile and will reflect the latest versions of code checked in by the developers.

Development Baseline

Baseline from which development builds are performed. Once unit tests have been performed for an SOR/STR, the associated changes are moved to this baseline for function tests.

Developers/Development

Individuals or groups whose responsibility it is to design and implement code enhancements and modifications to support TAMPS.

Development Life Cycle

Consists of a set of states, allowable transitions from one state to another, and a set of processes that can be performed at each state. SORs, STRs, and DTRs start at different states and follow unique paths through the life cycle.

DTR

Development Trouble report

Form

The form is a on-line interface to information stored within the CM relational data base. Associated with each form is a table in the CM relational data base.

Integration Baseline

Baseline from which Integration builds are performed. This baseline contains all changes that have passed acceptance test.

External Delivery ID

Created by CM to group the changes introduced in a delivery of code from an external groups such as MPMs. The External Delivery ID will function like a SOR, STR, or DTR in that it will be moved through states in the development life cycle. Initially the Delivery ID will be in the Ext Delivery state.

PEA

Preliminary Engineering Analysis

QA

Group responsible for inspecting the TAMPS components.

Reference Directories

Directories on the network that contain complete copies of all components that make up a version of TAMPS. These directories are maintained by the CM system to ensure that the appropriate versions of each component are resident. Project members reference these directories for read only purposes.

SOR

Statement of Requirements

State

A state represents a phase of the development life cycle for a SOR, STR, and DTR. At each state there are defined activities that can or must be performed while the associated SOR, STR, or DTR is in the state.

STR

Software Trouble Report.

STR Administrator

Individual responsible for administrating the STR data base.

Test

Group responsible for testing the TAMPS code.

TAMPS System Engineer

Individual responsible for reviewing and approving all changes to the TAMPS code.

�PAGE �

�

