

TAMPS 6.2

Design Notebook

for

SOR 96�60a

July 22, 1997

Developed by:

Andy Krigel,

Lockheed Martin Technical Operations

Camarillo, CA

�TABLE OF CONTENTS

� TOC \o "1-3" �1. HIGH�LEVEL DESIGN	� GOTOBUTTON _Toc399230688 � PAGEREF _Toc399230688 �1��

1.1 CONOPS	� GOTOBUTTON _Toc399230689 � PAGEREF _Toc399230689 �1��

1.1.1 Scope	� GOTOBUTTON _Toc399230690 � PAGEREF _Toc399230690 �1��

1.1.2 Applicable Documents	� GOTOBUTTON _Toc399230691 � PAGEREF _Toc399230691 �1��

1.1.3 Impact Analysis	� GOTOBUTTON _Toc399230692 � PAGEREF _Toc399230692 �1��

1.1.4 Performance and Sizing	� GOTOBUTTON _Toc399230693 � PAGEREF _Toc399230693 �2��

1.1.5 Operating Locations	� GOTOBUTTON _Toc399230694 � PAGEREF _Toc399230694 �2��

1.1.6 Hardware and Software Configuration	� GOTOBUTTON _Toc399230695 � PAGEREF _Toc399230695 �2��

1.1.7 Description of Processing	� GOTOBUTTON _Toc399230696 � PAGEREF _Toc399230696 �2��

1.2 DRAFT USER INTERFACE	� GOTOBUTTON _Toc399230697 � PAGEREF _Toc399230697 �5��

1.2.1 Clutter/Declutter	� GOTOBUTTON _Toc399230698 � PAGEREF _Toc399230698 �6��

1.3 STATEMENTS OF FUNCTIONALITY (SOF)	� GOTOBUTTON _Toc399230699 � PAGEREF _Toc399230699 �11��

1.4 REQUIREMENTS TRACE	� GOTOBUTTON _Toc399230714 � PAGEREF _Toc399230714 �16��

1.4.1 RTDB	� GOTOBUTTON _Toc399230715 � PAGEREF _Toc399230715 �16��

1.4.2 Administrative Trace	� GOTOBUTTON _Toc399230716 � PAGEREF _Toc399230716 �16��

1.4.3 Allocation Trace	� GOTOBUTTON _Toc399230717 � PAGEREF _Toc399230717 �17��

1.4.4 Assumptions	� GOTOBUTTON _Toc399230718 � PAGEREF _Toc399230718 �19��

1.5 DATA FLOW DIAGRAM	� GOTOBUTTON _Toc399230719 � PAGEREF _Toc399230719 �20��

1.6 CONTROL FLOW DIAGRAM	� GOTOBUTTON _Toc399230720 � PAGEREF _Toc399230720 �25��

1.7 PRELIMINARY IDD INFORMATION	� GOTOBUTTON _Toc399230721 � PAGEREF _Toc399230721 �34��

2. DETAILED DESIGN	� GOTOBUTTON _Toc399230722 � PAGEREF _Toc399230722 �35��

2.1 HIGH�LEVEL DESIGN UPDATES	� GOTOBUTTON _Toc399230723 � PAGEREF _Toc399230723 �35��

2.2 DATABASE SCHEMA	� GOTOBUTTON _Toc399230724 � PAGEREF _Toc399230724 �43��

2.3 CONTROL FLOW	� GOTOBUTTON _Toc399230725 � PAGEREF _Toc399230725 �43��

2.4 ALGORITHMS	� GOTOBUTTON _Toc399230726 � PAGEREF _Toc399230726 �93��

2.5 DESIGN DESCRIPTION	� GOTOBUTTON _Toc399230727 � PAGEREF _Toc399230727 �115��

2.5.1 Class CountBy	� GOTOBUTTON _Toc399230728 � PAGEREF _Toc399230728 �116��

2.5.2 Class CountByObject	� GOTOBUTTON _Toc399230729 � PAGEREF _Toc399230729 �116��

2.5.3 Class CountByWindow	� GOTOBUTTON _Toc399230730 � PAGEREF _Toc399230730 �116��

2.5.4 Class CountByBucketObject	� GOTOBUTTON _Toc399230731 � PAGEREF _Toc399230731 �118��

2.5.5 Class CountBucketObjectMap	� GOTOBUTTON _Toc399230732 � PAGEREF _Toc399230732 �119��

2.5.6 Class CountByDrawingArea	� GOTOBUTTON _Toc399230733 � PAGEREF _Toc399230733 �119��

2.5.7 Class CountByResultObject	� GOTOBUTTON _Toc399230734 � PAGEREF _Toc399230734 �120��

2.5.8 Class CountByTriad	� GOTOBUTTON _Toc399230735 � PAGEREF _Toc399230735 �121��

2.5.9 Class CountByUserPreferences	� GOTOBUTTON _Toc399230736 � PAGEREF _Toc399230736 �121��

2.6 INTERFACE DESCRIPTION	� GOTOBUTTON _Toc399230737 � PAGEREF _Toc399230737 �122��

2.7 TEST PLANS	� GOTOBUTTON _Toc399230738 � PAGEREF _Toc399230738 �122��

2.8 FUNCTIONAL TESTS	� GOTOBUTTON _Toc399230739 � PAGEREF _Toc399230739 �123��

2.8.1 Starting Count�By	� GOTOBUTTON _Toc399230740 � PAGEREF _Toc399230740 �124��

2.8.2 Controlling HMI Control Panel and Summary Line.	� GOTOBUTTON _Toc399230741 � PAGEREF _Toc399230741 �127��

2.8.3 Count�By Window and X Events	� GOTOBUTTON _Toc399230742 � PAGEREF _Toc399230742 �129��

2.8.4 Count�By User Preferences.	� GOTOBUTTON _Toc399230743 � PAGEREF _Toc399230743 �130��

2.8.5 Local actions while Coupled.	� GOTOBUTTON _Toc399230744 � PAGEREF _Toc399230744 �133��

2.8.6 Local actions while Decoupled.	� GOTOBUTTON _Toc399230745 � PAGEREF _Toc399230745 �136��

2.8.7 Local Actions with Coupled and Decoupled Count�By Windows	� GOTOBUTTON _Toc399230746 � PAGEREF _Toc399230746 �139��

2.8.8 External Actions While Decoupled	� GOTOBUTTON _Toc399230747 � PAGEREF _Toc399230747 �142��

2.8.9 External Actions While Coupled	� GOTOBUTTON _Toc399230748 � PAGEREF _Toc399230748 �144��

2.8.10 Exporting Count�By Results	� GOTOBUTTON _Toc399230749 � PAGEREF _Toc399230749 �146��

2.8.11 Keyboard Accelerators	� GOTOBUTTON _Toc399230750 � PAGEREF _Toc399230750 �147��

2.8.12 Non-text bucket	� GOTOBUTTON _Toc399230751 � PAGEREF _Toc399230751 �148��

2.8.13 Non-spatial bucket	� GOTOBUTTON _Toc399230752 � PAGEREF _Toc399230752 �148��

2.8.14 Bounds and Performance Goal	� GOTOBUTTON _Toc399230753 � PAGEREF _Toc399230753 �148��

2.8.15 NULL and Blank Column Values	� GOTOBUTTON _Toc399230754 � PAGEREF _Toc399230754 �149��

2.9 UNIT TEST PLANS AND PROCEDURES	� GOTOBUTTON _Toc399230755 � PAGEREF _Toc399230755 �149��

2.10 ISSUES AND RISKS	� GOTOBUTTON _Toc399230756 � PAGEREF _Toc399230756 �201��

2.11 METRICS	� GOTOBUTTON _Toc399230757 � PAGEREF _Toc399230757 �201��

3. ADMINISTRATIVE	� GOTOBUTTON _Toc399230758 � PAGEREF _Toc399230758 �203��

3.1 PDR ACTION ITEMS	� GOTOBUTTON _Toc399230759 � PAGEREF _Toc399230759 �203��

3.2 SOFTWARE LINES OF CODE ESTIMATES	� GOTOBUTTON _Toc399230760 � PAGEREF _Toc399230760 �203��

3.3 SCHEDULE	� GOTOBUTTON _Toc399230761 � PAGEREF _Toc399230761 �203��

�

LIST OF FIGURES AND TABLES

� TOC \t "Caption,Figure" \c �Figure 1.2.1�1. HMI Hierarchy	� GOTOBUTTON _Toc393847926 � PAGEREF _Toc393847926 �5��

Figure 1.2.1�2. Clutter/Declutter	� GOTOBUTTON _Toc393847927 � PAGEREF _Toc393847927 �6��

Figure 1.2.1.1�1. Text Tool	� GOTOBUTTON _Toc393847928 � PAGEREF _Toc393847928 �7��

Figure 1.2.1.2�1. ìCount�Byî Display	� GOTOBUTTON _Toc393847929 � PAGEREF _Toc393847929 �8��

Figure 1.5�1. Count�By Context Data Flow Diagram	� GOTOBUTTON _Toc393847930 � PAGEREF _Toc393847930 �20��

Figure 1.5�2. Count�By Level 0 Data Flow Diagram	� GOTOBUTTON _Toc393847931 � PAGEREF _Toc393847931 �21��

Figure 1.5�3. Count�By Level 1 Data Flow Diagram	� GOTOBUTTON _Toc393847932 � PAGEREF _Toc393847932 �22��

Figure 1.5�4. Count�By Level 1 Data Flow Diagram	� GOTOBUTTON _Toc393847933 � PAGEREF _Toc393847933 �23��

Figure 1.5�5. Count�By Level 1 Data Flow Diagram	� GOTOBUTTON _Toc393847934 � PAGEREF _Toc393847934 �24��

Figure 1.6�1. Control Flow Diagram	� GOTOBUTTON _Toc393847935 � PAGEREF _Toc393847935 �28��

Figure 1.6�2. Control Flow Diagram	� GOTOBUTTON _Toc393847936 � PAGEREF _Toc393847936 �29��

Figure 1.6�3. Control Flow Diagram	� GOTOBUTTON _Toc393847937 � PAGEREF _Toc393847937 �30��

Figure 1.6�4. Control Flow Diagram	� GOTOBUTTON _Toc393847938 � PAGEREF _Toc393847938 �31��

Figure 1.6�5. Control Flow Diagram	� GOTOBUTTON _Toc393847939 � PAGEREF _Toc393847939 �32��

Figure 1.6�6. Control Flow Diagram	� GOTOBUTTON _Toc393847940 � PAGEREF _Toc393847940 �32��

Figure 1.6�7. Control Flow Diagram	� GOTOBUTTON _Toc393847941 � PAGEREF _Toc393847941 �33��

Figure 2.3�1. lht_handler Modifications	� GOTOBUTTON _Toc393847942 � PAGEREF _Toc393847942 �43��

Figure 2.3�2. Text Tool Modification	� GOTOBUTTON _Toc393847943 � PAGEREF _Toc393847943 �43��

Figure 2.3�3. Clutter/Declutter Modification	� GOTOBUTTON _Toc393847944 � PAGEREF _Toc393847944 �44��

Figure 2.3�4. Count�By Init	� GOTOBUTTON _Toc393847945 � PAGEREF _Toc393847945 �45��

Figure 2.3�5. Create New Count�By Window Object	� GOTOBUTTON _Toc393847946 � PAGEREF _Toc393847946 �46��

Figure 2.3�6. Destroy Count�By Window	� GOTOBUTTON _Toc393847947 � PAGEREF _Toc393847947 �47��

Figure 2.3�7. Create Object Map	� GOTOBUTTON _Toc393847948 � PAGEREF _Toc393847948 �48��

Figure 2.3�8. Create Result List	� GOTOBUTTON _Toc393847949 � PAGEREF _Toc393847949 �49��

Figure 2.3�9. Destroy Result List	� GOTOBUTTON _Toc393847950 � PAGEREF _Toc393847950 �49��

Figure 2.3�10. Create New Count�By Bucket Object	� GOTOBUTTON _Toc393847951 � PAGEREF _Toc393847951 �50��

Figure 2.3�11. Create New Count�By Object	� GOTOBUTTON _Toc393847952 � PAGEREF _Toc393847952 �51��

Figure 2.3�12. Count�By Handler	� GOTOBUTTON _Toc393847953 � PAGEREF _Toc393847953 �51��

Figure 2.3�13. Process Externally Generated Actions (1 of 4)	� GOTOBUTTON _Toc393847954 � PAGEREF _Toc393847954 �52��

Figure 2.3�14. Process Externally Generated Actions (2 of 4)	� GOTOBUTTON _Toc393847955 � PAGEREF _Toc393847955 �53��

Figure 2.3�15. Process Externally Generated Actions (3 of 4)	� GOTOBUTTON _Toc393847956 � PAGEREF _Toc393847956 �54��

Figure 2.3�16. Process Externally Generated Actions (4 of 4)	� GOTOBUTTON _Toc393847957 � PAGEREF _Toc393847957 �55��

Figure 2.3�17. Process Locally Generated Hook Action (1 of 4)	� GOTOBUTTON _Toc393847958 � PAGEREF _Toc393847958 �56��

Figure 2.3�18. Process Locally Generated Hook Action (2 of 4)	� GOTOBUTTON _Toc393847959 � PAGEREF _Toc393847959 �57��

Figure 2.3�19. Process Locally Generated Hook Action (3 of 4)	� GOTOBUTTON _Toc393847960 � PAGEREF _Toc393847960 �58��

Figure 2.3�20. Process Locally Generated Hook Action (4 of 4)	� GOTOBUTTON _Toc393847961 � PAGEREF _Toc393847961 �59��

Figure 2.3�21. Process Locally Generated Hide Action	� GOTOBUTTON _Toc393847962 � PAGEREF _Toc393847962 �60��

Figure 2.3�22. Process Locally Generated Hide Except Action	� GOTOBUTTON _Toc393847963 � PAGEREF _Toc393847963 �61��

Figure 2.3�23. Process Locally Generated Show Action	� GOTOBUTTON _Toc393847964 � PAGEREF _Toc393847964 �62��

Figure 2.3�24. Recouple	� GOTOBUTTON _Toc393847965 � PAGEREF _Toc393847965 �63��

Figure 2.3�25. Create HMI	� GOTOBUTTON _Toc393847966 � PAGEREF _Toc393847966 �64��

Figure 2.3�26. Typical Count�By HMI CallBack	� GOTOBUTTON _Toc393847967 � PAGEREF _Toc393847967 �65��

Figure 2.3�27. Column Button Handler	� GOTOBUTTON _Toc393847968 � PAGEREF _Toc393847968 �65��

Figure 2.3�28. Display by Button Handler	� GOTOBUTTON _Toc393847969 � PAGEREF _Toc393847969 �66��

Figure 2.3�29. Sort By Button Handler	� GOTOBUTTON _Toc393847970 � PAGEREF _Toc393847970 �67��

Figure 2.3�30. Sort Order Button Handler	� GOTOBUTTON _Toc393847971 � PAGEREF _Toc393847971 �68��

Figure 2.3�31. Summary Line Button Handler	� GOTOBUTTON _Toc393847972 � PAGEREF _Toc393847972 �69��

Figure 2.3�32. Control Panel Button Handler	� GOTOBUTTON _Toc393847973 � PAGEREF _Toc393847973 �70��

Figure 2.3�33. Save User Preferences Button Handler	� GOTOBUTTON _Toc393847974 � PAGEREF _Toc393847974 �71��

Figure 2.3�34. Delete User Preferences Button Handler	� GOTOBUTTON _Toc393847975 � PAGEREF _Toc393847975 �71��

Figure 2.3�35. Create Count�By User Preferences	� GOTOBUTTON _Toc393847976 � PAGEREF _Toc393847976 �72��

Figure 2.3�36. Save User Preferences	� GOTOBUTTON _Toc393847977 � PAGEREF _Toc393847977 �73��

Figure 2.3�37. Delete User Preferences	� GOTOBUTTON _Toc393847978 � PAGEREF _Toc393847978 �74��

Figure 2.3�38. Print Button Handler	� GOTOBUTTON _Toc393847979 � PAGEREF _Toc393847979 �74��

Figure 2.3�39. Coupling Button Handler	� GOTOBUTTON _Toc393847980 � PAGEREF _Toc393847980 �75��

Figure 2.3�40. Help Button Handler	� GOTOBUTTON _Toc393847981 � PAGEREF _Toc393847981 �75��

Figure 2.3�41. Cancel Button Handler	� GOTOBUTTON _Toc393847982 � PAGEREF _Toc393847982 �75��

Figure 2.3�42. Count�By (1 of 2)	� GOTOBUTTON _Toc393847983 � PAGEREF _Toc393847983 �76��

Figure 2.3�43. Count�By (2 of 2)	� GOTOBUTTON _Toc393847984 � PAGEREF _Toc393847984 �77��

Figure 2.3�44. Print all Triads	� GOTOBUTTON _Toc393847985 � PAGEREF _Toc393847985 �78��

Figure 2.3�45. Create Count�By Result Drawing Area	� GOTOBUTTON _Toc393847986 � PAGEREF _Toc393847986 �79��

Figure 2.3�46. Calculate Window Character Width	� GOTOBUTTON _Toc393847987 � PAGEREF _Toc393847987 �80��

Figure 2.3�47. Calculate Number of Visible Rows	� GOTOBUTTON _Toc393847988 � PAGEREF _Toc393847988 �80��

Figure 2.3�48. Calculate Triad Size	� GOTOBUTTON _Toc393847989 � PAGEREF _Toc393847989 �81��

Figure 2.3�49. Calculate Number of Columns	� GOTOBUTTON _Toc393847990 � PAGEREF _Toc393847990 �81��

Figure 2.3�50. Calculate Number of Visible Results	� GOTOBUTTON _Toc393847991 � PAGEREF _Toc393847991 �82��

Figure 2.3�51. Calculate Starting Point for Displaying Count�By Results	� GOTOBUTTON _Toc393847992 � PAGEREF _Toc393847992 �82��

Figure 2.3�52. Produce Count�By Result Area Display	� GOTOBUTTON _Toc393847993 � PAGEREF _Toc393847993 �83��

Figure 2.3�53. Create New Count�By Triad List	� GOTOBUTTON _Toc393847994 � PAGEREF _Toc393847994 �84��

Figure 2.3�54. Print Triad	� GOTOBUTTON _Toc393847995 � PAGEREF _Toc393847995 �85��

Figure 2.3�55. Identify Triad from X, Y Display Location	� GOTOBUTTON _Toc393847996 � PAGEREF _Toc393847996 �86��

Figure 2.3�56. Redraw Count�By Result Object In Count�By Result Area Display	� GOTOBUTTON _Toc393847997 � PAGEREF _Toc393847997 �87��

Figure 2.3�57. Count�By Window Resize Event	� GOTOBUTTON _Toc393847998 � PAGEREF _Toc393847998 �88��

Figure 2.3�58. Count�By Result Area Expose Event	� GOTOBUTTON _Toc393847999 � PAGEREF _Toc393847999 �88��

Figure 2.3�59. Count�By Result Scrollbar Handler	� GOTOBUTTON _Toc393848000 � PAGEREF _Toc393848000 �89��

Figure 2.3�60. Count�By Print	� GOTOBUTTON _Toc393848001 � PAGEREF _Toc393848001 �90��

Figure 2.3�61. Hide Button Handler	� GOTOBUTTON _Toc393848002 � PAGEREF _Toc393848002 �90��

Figure 2.3�62. Hide Except Button Handler	� GOTOBUTTON _Toc393848003 � PAGEREF _Toc393848003 �91��

Figure 2.3�63. Show All Button Handler	� GOTOBUTTON _Toc393848004 � PAGEREF _Toc393848004 �91��

Figure 2.3�64. Hook Handler	� GOTOBUTTON _Toc393848005 � PAGEREF _Toc393848005 �91��

Figure 2.3�65. Create Count�By Bucket Object List	� GOTOBUTTON _Toc393848006 � PAGEREF _Toc393848006 �92��

Figure 2.5�1. Count�By Class Relationship	� GOTOBUTTON _Toc393848007 � PAGEREF _Toc393848007 �115��

�� TOC \t "Table Title" \c �

Table 1.1.7.1�1. Count�By Process Results	� GOTOBUTTON _Toc399230762 � PAGEREF _Toc399230762 �3��

Table 1.1.7.1-1. Count�By Window Functionality	� GOTOBUTTON _Toc399230763 � PAGEREF _Toc399230763 �37��

Table 3.2-1. Software Lines of Code Estimates	� GOTOBUTTON _Toc399230764 � PAGEREF _Toc399230764 �203��

��HIGH�LEVEL DESIGN

CONOPS

Scope

TAMPS will provide the capability to isolate a group of records based on a single value within a data bucket, as displayed on the Text Tool window, by interacting with the "Count�By" window. The Count�By window will be a new HMI.

The user will initiate the Count�By HMI by selecting the "Count�By" button on the Text Tool HMI. The resulting Count�By window will be tied to that specific Text Tool window and the operations described below would affect the records in the Text Tool.

Applicable Documents

Government Documents

Specifications

Standards

Other Publications

Non�Government Documents

Impact Analysis

Users

All users will be able to bring up the Count-By window from the Text Tool by selecting a Count-By button on the Text Tool and/or from the Clutter/Declutter window. When selecting from the Clutter/Declutter window, the highlighted layer/bucket combination will specify which data bucket.

Any column in the data bucket can be used to ìcount-byî. The default column will be the left most column unless the user preference file contains a valid column name, or, if the Count-By window is brought up from the Text Tool, the default column will be the column from which Count-By was selected.

There are no special impacts for Mission Planners, System Administrators, or Database Administrators.

Performance and Sizing

Executables will increase in size if and when the Count�By button is selected, which will initiate the dynamic load of the library functions to manage the Count�By window.

Performance will be dependent on the number of Count�By windows created by the user, which is a function of processing speed, memory available, window manager, and X Windows overhead. Window overhead will be similar to any other window management.

Count�By functions may necessitate the sorting and/or hashing of internal data buckets. Most sorting algorithms, such as QuickSort, perform in O(n log n) where n is the number of records.

Operating Locations

Not applicable.

Hardware and Software Configuration

Not applicable.

System Architecture

Not applicable.

Description of Processing

All users will be able to bring up the Count-By window from either the Clutter/Declutter windowís Count By button or from the Text Tool by selecting the Count By button from the pulldown menu from any column.

Count�By Window Functionality

The Count�By window displays the record summary count, based on one selected parameter (column), from the Text Tool data bucket by:

Item Number

Item Value

Item Frequency Count (in parentheses)

The Count�By window will also have a control panel with selected functions which are listed below.

The Item Number is just a counter from 1 to N counts. Each count has a particular value and the frequency count. The frequency count shows how many times that specific value (for the given column name) appeared within the data bucket. Each line represents a group of records with the same value.

The Count�By window separates records in the Text Tool data bucket into groups, based on the values for a single parameter. For example, picking HITLIST as the parameter, the Count�By process might produce results such as displayed in the following table.

Table 1.1.7.1�1. Count�By Process Results

�Item Value�Item Frequency Count��1.�	BI�	(1918)��2.�	BM�	(1)���3.�	HI�	(2)��Each line is numbered, contains the item value, and shows the frequency of that value.

In this example, there are 1918 records with a specific value of ìBIî in the data bucket (out of 1921 records). There is only one record with the value of ìBMî, and two records with the value of ìHIî.

Selecting on line 1 would highlight 1918 buckets objects in the Text Tool and on the map. Selecting lines 1, 2, and 3 would highlight 1921 records (1918 + 1 + 2).

The Count�By window will perform the following functions, some of which could affect the Text Tool display and the graphical display:

Pick any column name to display in the Count�By window.

Sort Item Values by Ascending or Descending Item Value or Item Frequency Count.

Display output in multi�column format. Allow user to choose display by row�major or by column�major order.

Select objects via Mouse to highlight on the map and in Text Tool.

"Hide" or "Hide Except" functions. Hide currently highlighted selections or currently non�highlighted selections. Map and/or Text Tool affected.

"Show All" function. Redisplay all items. Map and/or Text Tool affected.

ìDecoupleî and ìRecoupleî functions. After decoupling, subsequent operations do not affect Text Tool or map. Recoupling automatically updates both map and Text Tool window with the bucket object states as they exist in the Count-By window at the time of recoupling.

 ìSave Preferencesî, ìDelete Preferencesî. Save Sort Field, Sort Order, Selected Column Name, and Display By settings for later use.

Add keyboard accelerators (hotkeys) for Count�By functions described herein

Remove control panel by using a toggle switch.

Show total number of records in Text Tool.

Print option � print current text being displayed.

Copy/Paste ability � the operator will be able to use standard X Window functionality to highlight lines of text and paste to another application (if that application can handle normal paste operations.)

Multiple Count�By Windows

Re-selecting the ìCount-Byî button on the Text Tool or Clutter/Declutter window will display another Count-By window. Users can have more than one Count-By window to enable sorting on additional parameters.

When users have multiple Count-By windows displayed for one Bucket, then each operation always affects every other coupled Count-By window.

�Draft User Interface

�

Figure 1.2.1�1. HMI Hierarchy

Clutter/Declutter

�

Figure 1.2.1�2. Clutter/Declutter

The ìCount�Byî selection will be added to the Clutter/Declutter HMI.

Selection of ìCount�Byî from this HMI will activate the ìCount�Byî Display will default to use the first column defined for the Bucket as the column to ìCountî.

Text Tool

�

Figure 1.2.1.1�1. Text Tool

The ìCount�By ì option will be added to the available actions for each column in the Text Tool.

Selection of ìCount�Byî from a column will display the ìCount�Byî window with the results of the count against the specific column.

ìCount�Byî Display

�

Figure 1.2.1.2�1. ìCount�Byî Display

�The ìCount�Byî display contains the following:

Layer: shows the Layer name, as previously listed in the Clutter/Declutter window, from which data will be sorted relating to the Count�By window.

Bucket: shows the Bucket name, as previously listed in the Clutter/Declutter window, from which data will be sorted relating to the Count�By window.

Column: allows the use to select a different column to Count�By. If another Count�By window has already been created for the new column, then that Count�By window will be displayed and the current Count�By window will not change.

Coupling: allows the user to Recouple or Decouple the Count�By window. If re�couple is selected all subsequent changes made in the Count�By window will also appear in the Text tool and on the map. If Decouple is selected, subsequent changes made in the Count�By window will not appear in the Text Tool or on the map. All changes made in the Text Tool or on the map while Decoupled shall be lost by recoupling, only changes made n the Count�By window will appear in the Text Tool and on the map upon recoupling.

Control Panel: allows the user to toggle on and off the Control Panel of the Count�By window. If the Control Panel is off the following command options will be hidden: Sort By, Order, Display By, Save Preferences, Delete Preferences, Print, Hide, Hide Except, Show All. If Control Panel is on all command options will be visible.

Summary: allows the user to toggle on and off the Summary Line � ìTotal of N Different Valuesî � of the Count�By window. If Summary is off the Summary line will be hidden. If Summary is on the Summary line will be visible displaying the total number of different values.

Sort By: allows the user to select a sort by type. The data can be sorted by the Item Value or Value Frequency; both selections can be sorted in ascending or descending order, as selected in the ìOrderî field.

Order: allows the user to select an ascending or descending sort order. Ascending or descending sort order can be applied to Item Value or Value Frequency, as selected in the ìSort Byî field.

Display By: allows the user to select an order in which to display the data. Display order includes column�major or row�major.

Save Preferences: saves for future use, the current user preferences as selected in the Sort By, Order, and Display By fields.

Delete Preferences: deletes the current saved user preferences for the Sort By, Order, and Display By fields and restores the default conditions.

Print: invokes the TAMPS print tool to allow user to print current text being displayed.

Hide: if Coupled, will hide the selected objects in the Count�By window, the Text Tool and the map. If Decoupled, will hide the selected objects in the Count�By window only.

Hide Except: if Coupled, will hide the non�selected objects in the Count�By window, the Text Tool and the map. If Decoupled, will hide the non�selected objects in the Count�By window only.

Show All: if the Count�By window is Coupled, shows all of the objects in the bucket in the Count�By window, the Text Tool and the map. If the Count�By window is Decoupled will only show the objects in the bucket in the Count�By window.

Cancel: allows user to close the Count�By window.

Help: displays the standard Help widget.

�Statements of Functionality (SOF)

CD0365.0020 TAMPS shall provide a ìCount�Byî window to configure, display, and save user preferences for display a summary of all of the item values and frequency of occurrence of each item value for any selected column in any selected bucket.

The TAMPS ìCount�Byî CSC shall provide the capability to display statistical data from a selected data bucket.

The statistical data shall be a list of the following information:

Cardinal item numbers,

Discrete item values occurring in a selected column in the bucket,

The number of rows in the bucket containing the discrete item values.

Null and blank values shall be considered a single discrete value.

The user shall have the option of sorting the list as follows:

Sort by alphanumeric item value; ascending or descending,

Sort by numeric item frequency count; ascending or descending.

The statistical results of the Count�By operation shall be displayed in a multiple column scrolling list, where the number of columns is determined based on the width of the Count�By window and the length of the data to be displayed.

The user shall have the choice of displaying the list in Row�major or Column�major sequence.

The Count�By CSC shall be invokable from the Clutter/Declutter Tool.

The default Column Name selected field shall be the Column Name specified in the User Preferences File if a) the file exists; and b) the Column Name exists in the objects in the currently selected bucket, otherwise the selected field shall be the first column of the objects in the currently selected bucket.

The Count�By CSC shall be invokable from the Text Tool.

The default selected column shall be the column used to invoke Count�By.

Save user preference shall provide the capability to save the following settings in the Count�By CSC.

Sort by field (discrete value or frequency of occurrence)

Sort order (ascending or descending)

Row�major or Column�major display

1.3.7.1.3 Row�major or Column�major displayDefault Column Name.

Delete user preferences shall delete the previously saved user preferences file and return to sort by discrete item, ascending order and column major display.

CD0365.0100 Items highlighted in the Count�By window shall appear as highlighted in the Text Tool Window and on the map and vice�versa.

The Count�By CSC shall operate in concert with the existing TAMPS tactical display.

Items selected and highlighted in the Count�By window shall highlight the corresponding objects on the map.

If multiple objects are selected by a single discrete value, the multiple objects shall each be highlighted as the map.

Items selected and highlighted in the Count�By window shall highlight the corresponding objects in the Text Tool.

If multiple objects are selected by a single discrete value, the multiple objects shall each be highlighted on the Text Tool.

Objects selected and highlighted in the Text Tool shall highlight the corresponding items in the Count�By window.

Objects selected and highlighted on the map shall highlight the corresponding items in the Count�By window.

CD0365.0160 The Count�By window shall have a ìDecoupleî capability (suppress subsequent changes from appearing in the Text Tool window or on the map) and ìRecoupleî capability (update in the Text Tool window and on the map the changes in Count�By since invoking Decouple).

The Count�By CSC shall provide a ìDecoupleî capability.

Appearing in the Text Tool.

Decouple will suppress subsequent changes in the Count�By window from appearing on the map.

The Count�By CSC shall provide a ìRecoupleî capability.

Recouple will update the objects in the Text Tool according to the current hide or show state of the objects in the Count�By.

Recouple will update the objects on the map according to the current hide or show state of the objects in the Count�By.

Changes made in the Text Tool or on the map while the Count�By is decoupled shall be lost by recoupling.

Provide declutter operations including hide, hide except, reset and show all, to Count�By display.

The Count�By CSC shall provide ìHide, ìHide Exceptî, and Reset/Show All functionality.

The Count�By CSC shall provide Hide functionality.

The Hide function shall remove from the Count�By window the objects which are selected.

If the Count�By is not Decoupled, the Hide function shall remove from the Text Tool the objects which are selected.

If the Count�By is not Decoupled, the Hide function shall remove from the map the objects which are selected.

The Count�By CSC shall provide Hide Except functionality.

The Hide Except function shall remove from the Count�By window the objects which are not selected.

If the Count�By is not Decoupled, the Hide Except function shall remove from the Text Tool the objects which are not selected.

If the Count�By is not Decoupled, the Hide Except function shall remove from the map the objects which are not selected.

The Count�By CSC shall provide Show All functionality..

The Show All function shall display in the Count�By window all of the objects in the bucket.

If the Count�By is not Decoupled, the Show All function shall display in the Text Tool all of the objects in the bucket.

If the Count�By is not Decoupled, the Show All function shall display on the map all of the objects in the bucket.

CD0365.0240 The User shall have the capability to Output the contents of the Count�By window.

The Count�By CSC shall provide the capability to print the data displayed in the Count�By window via the standard print tool.

The Count�By CSC shall provide the capability to Copy the data displayed in the Count�By window to another application supporting copy/paste operations.

CD0365.0290 Multiple Count�By windows shall be provided, limited only by the number of columns in the selected bucket.

The Count�By CSC shall allow the display of multipleone Count�By windows for each column in the selected bucket.

All Count�By window shall default to the Coupled state, and shall remain so until the user De�Couples it.

Sequential recoupling of multiple decoupled Count�By windows shall result in the hide/show state of each object in the latest Count�By window to be recoupled to appear in the Text Tool.

Sequential recoupling of multiple decoupled Count�By windows shall result in the hide/show state of each object in the latest Count�By window to be recoupled to appear on the map.

CD0365.0220 Count�By CSC shall have the capability to manipulate the ìCount�Byî window.

The Count�By CSC shall provide the capability to toggle on and off the display of control panel portion of the Count�By window.

The Count�By CSC shall support Keyboard accelerators for Count�By window functions.

�Requirements Trace

RTDB

CD0365.0020�TAMPS shall provide a ìCount�Byî window to configure, display, and save user preferences for display a summary of all of the item values and frequency of occurrence of each item value for any selected column in any selected bucket

Aî window shall be available via the text tool providing the capability to select a field within a text bucket and display the item frequency count for each item value listed in the selected bucket.��CD0365.0100�Objects highlighted in the Count�By window shall appear as highlighted in the Text Tool window and on the map and vice�versa.Items selected in the text window shall highlight corresponding symbols on the display.��CD0365.0120�The ìHideî, and ìHide Exceptî, and ìReset/Show Allî functions shall be supported in the ìCount�Byî text window. ��CD0365.0140�The ìReset/Show Allî functions shall be supported in the ìî text window.��CD0365.0160�The Count�By window shall have ìDecoupleî capability (suppress subsequent changes from appearing in the Text Tool window or on the map) and ìRecoupleî capability (update in the Text Tool window and on the map the changes in Count�By since invoking Decouple).ìDecoupleî (subsequent operations do not affect text tool or map) and ìRecoupleî(automatically update both Count�By window and Text Tool window) functions shall be supported. ��CD0365.0220�The User shall have the capability to manipulate the ìCount�Byî window.Users shall have the capability to toggle display of control panel on the Count�By window.��CD0365.0240�The User shall have the capability to output the contents of the Count�By window.Print of data displayed in the window shall be supported.��CD0365.0280�Keyboard accelerators for window functions shall be provided.��CD0365.0290�Multiple Count�By windows shall be provided, limited only by the number of columns in the selected bucket.Multiple windows shall be supported.��Administrative Trace

The following system spec statement should be modified with change bars and strikeout.

Spec Paragraph�RTDB�Action���CD0365.0020�Modify wording���CD0365.0040�Delete���CD0365.0060�Delete���CD0365.0080�Delete���CD0365.0100�Modify wording���CD0365.0120�Modify wording���CD0365.0140�Delete���CD0365.0160�Modify wording���CD0365.0180�Delete���CD0365.0200�Delete���CD0365.0220�Modify wording���CD0365.0240�Modify wording���CD0365.0260�Delete���CD0365.0280�Delete���CD0365.0290�Modify wording��

Allocation Trace

Specification Sentence�RTDB�SOF Paragraph and Sentence Number(s)�User Interface�Software File Name�Functional Test���CD0365.0020�1.3.1.1.1�1.2.1.2�rcl_triad.c�2.8.1.1����1.3.1.1.2�1.2.1.2�rcl_triad.c�2.8.1.1����1.3.1.1.3�1.2.1.2�rcl_triad.c�2.8.1.1����1.3.1.1.4�1.2.1.2�rcl_bucketObjects.c�2.8.15.1����1.3.1.2.1�1.2.1.2�rcl_sort.c�2.8.1.1, 2.8.4.3, 2.8.4.4����1.3.1.2.2�1.2.1.2�rcl_sort.c�2.8.4.1, 2.8.4.2����1.3.1.3��rcl_displayArea.c�2.8.3.1����1.3.1.3.1��rcl_callbacks.c�2.8.4.5, 2.8.4.6����1.3.2�1.2.1�rcl_init.c�2.8.1.1����1.3.2.1�1.2.1.2�rcl_init.c�2.8.1.1, 2.8.1.2����1.3.3�1.2.1.1�rcl_init.c�2.8.1.3����1.3.3.1�1.2.1.2�rcl_init.c�2.8.1.3����1.3.3.2.1�1.2.1.2�rcl_callback.c�2.8.4.7����1.3.3.2.2�1.2.1.2�rcl_callback.c�2.8.4.7����1.3.3.2.3�1.2.1.2�rcl_callback.c�2.8.4.7����1.3.3.2.4�1.2.1.2�rcl_callback.c�2.8.1.2, 2.8.4.7����1.3.3.3�1.2.1.2�rcl_callback.c�2.8.1.4, 2.8.4.8���CD0365.0100�1.3.4.1��rcl_local.c�2.8.5.1, 2.8.5.2����1.3.4.1.1��rcl_local.c�2.8.5.1, 2.8.5.2����1.3.4.2��rcl_local.c�2.8.5.1, 2.8.5.2����1.3.4.2.1��rcl_local.c�2.8.5.1, 2.8.5.2����1.3.4.3��rcl_external.c�2.8.9.3, 2.8.9.4����1.3.4.4��rcl_external.c�2.8.9.1, 2.8.9.2���CD0365.0160�1.3.5.1��rcl_callback.c�2.8.6.1, 2.8.6.2, 2.8.6.3, 2.8.6.4, 2.8.6.5, 2.8.6.6����1.3.5.2��rcl_local.c�2.8.6.1, 2.8.6.2, 2.8.6.3, 2.8.6.4, 2.8.6.5, 2.8.6.6����1.3.5.4��rcl_local.c�2.8.7.6����1.3.5.5��rcl_local.c�2.8.7.6����1.3.5.6��rcl_local.c�2.8.7.7���CD0365.0220�1.3.6.1.1��rcl_local.c�2.8.5.5, 2.8.6.5����1.3.6.1.2��rcl_local.c�2.8.5.5, 2.8.6.5����1.3.6.1.3��rcl_local.c�2.8.5.5, 2.8.6.5����1.3.6.2.1��rcl_local.c�2.8.5.6, 2.8.6.6����1.3.6.2.2��rcl_local.c�2.8.5.6, 2.8.6.6����1.3.6.2.3��rcl_local.c�2.8.5.6, 2.8.6.6����1.3.6.3.1��rcl_local.c�2.8.5.7, 2.8.6.7����1.3.6.3.2��rcl_local.c�2.8.5.7, 2.8.6.7���CD0365.0240�1.3.6.3.3��rcl_local.c�2.8.5.7, 2.8.6.7����1.3.7��rcl_print.c�2.8.10.2, 2.8.10.3����1.3.8��rcl_copy.c�2.8.10.1���CD365.0290�1.3.9��rcl_init.c�2.8.7.1����1.3.10��rcl_init.c�2.8.1.1����1.3.11��rcl_local.c�2.8.7.7����1.3.12��rcl_local.c�2.8.7.7���CD365.0220�1.3.13��rcl_callback.c�2.8.2.1, 2.8.2.2, 2.8.2.3, 2.8.2.4, 2.8.2.5, 2.8.2.6����1.3.14��rcl_callback.c�2.8.11.1��

Assumptions

Spec Paragraph�RTDB�Assumption���CD0365.0020����CD0365.0100����CD0365.0120����CD0365.0160����CD0365.0220����CD0365.0240����CD0365.0290����Data Flow Diagram

�

Figure 1.5�1. Count�By Context Data Flow Diagram

User selects Count�By button, which starts the Count�By Process. It gets the externally generated bucket data. Any internally generated bucket data is sent back to the TAMPS bucket manager. The results are sent to the user. Reports can be created from the results of this process.

��

Figure 1.5�2. Count�By Level 0 Data Flow Diagram

User sends a command to bring up the Count�By window. If previously stored user preference data existed, it is applied. The user may change and/or store preference data which will be applied in the future.

If Hide, Hide Except, or Show All functionality is invoked in the Text Tool or Clutter/Declutter Tool, those changes will appear in the Count�By window only if it is not decoupled.

�

Figure 1.5�3. Count�By Level 1 Data Flow Diagram

User entered commands are routed as Hide, Hide/Except, Show All Commands, Stat Command Data and processed and becomes statistical data which are sorted by Item Value or Item Frequency Count. The results are sent back to the user. Also, from these data, the reports are created.

�

Figure 1.5�4. Count�By Level 1 Data Flow Diagram

The Count�By window performs the Hide, Hide Except, and Show All functions. If the Count�By window is not decoupled, this data will be forwarded to the TAMPS bucket manager and will appear in the Text Tool and Map Display. If the Count�By window is decoupled, the data will appear only in the Count�By window until the Count�By window is recoupled.

�

Figure 1.5�5. Count�By Level 1 Data Flow Diagram

Statistical compiler gets as input stat command data and bucket data which creates statistical records which are sent to list generator which outputs formatted statistical data.

�Control Flow Diagram

User runs a query and opens the ìClutter/Declutter Tool.î User now has option of selecting the ìCount�Byî or the ìText Toolî. If ìCount�Byî is selected, the Count�By HMI appears and defaults to the first column in the selected bucket. If ìText Toolî is selected Text Tool HMI appears and the user has the option of selecting ìCount�Byî, in which case a Count�By HMI appears based upon the column from which the Count�By is selected.

� �A� �

The program will apply user preferences (if available) to perform the Count�By function. The Count�By function will be performed on the selected layer, bucket and column and display the Count�By Results. If a Count�By Window has already been created for the selected layer, bucket, and column, it is given focus rather than creation of a duplicate.

If any of the Options are selected, the system will process the option and optionally redisplay the Count�By Results as determined by the option, then wait for additional Options, Actions, or External Stimuli.

If any of the Actions are selected, the system will process the action and optionally redisplay the Count�By Results as determined by the action, then wait for additional Options, Actions, or External Stimuli.

If any External Stimuli are received from the Bucket Manager, Text Tool, or other Count�By Window which apply to the selected Layer and Bucket, the system will process the action, then wait for additional Options, Actions, or External Stimuli. External Stimuli (other than Delete Bucket) are ignored if the Count�By Window has been Decoupled.

�� B and C � �

Performance of the Count�By Function will be the sorting of the Bucket Objects in the Selected Layer and Bucket, and the actual counting of the different Item Values in the selected Column. The results of this count will be an internal list of all of the discrete Item Values and their respective frequency of occurrence. B and C differ slightly in their handling of the Bucket Objects determined by the Coupled state of the Count�By Window.

��D and E � �

Display of the Count�By Results will be the formatting of the Count�By Results list from the internal list created in steps B and C. D and E differ slightly in their handling of the Bucket Objects determined by the Coupled state of the Count�By Window.

� �F� �

F is a phase where the Count�By Window is idle until an Option, Action, local Hook or Unhook operation is invoked by the user, or External Stimuli are received.

� �G� �

Options to be selected are Sort Order, Sort By, Display By, Decouple, Save User Preferences, Delete User Preferences, Control Panel Display, Summary Line Display, Print, Column.

Selection of Sort Order will allow the user to select to sort Ascending or Descending.

Selection of Sort By will allow the user to select to sort by Item Value or Item Frequency.

Selection of Display By will allow the user to select to display the Count�By Results in a Row�major or Column�major order.

Selection of Decouple will detach the Count�By Window from Bucket Operations.

Selection of Save Preferences will store in a file the current state of the Sort By, Sort Order, and Display By selections.

Selection of Delete Preferences will delete the user preferences file.

Selection of Control Panel Display will toggle on or off the display of the Control Panel buttons.

Selection of Summary Line Display will toggle on or off the display of the Summary Line.

Selection of Print will invoke the TAMPS Print Tool for the Count�By Results.

Selection of a different Column will change the Column on which the Count�By operations are performed in the current Count�By Window (unless another Count�By Window has already been created for the newly selected column in which case that Count�By Window will take focus and the current Count�By Window will not be affected.)

� �H� �

Actions to be selected are Hide, Hide Except, Show All, Recouple, Hook, Unhook, Help and Cancel.

Selection of Hide will hide and not count all Bucket Objects matching the selected Column Item Value in the Count�By Window, and if not Decoupled, also on the Map and Text Tool, and other non�Decoupled Count�By Windows.

Selection of Hide Except will hide and not count all Bucket Objects NOT matching the selected Column Item Value in the Count�By Window, and if not Decoupled, also on the Map and Text Tool, and other non�Decoupled Count�By Windows

Selection of Show All will unhide and count all of the Bucket Objects matching the selected Column Item Value in the Count�By Window, and if not Decoupled, also on the Map and Text Tool, and other non�Decoupled Count�By Windows.

Selection of Recouple will update on the Map and Text Tool and other non�Decoupled Count�By Windows with the current hide/show state of every Bucket Object in this Decoupled Count�By Window.

Selection of Help will display the help information for user assistance, as requested.

Selection of Cancel will be close the Count�By window. Bucket Objects, the Map, and Text Tool will not be affected.

� �I� �

Hooking an Item Value/Item Count row in the Count�By Results list will highlight that row on the Count�By Window, and if not Decoupled, all of the Bucket Objects matching the selected Column Item Value on the Map and Text Tool, and other non�Decoupled Count�By Windows. The hooked row will also be added to the Clipboard and available for pasting into a paste�capable program.

Unhooking an Item Value/Item Count row in the Count�By Results list will unhighlight that row in the Count�By Window, and if not Decoupled, all of the Bucket Objects matching the selected Column Item Value on the Map and Text Tool, and other non�Decoupled Count�By Windows. The unhooked row will be deleted from the Clipboard

� �J� �

After the affected Bucket Objects have been updated by Hide, Hide Except, Show All, Hook, Unhook and Recouple, the bucket manager is notified of all local changes made in the selected bucket.

� �K� �

External Stimuli received from the Bucket Manager, Text Tool, or other Count�By Window are Hide, Hide Except, Show All, Hook, Unhook, and Delete Bucket. These stimuli (other than Delete Bucket) are ignored if the Count�By Window is Decoupled, or if they do not apply to the selected layer and bucket.

Hide will hide and not count all Bucket Objects matching the selected Column Item value in the Count�By Window.

Hide Except will hide and not count all Bucket Objects NOT matching the selected Column Item Value in the Count�By Window.

Show All will unhide and count all Bucket Objects in the selected bucket in the Count�By Window.

Hook will highlight all Count�By Results list rows matching the hooked Bucket Object(s) in the Count�By Window. Highlighted rows will be added to the Clipboard.

Unhook will unhighlight all Count�By Results list rows matching the unhooked Bucket Object(s) in the Count�By Window. Unhighlighted rows will be removed from the Clipboard.

��

Figure 1.6�1. Control Flow Diagram

�

Figure 1.6�2. Control Flow Diagram

�

Figure 1.6�3. Control Flow Diagram

�

Figure 1.6�4. Control Flow Diagram

�

Figure 1.6�5. Control Flow Diagram

�

Figure 1.6�6. Control Flow Diagram

�

Figure 1.6�7. Control Flow Diagram

Preliminary IDD Information

No public functions.

�DETAILED DESIGN

CONOP: To reflect changes from peer review.���SOF: To reflect changes from peer review.���HMI:������������������������High�Level Design Updates

1.1	CONOPS

1.1.1	Scope

TAMPS will provide the capability to isolate a group of records based on a single value within a data bucket, as displayed on the Text Tool window, by interacting with the "Count�By" window. The Count�By window will be a new HMI.

The user will initiate the Count�By HMI by selecting the "Count�By" button on the Text Tool HMI. The resulting Count�By window will be tied to that specific Text Tool window and the operations described below would affect the records in the Text Tool.

1.1.2	Applicable Documents

1.1.2.1	Government Documents

1.1.2.1.1	Specifications

1.1.2.1.2	Standards

1.1.2.1.3	Other Publications

1.1.2.2	Non�Government Documents

1.1.3	Impact Analysis

1.1.3.1	Users

All Users will be able to bring up the Count�By window from the Text Tool by selecting a Count�By button on the Text Tool and/or from the Clutter/Declutter window. When selecting from the Clutter/Declutter window, the highlighted layer/bucket combination will specify which data bucket. The limit of Count�By windows that can be brought up will be limited to the number of columns displayed on the Texttool.

Any column in the data bucket can be used to “count�by”. The default column will be the first left�most column unless the User Preference file contains a valid Column Name, or if the Count-By window is brought up from the Text Tool, the default column will be the column from which Count-By was selected.

There are no special impacts for Mission Planners, System Administrators, or Database Administrators.

1.1.4	Performance and Sizing

Executables will increase in size if and when the Count�By button is selected, which will initiate the dynamic load of the library functions to manage the Count�By window.

Performance will be dependent on the number of Count�By windows created by the user, which is a function of processing speed, memory available, window manager, and X Windows overhead. Window overhead will be similar to any other window management.

Count�By functions may necessitate the sorting and/or hashing of internal data buckets. Most sorting algorithms, such as QuickSort, perform in O(n log n) where n is the number of records.

1.1.5	Operating Locations

Not applicable.

1.1.6	Hardware and Software Configuration

Not applicable.

1.1.6.1	System Architecture

Not applicable.

1.1.7	Description of Processing

All Users will be able to bring up the Count�By window from either the Clutter/Declutter windowís Count By button, or from Text Tool by selecting thea "Count�By" button from the pull-down menu from any column on the Text Tool. Any column in the data bucket can be used to "Count�By".

1.1.7.1	Count�By Window Functionality

The Count�By window displays the record summary count, based on one selected parameter (column), from the Text Tool data bucket by:

Item Number

Item Value

Item Frequency Count (in parentheses)

The Count�By window will also have a control panel with selected functions which are listed below.

The Item Number is just a counter from 1 to N counts. Each count has a particular value and the frequency count. The frequency count shows how many times that specific value (for the given column name) appeared within the Text Tool data bucket. Each line represents a group of records with the same or equal value.

The Count�By window separates records displayed in the Text Tool data bucket into groups, based on the values for a single parameter. For example, picking HITLIST frequency as the Parameter Item, could display data:

Table 1.1.7.1-1. Count�By Window Functionality

�Item Value�Item Frequency Count��1.�	0.000BI�	(1918)��2.�	999.000BM�	(1)���3.�	1.111HI�	(2)��Each line is numbered, contains the item value, and shows the frequency of that value.

In this example, there are 1918 records with a specific value of 0.000BI in the Text Tool data bucket (out of 1921 records). There is only one record with the value of 999.000BM, and two records with the value of 1.111HI.

Selecting on line 1 would highlight 1918 records in the Text Tool and on the map. Selecting on lines 1, 2, and 3 would highlight 1921 records (1918 + 1 + 2).

The Count�By window will perform the following functions, some of which could affect the Text Tool display and the graphical display:

Pick any column name to display and sort (Item value) within Count�By window.

Sort Item Values by Ascending or Descending Item Value or Item Frequency Count.

Display output in multi�column format. Allow user to choose display in by row-major or by column-major order.

Select items via Mouse to highlight records on the map and in Text Tool.

"Hide" or "Hide Except" functions. Hide currently highlighted selections or non�highlighted selections. Map and/or Text Tool affected.

"Show All" function. Redisplay all items. Map and/or Text Tool affected.

“Decouple" and "Recouple" functions. After decoupl�ing, subsequent operations do not affect Text Tool or map. Recoupling automatically updates both map and Text Tool window with the bucket object states as they exist in the Count By window at the time of Recoupling.

"Save Preferences", "Delete Preferences". Save Sort Field, Sort Order, Selected Column Name, and Display Bby settings for later use.

Add keyboard accelerators (hotkeys) for Count�By functions described herein.

Remove control panel by using a toggle switch.

Show total number of records in Text Tool.

Print option - print current text being displayed.

Cutopy/Paste ability - the operator will be able to use standard X Window functionality to highlight lines of text and paste to another application (if that application can handle normal paste operations.)

1.1.7.1.1	Multiple Count�By Windows

Re�selecting the "Count�By" button on the Text Tool or Clutter/Declutter window will display another Count�By window. Users can have more than one Count�By window to enable sorting on additional parameters.

When users have multiple Count�By window displayed for one bucket Text Tool, then the last operation (e.g. Select) always affects every other coupled Count By window.has precedence over any other window. By performing Hide Except operations for highlighted records, and then selecting a line from another Count�By operation, the user is able to narrow their search.

1.3 Statements of Functionality (SOF)

CD0365.0020 TAMPS shall provide a ìCount Byî window to configure, display, and save user preferences for a summary of all of the item values and frequency of occurrence of each item value for any selected column in any selected bucket.

1.3.1 The TAMPS “Count By” CSC shall provide the capability to display statistical data from a selected data bucket.

1.3.1.1 The statistical data shall be a list of the following information:

1.3.1.1.1 Cardinal item numbers,

1.3.1.1.2 Discrete item values occurring in a selected column in the bucket,

1.3.1.1.3 The number of rows in the bucket containing the discrete item values.

1.3.1.1.4 Null and blank values shall each be considered a single discrete values.

1.3.1.2 The user shall have the option of sorting the list as follows:

1.3.1.2.1 Sort by alphanumeric item value; ascending or descending,

1.3.1.2.2 Sort by numeric item frequency count; ascending or descending.

1.3.1.3 The statistical results of the Count By operation shall be displayed in a multiple column scrolling list, where the number of columns is determined based on the width of the Count By window and the length of the data to be displayed.

1.3.1.3.1 The user shall have the choice of displaying the list in Row-major or Column-major sequence.

1.3.1.4 The Count By CSC shall provide the capability to save user preferences.

1.3.1.4.1 Save user preference shall provide the capability to save the following settings in the Count By CSC.

1.3.1.4.2 Sort by field (discrete value or frequency of occurrence)

1.3.1.4.3 Sort order (ascending or descending)

1.3.1.4.4 Row-major or Column-major display

1.3.1.4.5 Default Column Name.

1.3.1.5 Delete user preferences shall delete the previously saved user preferences file.

1.3.2 The Count By CSC shall be invokable from the Clutter/Declutter Tool.

1.3.2.1 The default Column Name shall be the Column Name specified in the User Preferences File if a) the file exists; and b) the Column Name exists in the objects in the currently selected bucket, otherwise the selected field shall be the first column of the objects in the currently selected bucket.

1.3.3 The Count By CSC shall be invokable from the Text Tool.

1.3.3.1 The default column shall be the column used to invoke Count By.

CD0365.0100 Items highlighted in the Count By window shall appear as highlighted in the Text Tool Window and on the map and vice-versa.

1.3.3.2 Save user preference shall provide the capability to save the following settings in the Count-By CSC

1.3.3.2.1 Sort by field (discrete value or frequency of occurrence)

1.3.3.2.2 Sort order (ascending or descending)

1.3.3.2.3 Row-major or Column-major display

1.3.3.2.4 Default Column Name

1.3.3.3 Delete user preference shall delete the previously saved preferences file.

1.3.4 The Count By CSC shall operate in concert with the existing TAMPS tactical display.

1.3.4.1 Items selected and highlighted in the Count By window shall highlight the corresponding objects on the map.

1.3.4.1.1 If multiple objects are selected by a single discrete value, the multiple objects shall each be highlighted as the map.

1.3.4.2 Items selected and highlighted in the Count By window shall highlight the corresponding objects in the Text Tool.

1.3.4.2.1 If multiple objects are selected by a single discrete value, the multiple objects shall each be highlighted on the Text Tool.

1.3.4.3 Objects selected and highlighted in the Text Tool shall highlight the corresponding items in the Count By window.

1.3.4.4 Objects selected and highlighted on the map shall highlight the corresponding items in the Count By window.

CD0365.0160 The Count By window shall have a ìDecoupleî capability (suppress subsequent changes from appearing in the Text Tool window or on the map) and ìRecoupleî capability (update in the Text Tool window and on the map the changes in Count By since invoking Decouple).

1.3.5 The Count By CSC shall provide a “Decouple” capability.

1.3.5.1 Decouple will suppress subsequent changes in the Count By window from appearing in the Text Tool.

1.3.5.2 Decouple will suppress subsequent changes in the Count By window from appearing on the map.

1.3.5.3 The Count By CSC shall provide a “Recouple” capability.

1.3.5.4 Recouple will update the objects in the Text Tool according to the current hide or show state of the objects in the Count By.

1.3.5.5 Recouple will update the objects on the map according to the current hide or show state of the objects in the Count By.

1.3.5.6 Changes made in the Text Tool or on the map while the Count By is decoupled shall be lost by recoupling.

Provide declutter operations including hide, hide except, reset and show all, to Count By display.

1.3.6 The Count By CSC shall provide “Hide, “Hide Except”, and Reset/Show All functionality.

1.3.6.1 The Count By CSC shall provide Hide functionality.

1.3.6.1.1 The Hide function shall remove from the Count By window the objects which are selected.

1.3.6.1.2 If the Count By is not Decoupled, the Hide function shall remove from the Text Tool the objects which are selected.

1.3.6.1.3 If the Count By is not Decoupled, the Hide function shall remove from the map the objects which are selected.

1.3.6.2 The Count By CSC shall provide Hide Except functionality.

1.3.6.2.1 The Hide Except function shall remove from the Count By window the objects which are not selected.

1.3.6.2.2 If the Count By is not Decoupled, the Hide Except function shall remove from the Text Tool the objects which are not selected.

1.3.6.2.3 If the Count By is not Decoupled, the Hide Except function shall remove from the map the objects which are not selected.

1.3.6.3 The Count By CSC shall provide Show All functionality.

1.3.6.3.1 The Show All function shall display in the Count By window all of the objects in the bucket.

1.3.6.3.2 If the Count By is not Decoupled, the Show All function shall display in the Text Tool all of the objects in the bucket.

1.3.6.3.3 If the Count By is not Decoupled, the Show All function shall display on the map all of the objects in the bucket.

1.3.7 The Count By CSC shall provide the capability to save user preferences.

1.3.7.1 Save user preference shall provide the capability to save the following settings in the Count By CSC.

1.3.7.1.1 Sort by field (discrete value or frequency of occurrence)

1.3.7.1.2 Sort order (ascending or descending)

1.3.7.1.3 Row-major or Column-major display

1.3.7.1.4 Default Column Name.

1.3.7.2 Delete user preferences shall delete the previously saved user preferences file.

CD0365.0240 The User shall have the capability to Output the contents of the Count By window.

1.3.78 The Count By CSC shall provide the capability to print the data displayed in the Count By window via the standard print tool.

1.3.89 The Count By CSC shall provide the capability to Copy the data displayed in the Count By window to another application supporting copy/paste operations.

CD0365.0290 Multiple Count By windows shall be provided.

1.3.910 The Count By CSC shall allow the display of multiple any number of Count By windows for each column in the selected bucket.

1.3.101 All Count By window shall default to the Coupled state, and shall remain so until the user De-Couples it.

1.3.112 Sequential recoupling of multiple decoupled Count By windows shall result in the hide/show state of each object in the latest Count By window to be recoupled to appear in the Text Tool.

1.3.123 Sequential recoupling of multiple decoupled Count By windows shall result in the hide/show state of each object in the latest Count By window to be recoupled to appear on the map.

CD0365.0220 Count By CSC shall have the capability to manipulate the “Count By” window.

1.3.134 The Count By CSC shall provide the capability to toggle on and off the display of control panel portion of the Count By window.

1.3.145 The Count By CSC shall support Keyboard accelerators for Count By window functions.

�Database Schema

None.

Control Flow

�

Figure 2.3�1. lht_handler Modifications

�

Figure 2.3�2. Text Tool Modification

�

Figure 2.3�3. Clutter/Declutter Modification

�

Figure 2.3�4. Count�By Init

�

Figure 2.3�5. Create New Count�By Window Object

�

Figure 2.3�6. Destroy Count�By Window

�

Figure 2.3�7. Create Object Map

�

Figure 2.3�8. Create Result List

�

Figure 2.3�9. Destroy Result List

�

Figure 2.3�10. Create New Count�By Bucket Object

�

Figure 2.3�11. Create New Count�By Object

�

Figure 2.3�12. Count�By Handler

�

Figure 2.3�13. Process Externally Generated Actions (1 of 4)

�

Figure 2.3�14. Process Externally Generated Actions (2 of 4)

�

Figure 2.3�15. Process Externally Generated Actions (3 of 4)

�

Figure 2.3�16. Process Externally Generated Actions (4 of 4)

�

Figure 2.3�17. Process Locally Generated Hook Action (1 of 4)

�

Figure 2.3�18. Process Locally Generated Hook Action (2 of 4)

�

Figure 2.3�19. Process Locally Generated Hook Action (3 of 4)

�

Figure 2.3�20. Process Locally Generated Hook Action (4 of 4)

�

Figure 2.3�21. Process Locally Generated Hide Action

�

Figure 2.3�22. Process Locally Generated Hide Except Action

�

Figure 2.3�23. Process Locally Generated Show Action

�

Figure 2.3�24. Recouple

�

Figure 2.3�25. Create HMI

�

Figure 2.3�26. Typical Count�By HMI CallBack

�

Figure 2.3�27. Column Button Handler

�

Figure 2.3�28. Display by Button Handler

�

Figure 2.3�29. Sort By Button Handler

�

Figure 2.3�30. Sort Order Button Handler

�

Figure 2.3�31. Summary Line Button Handler

�

Figure 2.3�32. Control Panel Button Handler

�

Figure 2.3�33. Save User Preferences Button Handler

�

Figure 2.3�34. Delete User Preferences Button Handler

�

Figure 2.3�35. Create Count�By User Preferences

�

Figure 2.3�36. Save User Preferences

�

Figure 2.3�37. Delete User Preferences

�

Figure 2.3�38. Print Button Handler

�

Figure 2.3�39. Coupling Button Handler

�

Figure 2.3�40. Help Button Handler

�

Figure 2.3�41. Cancel Button Handler

�

Figure 2.3�42. Count�By (1 of 2)

�

Figure 2.3�43. Count�By (2 of 2)

�

Figure 2.3�44. Print all Triads

�

Figure 2.3�45. Create Count�By Result Drawing Area

�

Figure 2.3�46. Calculate Window Character Width

�

Figure 2.3�47. Calculate Number of Visible Rows

�

Figure 2.3�48. Calculate Triad Size

�

Figure 2.3�49. Calculate Number of Columns

�

Figure 2.3�50. Calculate Number of Visible Results

�

Figure 2.3�51. Calculate Starting Point for Displaying Count�By Results

�

Figure 2.3�52. Produce Count�By Result Area Display

�

Figure 2.3�53. Create New Count�By Triad List

�

Figure 2.3�54. Print Triad

�

Figure 2.3�55. Identify Triad from X, Y Display Location

�

Figure 2.3�56. Redraw Count�By Result Object In Count�By Result Area Display

�

Figure 2.3�57. Count�By Window Resize Event

�

Figure 2.3�58. Count�By Result Area Expose Event

�

Figure 2.3�59. Count�By Result Scrollbar Handler

�

Figure 2.3�60. Count�By Print

�

Figure 2.3�61. Hide Button Handler

�

Figure 2.3�62. Hide Except Button Handler

�

Figure 2.3�63. Show All Button Handler

�

Figure 2.3�64. Hook Handler

�

Figure 2.3�65. Create Count�By Bucket Object List

�Algorithms

lht_handler Modifications � Figure 2.3�1

Begin

	Add call to Count�By Handler

End

Text Tool Modifications � Figure 2.3�2

Begin

	Add Count�By button to column pulldown menu

	Add callback to Count�By button to Count�By Init

End

Clutter/Declutter Modifications � Figure 2.3�3

Begin

	Add Count�By button to form

	Add callback to Count�By button to Count�By init

End

Count�By Init � Figure 2.3�4

Begin

Get Bucket Info for given layer and bucket

If Column Name argument is blank

If column name in user preferences

			If column name exists in Bucket Info

				Use that Column Name

			Else

				Use first Column Name in Bucket Info

		Else

			Use first Column Name in Bucket Info

	End

	Else

		If column name exists in Bucket Info

			Use that Column Name

		Else

			Use first Column Name in Bucket Info

End

Create New Count�By Window Object

		

If Fail

	Display Fatal error message

Else

	If no Count�By Object List

		Create a Count�By Object List

		If Fail

			Fatal error

	Create New Count�By Object

	Add Count�By Object to Count�By Object List

End

End

Create New Count�By Window Object � Figure 2.3�5

Begin

	Save layer, bucket, and column name arguments	

	Set CoupledState to Coupled

	Create HMI

	Create Object Map

Create Result List

	Produce Count�By Result Area Display

End

Destroy Count�By Window � Figure 2.3�6

Begin

	Destroy Result List

	Destroy all HMI widgets

	If Count�By Object List

		Delete Count�By Object from Count�By Object List

If Count�By Triad List exists

		Delete Count�By Triads and List

	Free all CountByCallbackStructures

End

	

Create Object Map � Figure 2.3�7

Begin

	For each BUCKET_OBJECT in layer and bucket

		Create a new Count�By Bucket Object

		If Fail

			Display error message � cannot create Count�By Bucket Object

		Else

			Create an Object Map

End

Create Result List � Figure 2.3�8

Begin

	If Count�By Result List exists

		Destroy Count�By Result List

	Count�By

End

Destroy Result List � Figure 2.3�9

Begin

	For each Count�By Result Object in Count�By Result List

		Delete Count�By Result Object

	Delete Count�By Result List

	Count�By Result List = NULL;

End

Create New Count�By Bucket Object � Figure 2.3�10

Begin

	Save Bucket Object pointer

	Set Hide state to Bucket Objectís hide state

	Set Hook state to Bucket Objectís hook state

	Get Bucket Info

	Call lbt_setColByName for the selected column name

	If Column doesnít exits

		Use first column in Bucket Info

	Get column data

	If column data is blank

		Set column Data to one blank space

	Else

		If Column type is string

			Save column data

		Else

			Convert column data to type string

			Save converted column data

	End

End

Create New Count�By Object � Figure 2.3�11

Begin

	Set layer to layer argument

	Set bucket to bucket argument

	Set column name to column name argument

	Set window to Count�By Window argument

End

Count�By Handler � Figure 2.3�12

Begin

	If Count�By Object List exists

		For each Count�By Object in Count�By Object List

			If Count�By Object layer and bucket match layer and bucket

		Process External Action

		End

	End

End

Process Externally�generated Actions � Figure 2.3�13 thru 2.3�16

Begin

	If action is LBT_DELETE

		Destroy Count�By Window

	Else If Coupled

		If action is HOOK or UNHOOK

			If no bucket object LIST

For Each Count�By Bucket Object in	Count�By Bucket

Object Map

					If action is HOOK

						Set Count�By Bucket Objectís HOOK state

					Else

						Clear Count�By Bucket Objectís HOOK

state

				End

			End

			Else

				For each BUCKET_OBJECT * in bucket object LIST

Access Count�By Bucket Object from Count�By

Bucket Object Map using BUCKET_OBJECT * as key

					If action is HOOK

						Set Count�By Bucket Objectís HOOK state

					Else

						Clear Count�By Bucket Objectís HOOK

state

				End

			End

			Start Clipboard

			For each Count�By Result Object in Count�By Result List

				Clear Count�By Result Object HOOK state

				For each Count�By bucket object in Count�By Result

					Objectís list of Bucket Objects

					If Count�By Bucket Object HOOK state is set

						Set Count�By Result Object HOOK state

						Add Count�By Result Object to Clipboard

						Break

					End

				Redraw Count�By Result Object in Count�By Result Area

Display

			End

			End Clipboard

		End

		Else

If Action is HIDE or SHOW // all others are ignored in Count�By

	If no bucket object LIST

Access each Count�By Bucket Object from

Count�By Bucket Object Map

						If action is HIDE

							Set Count�By Bucket Objectís HIDE

state

						Else

							Clear Count�By Bucket Objectís

HIDE state

				End

	Else

					For each BUCKET_OBJECT * in bucket object

LIST

Access Count�By Bucket Object from

Count�By Bucket Object Map using

BUCKET_OBJECT * as key

						If action is HIDE

							Set Count�By Bucket Objectís HIDE

state

						Else

							Clear Count�By Bucket Objectís

HIDE state

					End

				End

				Create Result List

				Produce Count�By Result Area Display

			End

		End

	End

Process Locally Generated Hook Action � 2�3.17 thru 2.3�20

Begin

	Identify the triad from the XY display location

	If triad index is �1

		Return // Cannot identify a hooked triad

	For each Count�By Result Object in Count�By Result Object List

		If this Count�By Object Result is the index numbered node // found result

			If Count�By Result Object hooked	// becomes UNHOOK

				If no Temp Unhook List

					Create Temp Unhook List

					If Fail

						Fatal Error

				If Not Coupled

					Clear Count�By Result Object HOOK state

					Redraw Count�By Result Object in

Count�By Result Area Display

				For each Count�By Bucket Object in Count�By Result List

Count�By Bucket Object List

If Not Coupled

Clear Count�By Bucket Object HOOK state

					Else

						Add Count�By Bucket Objectís

BUCKET_OBJECT to Temp Unhook List

				End

			End

			Else // not yet hooked

				If no Temp Hook List

					Create Temp Hook List

					If Fail

						Fatal error

				If Not Coupled

					Set Count�By Result Object hook state

					Redraw Count�By Result Object in

Count�By Result Area Display

				For each Count�By Object in Count�By Result Objectís

LIST of Count�By Objects

					If Not Coupled

						Set Count�By Objectís HOOK state

					Else

Add Count�By Bucket Objectís

BUCKET_OBJECT to

Temp Hook List

				End

			End

		End

		Else // not the same result objectÖunhook if not shift hooked

			If Count�By Result Object already hooked

				If not Shift HOOK // becomes unhook if hooked

					If Count�By Result Object is hooked

						If no Temp Unhook List

							Create Temp Unhook List

							If Fail

								Fatal error

						For each Count�By Object in Count�By

Result	Objectís LIST of Count�By

Objects

If Not Coupled

Clear Count�By Object

HOOK state

							Else

Add Count�By Bucket

Objectís

BUCKET_OBJECT to Temp Unhook List

						End

						Clear Count�By Result Object HOOK state

						Redraw Count�By Result Object in

Count�By Result Area Display

					End

				End

			End

		End

		// now, find hooked Count�By Result Objects, copy to clipboard

		Start Clipboard

		For each Count�By Result Object in Count�By Result Object LIST

			If Count�By Result Object is Hooked

				Add Count�By Result Object to Clipboard

		End

		If Coupled

			If Temp Unhook List

				call lbt_notify with layer, bucket, Temp Unhook List and

action = UNHOOK

				delete Temp Unhook List

			If Temp Hook List

				Call lbt_notify with layer, bucket, Temp Hook List and

action = HOOK

				Delete Temp Hook List

		End

		End Clipboard

	End

End

Process Locally Generated Hide Action � Figure 2.3�21

Begin

	Create temporary LIST

	If Fail

		Fatal Error

	For each Count�By Result Object in Count�By Result List

		If Count�By Result Object is hooked

For each Count�By Bucket Object in Count�By Result Objectís

LIST of Count�By Bucket Objects

If Count�By Bucket Object is not hidden

Add Count�By Bucket Object BUCKET_OBJECT

to temporary LIST

				If not Coupled

					Set Count�By Bucket Object HIDE state

			End

		End

	End

	If Coupled

		Call lbt_notify with layer, bucket, temporary LIST, and action=HIDE

	Else

Create Result List

		Produce Count�By Result Area Display

	End

	Delete temporary LIST

End

Process Locally Generated Hide Except Action � Figure 2.3�22

Begin

	Create temporary LIST

	If Fail

		Fatal Error

	For each Count�By Bucket Object in Count�By Bucket Object Map

		If Count�By Bucket Object is hooked

Clear Count�By Bucket Objectís HIDE state

Add Count�By Bucket Object to temporary LIST

		Else

			Set Count�By Bucket Objectís HIDE state

	End

	If Coupled

		Call lbt_notify with layer, bucket, NULL LIST, action = HIDE

		Call lbt_notify with layer, bucket, temporary LIST, action = SHOW

	Else

		Create Result List

		Produce Count�By Result Area Display

	Delete temporary LIST

End

Process Locally Generated SHOW Action � Figure 2.3�23

Begin

	If Coupled

		Call lbt_notify with NULL LIST and action = SHOW

	Else

		For each Count�ByBucketObject in Count�ByBucketObjectMap

			Clear Count�ByBucketObject HIDE state

	Create Result List

		Produce Count�By Result Area Display

	End

Recouple � Figure 2.3�24

Begin

	Create hook list

	If Fail

		Fatal Error

	For each Count�By Bucket Object in Count�By Bucket Object Map

		If Count�By Bucket Object is not hidden

			Add Count�By Bucket Object BUCKET_OBJECT to hook list

	End

	Call lbt_notify with layer, bucket, NULL LIST, action = HIDE

	Call lbt_notify with layer, bucket, hook list, action = SHOW

	Set Coupled State

End

Create HMI � Figure 2.3�25

Begin

Create all widgets for the Window, control buttons, and Count�By Result Area.

Make control panel and summary line widgets visible, and apply the correct

attachments.

Set the button text appropriately for the User Defaults for Sort Field, Sort By,

Display By, and selected column.

For all Callbacks

Create a Count�By Callback Structure containing the identity of this

Count�By window and any necessary widget�specific data. Add the Callback for the widget with a pointer to this structure as the client_data.

	End

End

Typical Count�By HMI Callback � Figure 2.3�26

Begin

	Convert the client_data to Count�By Callback Structure Pointer.

	Call the corresponding handler member function of the Count�By Window

referenced in the Count�By Callback Structure.

End

Column Button Handler � Figure 2.3�27

Begin

	If Column different same as current column

		Return

	Else

		Destroy Count�By Window

		Count�By Init with new column

	End

End

Display By Button Handler � Figure 2.3�28

Begin

	If user selected Display By Row

		If Row already selected

			return

		Else

			Set Display By to Row

			Change Button Text to Row

		End

	End

	Else

		If Column already selected

			Return

		Else

			Set Display By to Column

			Change Button text to Column

		End

	End

	Update Display By in Count�By User Preferences

	Produce Count�By Result Area Display

End

Sort By Button Handler � Figure 2.3�29

Begin

	If user selected Value

		If Value already selected

			Return

		Else

			Set Sort By to Value

			Change Button Text to Value

		End

	End

	Else

		If Frequency already selected

			Return

		Else

			Set Sort By to Frequency

			Change Button Text to Frequency

		End

	End

	Update Sort By in Count�By User Preferences

	Create Result List

	Produce Count�By Result Area Display

End

Sort Order Button Handler � Figure 2.3�30

Begin

	If user selected Ascending

If Ascending already selected

	Return

Else

			Set Sort Order to Ascending

			Change Button Text to Ascending

		End

	End

	Else

		If Descending already selected

			Return

		Else

			Set Sort Order to Descending

			Change Button Text to Descending

		End

	End

	Update Sort Order in Count�By User Preferences

	Create Result List

	Produce Count�By Result Area Display

End

Summary Line Button Handler � Figure 2.3�31

Begin

	If user selected Summary Display Off

		If Summary Display already Off

			Return

		Else

			Set Summary Display to Off

			Unmanage Summary Display

			Change Button Text to Off

			If Control Panel is Off

				Attach top of Count�By Result Area to bottom of first row

of buttons

			Else

				Attach top of Count�By Result Area to bottom of second

row of buttons

		End

	End

	Else

		If Summary Display already On

			Return

		Else

			Set Summary Display to On

			Change Button Text to On

			If Control Panel is Off

				Attach Summary Display to bottom of first row of buttons

			Else

				Attach Summary Display to bottom of second row of

buttons

			Manage Summary Display

Attach Top of Count�By Result Area to bottom of

SummaryDisplay

		End

	End

	Update Summary Display in Count�By User Preferences

	Produce Count�By Result Area Display

End

Control Panel Button Handler � Figure 2.3�32

Begin

	If user selected Control Panel On

		If Control Panel already On

			Return

		Else

			Set Control Panel to On

			Change Button Text to On

			If Summary Display is Off

				Attach top of Count�By Result Area to bottom of second

row of buttons

			Else

				Attach top of Summary Display to bottom of second row of

buttons

				Attach bottom of Count�By Result Area to top of lower row

of control panel buttons

		End

	End

	Else

		If Control Panel Off already selected

			Return

		Else

			Set Control Panel to Off

			Unmanage Control Panel widget

			Change Button Text to Off

			If Summary Display is Off

				Attach top of Count�By Result Area to bottom of second

row of buttons

			Else

				Attach top of Summary Display to bottom of second row

of buttons

			Attach bottom of Count�By Result Area to top of bottom row of

buttons

		End

	End

	Update Control Panel in Count�ByUser Preferences

	Produce Count�By Result Area Display

End

Save Preferences Button Handler � Figure 2.3�33

Begin

	Call Save User Preferences

End

Delete Preferences Button Handler � Figure 2.3�34

Begin

	Call Delete User Preferences

End

Create Count�By User Preferences � Figure 2.3�35

Begin

	If the file ì$USER/.countByPreferences exists

		Open the file

		If file read OK

			Read the sort sequence

			Read the display sequence

			Read the sort field

			Read the length of the column name

			Read the column name

			Close the file

			Return

		End

	Else

	Display message ìCannot Open User Preferences. Using defaults.î

	Set sort sequence = CB_ASCENDING

	Set display sequence = CB_COLUMN_MAJOR

	Set sort field = CB_VALUE

	Set column name to null

End

Save User Preferences � Figure 2.3�36

Begin

	If the file ì$USER/.countByPreferences exists

		Open the file for write

		If cannot open file

			Display message ìUnable to save User preference File.î

			Return

	Else

		Create and open the file

		If cannot open file

			Display message ìUnable to create User preference File.î

			Return

	Write the sort sequence

	Write the display sequence

	Write the sort field

	Set length to the length of column name

	Write length

	Write the column name

	Close the file

End

Delete User Preferences � Figure 2.3�37

Begin

	delete the file ì$USER/.countByPreferencesî

	If error

		display message ìCannot delete User preference File.î

End

Print Button Handler � Figure 2.3�38

Begin

	Call prl_print_function with Function Name Count�By Print

End

Coupling Button Handler � Figure 2.3�39

Begin

	If User Selected Decouple

		If already decoupled

			Return

		Else

			Set Coupled State to Decoupled

	Else

		If already coupled

			Return

		Else

			Recouple

	End

End

Help Button Handler � Figure 2.3�40

Begin

	Call thc_help_cb

End

Cancel Button Handler � Figure 2.3�41

Begin

	Destroy Count�By Window

End

Count�By � Figure 2.3�42 thru 2.3�43

Begin

	Create Count�By Bucket Object List

	Create the Count�By Result List

		If Fail

			Fatal Error

	Set sequence number to 0

	Clear node_in_progress

	Clear longest value so far

	Clear highest frequency so far

	Clear previous value

	For each Count�By Bucket Object in Count�By Bucket Object Map

		If previous value same as this Count�By Objectís column value

			If this Count�By Object is not hidden

				If node_in_progress

					increment the Count�By Result Objectís Frequency

					Add Count�By Bucket Object to Count�By Result

Object Count�By Bucket Object List

				Else // create a new node

					Create a new Count�By Result Object

					Set new Count�By Result Objectís column value

					Set new Count�By Result Objectís Frequency to 1

					Set new Count�By Result Objectís sequence

number to sequence number

					Increment sequence number

					Add Count�By Bucket Object to Count�By Result

Object Count�By Bucket Object List

	If this Count�By Objects value length is longest so

far

		Save it as the longest value to far

					Set node_in_progress

				End

			End

		End

		Else			//first occurrence of a new value

If node_in_progress // finish dealing with previous node

If the Count�By Resultís Frequency is the highest so far

	Save it as the highest frequency so far

Add Count�By Result Object to Count�By Result Object

List

Increment the total number of results

				Clear node_in_progress

			End

			If Count�By Bucket Object is not hidden

				Create new Count�By Result Object

Set new Count�By Result Objectís column value

				Set new Count�By Result Objectís frequency to 1

				Set new Count�By Result Objectís sequence number

					to sequence number

				Increment sequence number

				Add Count�By Bucket Object to Count�By Result Objectís

					Count�By Bucket Object List

If this Count�By Objectís value length is longest so far

	Save it as the longest value to far

				Set node_in_progress

			End

		End

	End

	// Make sure no pending nodes are waiting to be enqued

	If node_in_progress

If the Count�By Resultís Frequency is the highest so far

Save it as the highest frequency so far

Add Count�By Result Object to Count�By Result Object List

Increment the total number of results;

		Clear node_in_progress

End

	Return Count�By Result List

End

Print All Triads � Figure 2.3.44

Begin

	Fill Count�By Result Drawing Area with background color

	For each Count�By Triad in Count�By Triad List

		Print Triad

End

Create Count�By Result Drawing Area � Figure 2.3�45

Begin

Get Fixed Width Font

	If Fail

		Set Number Of Columns to 0

		Set Number Of Visible Rows to 0

		Set Row Height to 0

		Set Column Width to 0

	Else

		Calculate Window Character Width

		Calculate Number Of Columns

		Calculate Number Of Visible Rows

		Set Row Height to Y dimension / Number Of Visible Rows

		Set Column Width to X dimension / NumberOfColumns

	Create Normal Graphic Context with gray background

	Create Hooked Graphic Context with black background

End

Calculate Window Character Width � Figure 2.3.46

Begin

	Call XQueryFont to get FontStruct

	If Fail

		Set Window Character Width to 0

	Else

		Set Window Character Width to X dimension /

FontStruct�>max_bounds.width

End

Calculate Number Of Visible Rows � Figure 2.3�47

Begin

	Call XQueryFont to get FontStruct

	If Fail

		Set Number of Visible Rows to 0

	Else

		Set Number Of Visible Rows to Y dimension /

(FontStruct�>max_bounds.ascent

+ FontStruct�>max_bounds.descent)

End

Calculate Triad Size � Figure 2.3.48

Begin

	triad_size = Length Of Highest Count + Length Of Longest Value +

Length Of Highest Frequency + (2 * intra triad gap) +2

End

Calculate Number Of Columns � Figure 2.3.49

Begin

	Number Of Columns = (Window Character Width + inter triad gap) /

(triad size + intra triad gap)

End

Calculate Number Of Visible Results � Figure 2.2.50

Begin

Number Of Visible Results = Number Of Columns * Number Of Visible Rows

End

Calculate Starting Point for Displaying Count�By Results � Figure 2.3�51

Begin

Center Point = ((Total Number Of Results * Percentage Offset Into List) / 100)

	Start Index = Center Point

	If Start Index < 0

		Set Start Index to 0

	If Start Index + Number Of Visible Results > (Total Number Of Results �1)

		Set Start Index to Total Number Of Results � Number Of Visible Results

End

Produce Count�By Result Area Display � 2.3�52

Begin

	Calculate Triad Size

	Create Count�By Result Drawing Area

	Get Percentage Offset Into List from scrollbar

	Calculate Starting Point For Displaying Count�By Results

	Read & discard Count�By Result Objects from Count�By Result List up to

start_index

	If no triad list

		Create Count�By Triad List

		If Fail

			Fatal Error

	Set count to 0

	While Count < Number of Visible Results

		Create New Triad

		If Fail

			Fatal Error

		Add triad to triad list

		Read Next Count�By Result Object From Count�By Result List

		Increment Count

	�End

	Print All Triads

End

Create New Count�By Triad � Figure 2.3�53

Begin

		If User Preference Display By is Row Major

			Set Column to Count % Number Of Columns

			Set Row to Count / Number Of Columns

		Else

			Set Row to Count % Number Of Visible Rows

			Set Column to Count / Number Of Visible Rows

		Set Result List Index to Count + Start Index

		Set Offset to Length Of Highest Count � Length of Result List Index

		Print Result List Index at Buffer[Offset]

		Increment Offset by length of Result List Index + intra triad gap

		Print Count�By Result Object value at Buffer[Offset]

		Increment Offset by Length Of Longest Value + intra triad gap

		Increment Offset by Length Of Highest Frequency � length of Count�By Result

			Object Frequency

		Print ë(ë + Count�By Result Frequency + ë)í at Buffer[Offset]

		Set Hook state to Count�By Result Objectís Hook State

End

Print Triad � Figure 2.3�54

Begin

		Set X location to triad column * Column Width

		Set Y location to triad row * Row Height

		If Triad is hooked

			Draw triad at X,Y with Hooked Graphic Context

		Else

			Draw triad at X,Y with Normal Graphic Context

End

Identify Triad from XY Display Location � Figure 2.3�55

Begin

		Set Index to �1

		Set Row = Y location / Row Height

		Set Column = X location / Column Width

		For each Count�By Triad in Count�By Triad List

			If Count�By Triad row = Row and Count�By Triad column = Column

				Set Index to Count�By Triad Result List Count

				Return Index

		End

		Return Index

End	

Redraw Count�By Result Object In Count�By Result Area Display � Figure 2.3�56

Begin

		For each Count�By Triad in Count�By Triad List

			If triadís Result List Count = Count�By Result Objectís sequence number

				If triadís hook state != Count�By Result Objectís hook state

					Set triadís hook state to Count�By Result Objectís hook

						state

					Print Triad

					Return

				End

			End

		End

End

Count�By Window Resize Event � Figure 2.3�57

Begin

	Produce Count�By Result Area Display

End

Count�By Result Area Expose Event � Figure 2.3�58

Begin

	Print All Triads

End

Count�By Result Scrollbar Handler � Figure 2.3�59

Begin

	If reason is increment

		Calculate new location for slider

	Else

		If reason is decrement

			Calculate new location for slider

	Get position of slider

	Set Offset Into List

	Reposition and Resize Slider

	Produce Count�By Result Area Display

End

Count�By Print � Figure 2.3�60

Begin

	For each Count�By Result Object in Count�By Result List

		Format Count�By Result Object for printing

		If Page Overflow

			Force Page Feed

			Increment page number

			Print Header

			Print formatted Count�By Result Object data

		End

End

Hide Button Handler � Figure 2.3�61

Begin

	Process Locally Generated Hide Action

End

Hide Except Button Handler � Figure 2.3�62

Begin

	Process Locally Generated Hide Except Action

End

Show All Button Handler � Figure 2.3�63

Begin

	Process Locally Generated Show Action

End

Hook Handler � Figure 2.3�64

Begin

	Process Locally Generated Hook Action

End

Create Count�By Bucket Object List � Figure 2.3�65

Begin

	Create Count�By Bucket Object List

	If Fail

		Fatal Error

	For each Count�By Bucket Object in Count�By Bucket Object Map

		Add Count�By Bucket Object to Count�By Bucket Object List

	Call ult_lst_sort with function name ìCount�By Sort Objectsî

	Return Count�By Bucket Object List

End

Design Description

�

Figure 2.5�1. Count�By Class Relationship

Class CountBy

This is the top level of Count�By. The function to create a new Count�By instance is provided, as well as a handler for LBT_LAYER notifications. A persistent LIST CountByObjectList exists to contain all instantiated CountByObjects.

Data members:

LIST* _CountByObjectList;		// a LIST of all CountByObjects

Member functions:

Constructors:

Destructor:

Mutators:

void init(short, short, RWCString, CountByWindow*) Figure 2.3�4

Accessors:

static void countByHandler(short, short, LIST *, short) Figure 2.3�12

static void externalHandler(Widget, XtPointer, XtPointer)

Class CountByObject

A CountByObject is created for every instance of a Count�By window by the CountByInit function. It contains a pointer to a CountByWindow object, and the layer, bucket, and column pertaining to that CountByWindow. Its primary use is to determine if an external event applies to a given CountByWindow object, and a means to invoke the corresponding member function of each of the applicable CountByWindows

data members:

short _layer;		// the layer to which this CountBy pertains

short _bucket;		// the bucket to which this CountBy pertains

RWCString _columnName;		// the column name to which this CountBy pertains

CountByWindow* _window;		// a pointer the the CountByWindow object

member functions:

Constructor: Figure 2.3�11

Destructor:

Accessors

Boolean applicable(short, short)

Class CountByWindow

A CountByWindow object exists for each Count�By window instance. It contains all of information necessary to produce and display the Count�By HMI with all of its controls and statistical information, callbacks to respond to all of those controls, and functions to respond to LBT_LAYER events applicable to this object. The CountByWindow also contains the CountByBucketObjectMap which encapsulates all of the bucket objects related to this instance while providing direct lookup (hashed) and sequential access to every CountByBucketObject; the CountByDrawingArea which contains the result display area, the LIST of the CountByResultObjects which is produced by the actual CountBy routine, and the LIST of triads displayed in the result area.

data members:

short _layer;					// the layer to which this window relates

short _bucket;					// the bucket to which this window relates

int _totalNumberOfValues;			// the total number of distinct results

int _sizeOfLongestValue;			// the length of the longest result value

int _highestFrequency;			// the highest frequency of any value

RWCString _columnName;			// the column name used to CountBy

Boolean _coupledState;			// the coupled state of this window

CountByBucketObjectMap _objMap;	// the mapping of CountByBucketObjects

LIST* _resultList;				// the list of CountByResultObjects

LIST* _triadList;				// the list of triads showing in drawingArea

LIST* _bucketObjectList			// the list of all CountByBucketObjects

CountByDrawingArea drawingArea;		// the parameters of the result display space

For each HMI Component

Widget _some_component;		// handle for each HMI component

For each HMI Component Callback

CountByCallbackStructure* cbcs	// Callback Structure with ÏthisÓ pointer

member functions:

Constructors: Figure 2.3�5

Destructor:

void destroyCountByWindow(void) Figure 2.3�6

ST_STATUS createHMI(void) Figure 2.3�25

ST_STATUS destroyHMI(void)

ST_STATUS produceCountByResultAreaDisplay(void) Figure 2.3�52

ST_STATUS createObjectMap(void) Figure 2.3�7

ST_STATUS createResultList(void) Figure 2.3�8

ST_STATUS destroyResultList(void) Figure 2.3�9

LIST* countBy(void) Figures 2.3�42,43

ST_STATUS process_external(short, short, LIST *, short) Figure2.3�13,14,15,16

ST_STATUS process_local_hide(void) Figure 2.3�21

ST_STATUS process_local_hide_except(void) Figure 2.3�22

ST_STATUS process_local_show(void) Figure 2.3�23

ST_STATUS process_local_hook(void) Figure 2.3�17�20

ST_STATUS recouple(void) Figure 2.3�24

ST_STATUS countByPrint(void) Figure 2.3�60

void columnButtonHandler(Widget, XtPointer, XtPointer) Figure 2.3�27

void couplingButtonHandler(Widget, XtPointer, XtPointer) Figure 2.3�39

void controlPanelButtonHandler(Widget, XtPointer, XtPointer) Figure 2.3�32

void summaryLineButtonHandler(Widget, XtPointer, XtPointer) Figure 2.3�31

void sortByButtonHandler(Widget, XtPointer, XtPointer) Figure 2.3�29

void sortOrderButtonHandler(Widget, XtPointer, XtPointer) Figure 2.3�30

void displayByButtonHandler(Widget, XtPointer, XtPointer) Figure 2.3�28

void savePreferenceButtonHandler(Widget, XtPointer, XtPointer) Figure 2.3�33

void deletePreferenceButtonHandler(Widget, XtPointer, XtPointer) Figure 2.3�34

void printButtonHandler(Widget, XtPointer, XtPointer) Figure 2.3�38

void hideButtonHandler(Widget, XtPointer, XtPointer) Figure 2.3�61

void hideExceptButtonHandler(Widget, XtPointer, XtPointer) Figure 2.3�62

void showAllButtonHandler(Widget, XtPointer, XtPointer) Figure 2.3�63

void cancelButtonHandler(Widget, XtPointer, XtPointer) Figure 2.3�41

void helpButtonHandler(Widget, XtPointer, XtPointer) Figure 2.3�40

void resizeHandler(Widget, XtPointer, XtPointer) Figure 2.3�57

void exposeHandler(Widget, XtPointer, XtPointer) Figure 2.3�58

void scrollbarHandler(Widget, XtPointer, XtPointer) Figure 2.3�59

void hookHandler(Widget, XtPointer, XtPointer) Figure 2.3�64

static void countBySortObjects(void *, void *, void *);	// LIST sort callback

static void columnButtonCallback(Widget, XtPointer, XtPointer) Figure 2.3�26

static void couplingButtonCallback(Widget, XtPointer, XtPointer) Figure 2.3�26

static void controlPanelButtonCallback(Widget, XtPointer, XtPointer) Figure 2.3�26

static void summaryLineButtonCallback(Widget, XtPointer, XtPointer) Figure 2.3�26

static void sortByButtonCallback(Widget, XtPointer, XtPointer) Figure 2.3�26

static void sortOrderButtonCallback(Widget, XtPointer, XtPointer) Figure 2.3�26

static void displayByButtonCallback(Widget, XtPointer, XtPointer) Figure 2.3�26

static void savePreferenceButtonCallback(Widget, XtPointer, XtPointer) Figure 2.3�26

static void deletePreferenceButtonCallback(Widget, XtPointer, XtPOinter) Figure 2.3�26

static void printButtonCallback(Widget, XtPointer, XtPointer) Figure 2.3�26

static void hideButtonCallback(Widget, XtPointer, XtPointer) Figure 2.3�26

static void hideExceptButtonCallback(Widget, XtPointer, XtPointer) Figure 2.3�26

static void showAllButtonCallback(Widget, XtPointer, XtPointer) Figure 2.3�26

static void cancelButtonCallback(Widget, XtPointer, XtPointer) Figure 2.3�26

static void helpButtonCallback(Widget, XtPointer, XtPointer) Figure 2.3�26

static void resizeCallback(Widget, XtPointer, XtPointer) Figure 2.3�26

static void exposeCallback(Widget, XtPointer, XtPointer) Figure 2.3�26

static void scrollbarCallback(Widget, XtPointer, XtPointer) Figure 2.3�26

static void hookCallback(Widget, XtPointer, XtPointer) Figure 2.3�26

Class CountByBucketObject

A CountByBucketObject is created to represent every bucket object in a particular layer and bucket. It contains the bucket object pointer as well as a flag to indicate whether the object is hooked or hidden. These values will typically be the same as the corresponding values in the bucket object, but could be different if the CountByWindow containing the CountByBucketObjectMap of which this object is a member is Decoupled.

data members:

BUCKET_OBJECT* _bkObj		// the original bucket object pointer

Boolean _hidden			// current hide state

Boolean _hooked			// current hook state

RWCString _columnValue		// the ascii value of the selected column entry

Constructors: Figure 2.3�10

Destructor:

Accessors:

RWCString& get_columnValue(void)

Boolean isHidden(void)

Boolean isHooked(void)

Mutators:

void hide(void)		// set the hide state

void hook(void)		// set the hook state

void show(void)		// clear the show state

void unhook(void)		// clear the hook state

Class CountBucketObjectMap

CountByObjectMap contains a RWTValHashDictionary which is a container class providing direct hashed access as well as iterative sequential access. It can add a CountByBucketObject pointer which corresponds to a BUCKET_OBJECT pointer into the map, and can return the CountByBucketObject pointer corresponding to a BUCKET_OBJECT pointer.

data members:

CountByObjectMap _object_map;

member functions:

Constructors: Figure 2.3�7

Destructor:

Mutators:

void create(CountByBucketObject&)	

Accessors:

CountByBucketObject *locate(BUCKET_OBJECT *)

LIST *createCountByBucketObjectList(void)

Class CountByDrawingArea

The CountByDrawingArea contains all of the information regarding the geometry of and object placement within the CountBy result display area in the CountByWindow.

data members:

int _xDimension;				// number of pixels horizontally

int _yDimension;				// number of pixels vertically

short _numberOfColumns;			// number of columns of results

short _numberOfVisibleRows;		// number of visible rows of results

short _rowHeight;				// Y increment between rows

short _columnWidth;				// X increment between columns

short _lengthOfHighestCount			// number of characters to display the count

short _lengthOfLongestValue			// number of characters to display longest value

short _lengthOfHighestFrequency;		// number of characters to display highest frequency

short _intra_triad_gap;			// number of characters between triad data

short _inter_triad_gap;			// number of characters between triads

member functions:

Constructors: Figure 2.3�45

Destructor:

Mutators:

void calculateWindowCharacterWidth(void) Figure 2.3�46

void calculateNumberOfVisibleRows(void) Figure 2.3�47

void calculateNumberOfColumns(void) Figure 2.3�49

void calculateNumberOfVisibleResults(void) Figure 2.3�50

void calculateStartingPointForDisplayingCountByResults(void) 2.3�51

void redrawCountByResultObjectInCountByResultAreaDisplay(void) Figure 2.3�56

short calculateTriadSize(void) Figure 2.3�45

void printTriad(&CountByTriad) Figure 2.3�54

void printAllTriads(void) Figure 2.3�44

short whichTriad(int, int) Figure 2.3�55

void resize_display_area(void)

Class CountByResultObject

A CountByResultObject contains the results of the Count�By operation, namely one unique value and frequency of occurrence of that value in the layer/bucket/column of the CountByBucketObjectList which created this object. The CountByResultObject is a node in the Count�By operation result LIST contained by a CountByWindow object.

data members:

RWCString _value;				// the value of the result

int _frequency;				// the frequency of the result

Boolean _hooked;				// the resultÌs hook state

short _sequenceNumber			// this resultÌs ordinal number

LIST* _CountByBucketObjectList		// a list of the CountByBucketObjects

						// which comprise this result

member functions:

Constructors:

Destructor:

Accessors:

short result_length(void)			// returns the string length of the value

short frequency_length(void)			// returns the string length of the frequency

int frequency(void)				// returns the frequency

Boolean isHooked(void)			// returns the hooked state

Class CountByTriad

Each displayable result is represented by a Triad, which contains a reference back to the CountByResultObject it represents, as well as the row and column of the display where it will appear, the hooked state which indicates whether to display with a normal coloring or the hooked coloring, and the text which is to be displayed.

data members:

short _resultListIndex;		// corresponding CountByResultObject ordinal number

short _row;				// the row in which this triad appears in the result area

short _column;			// the column in which this triad appears in the result area

RWCString _triadString;		// the image of the triad including intra triad gaps

Boolean _hooked;			// indicates which drawing context to use to ÏdrawÓ

member functions:

Constructors: Figure 2.3�53

Destructor:

Accessors:

Mutators:

Class CountByUserPreferences

The CountByUserPreferences encapsulates the user preference disk file data and provides convenience functions to get and set individual values, and a file read and write functionality. A unique CountByUserPreference will exist for each CountByWindow instance to hold the currently selected user preferences, and will be used to save the user prferences if so selected, but other previously�instanced CountByWindows will not see the new preferences unless they are changed in that instance by the user, but new instances will use the new preferences.

data members:

fstream _ioFile;			// file handle for reading and writing

SORT_SEQ _sort_sequence;		// CB_ASCENDING, CB_DESCENDING

DISP_SEQ _display_sequence;	// CB_ROW_MAJOR, CB_COLUMN_MAJOR

SORT_FIELD _sort_field;		// CB_VALUE, CB_FREQUENCY

RWCString _columnName;		// preferred column name to Count�By

member functions:

Constructors: Figure 2.3�35

Destructor:

Mutators:

void save(void) Figure 2.3�36			// write the user preferences to a data file

void delete(void) Figure 2.3�37		// delete the data file

void sortSequence(SORT_SEQ seq)		// sets the sort_sequence value

void displaySequence(DISP_SEQ seq)	// sets the display_sequence value

void sortField(SORT_FIELD field)		// sets the sort field value

void columnName(RWCString &string)	// sets the column name value

Accessors:

SORT_SEQ sortSequence(void)		// returns the sort_sequence value

DISP_SEQ displaySequence(void)		// returns the display_sequence value

SORT_FIELD sortField(void)		// returns the sort_field value

RWCString& columnName(void)		// returns the column name value

Interface Description

None

Test plans

All code developed by LMTO will undergo both unit and functional testing prior to delivery. The unit level test will be run by the developers during the coding process, and again by an LMTO QA representative prior to delivery. The functional tests will be run by the QA representative.

The appropriate LMTO developer in conjunction with LMTO QA personnel will generate a unit level test to exercise each logic path. These tests will be developed from the control flow diagrams submitted as part of the peer review package. These tests are designed to exercise logic paths and as such, will not test boundary conditions. Developers will use these test cases during their development and as needed will refine them. The resulting test cases will be run against the code by LMTO QA personnel and results documented in a test log. The test log will be reviewed with the developer and corrective action taken.

In addition to the unit level testing, LMTO QA personnel in conjunction with the appropriate developer will compile functional ìthroughputî test. These tests will evaluate the input and output accuracy of the code. Test cases will be generated to exercise all aspects of the code and will be based on the SOF which will be delivered as part of the peer review package. The functional test will be designed to test all possible inputs and will therefore be designed to validate boundary conditions. Prior to delivery, the QA personnel will exercise each of these tests and document results in a test log. The results will be reviewed with the developer and corrective action will be taken and the test cycle repeated. No SOR will be allowed to be delivered in final form until all test failures are corrected or have been deferred by the systems engineer.

Specific test environment will be defined within the test cases themselves or a reference to an environment will be included. Test personnel, hardware and material requirements will be defined in the test environment.

To verify that all code (paths) has been tested, all test cases will be run utilizing the PureCoverage COTS tool. The output of PureCoverage will be reviewed and new test cases developed as needed and the test cycle repeated.

Prior to final delivery, QA personnel will demonstrate the results of the functional test in the presence of a member of the TAMPS test team. Once QA personnel and TAMPS test team member agree that the results of the functional tests are accurately documented, and any failures deferred by the systems engineer, the code will be checked into the ìCMî baseline. The following test documents will be delivered along with the PEA at final checkin:

Final test results

Copy of the test logs

Final output from PureCoverage

Functional Tests

Entry Criteria:

	Successful completion of unit tests.

The environment required to perform functional test on SOR 96�60A consists of a TAMPS hardware suite, a populated database, DBA or an MPM, and test personnel with bucket object knowledge.

Sections 1.1 through 1.4 test the performance and behavior of portions of the software that are not concerned with bucket�specific information, therefore the selection of the layer and bucket is inconsequential. Later portions of the test will require at least one layer and bucket whose column values and frequencies of occurrence will need to be known to validate the accuracy of the Count�By operation.

Results of all tests will be noted in Functional Test Log. Unsuccessful tests will be repeated after correction of deficiency causing failure.

Exit Criteria:

	Successful completion of all functional tests, and completion of Functional Test Log.

�Starting Count�By

2.8.1.1	Test:�Start Count�By from Clutter/Declutter with no previously saved user preferences.��Input:�Run a query which produces a layer and bucket with visible objects.

Select Clutter/Declutter tool.

Select layer and bucket resulting from previous query.

Select Count�By.��Expected Results:�Count�By window appears at either far left or far right of screen centered vertically with following settings:

	Layer: the name of the layer selected.

	Bucket: the name of the bucket selected.

	Column: the first column in the bucket object.

	Coupling: Coupled.

	Control Panel: on.

	Summary: on.

	Sort By: Value.

	Order: Ascending.

All control buttons and summary line are visible.

Each Count-By result will show its cardinal number, column value, and frequency of occurrence of the given value.��

2.8.1.2	Test:�Start Count�By from Clutter/Declutter with previously saved user preferences. Perform as continuation of previous test.��Input:�Select Column.

Select any column name other than the default.

Select Save Preferences.

Select Clutter/Declutter tool.

Select layer and bucket resulting from previous query.

Select Count�By.��Expected Results:�Another Count�By window appears with following settings:

	Layer: the name of the layer selected.

	Bucket: the name of the bucket selected.

	Column: the column name previously selected.

	Coupling: Coupled.

	Control Panel: on.

	Summary: on.

	Sort By: Value.

	Order: Ascending.

	Display By: Column.

All control buttons and summary line are visible.��

2.8.1.3	Test:�Start Count�By from Text Tool.��Input:�Run a query which produces a layer and bucket with visible objects. Select Clutter/Declutter tool.

Select layer and bucket resulting from previous query.

Select Text.

Pull down menu from top of any text tool column.

Select Count�By.��Expected Results:�Count�By window appears with following settings:

	Layer: the name of the layer selected.

	Bucket: the name of the bucket selected.

	Column: the column from which the Count�By was selected in Text Tool.

	Coupling: Coupled.

	Control Panel: on.

	Summary: on.

	Sort By: Value.

	Order: Ascending.

	Display By: Column.

All control buttons and summary line are visible.

��

2.8.1.4	Test:�Start Count�By from Clutter/Declutter after deleting previously saved user preferences. Perform as continuation of previous test.��Input:�Select Delete Preferences.

Select Clutter/Declutter tool.

Select layer and bucket resulting from previous query.

Select Count�By.��Expected Results:�Another Count�By window appears with following settings:

	Layer: the name of the layer selected.

	Bucket: the name of the bucket selected.

	Column: the first column in the bucket object.

	Coupling: Coupled.

	Control Panel: on.

	Summary: on.

	Sort By: Value.

	Order: Ascending.

	Display By: Column.

All control buttons and summary line are visible.��Controlling HMI Control Panel and Summary Line.

2.8.2.1	Test:�Turning the Summary Line Off With Control Panel On.��Input:�Run a query which produces a layer and bucket with visible objects.

Select Clutter/Declutter tool.

Select layer and bucket resulting from previous query.

Select Count�By.

Select Summary.

Select Off.��Expected Results:�Summary Line above Count�By Results Area disappears and the Count�By Result Area attaches at the top to the bottom of Sort By, Order, and Display By buttons while remaining attached at the bottom to the top of the Save Preferences, Delete Preferences, and Print buttons. The overall dimensions of the Count�By Window remain unchanged.��

2.8.2.2	Test:�Turning the Summary Line On with Control Panel On. Perform as continuation of previous test.��Input:�Select Summary.

Select On.��Expected Results:�Summary Line reappears above Count�By Results Area and the Count�By Result Area attaches to bottom of Summary Line while remaining attached at the bottom to the Save Preferences, Delete Preferences, and Print buttons. The overall dimensions of the Count�By Window remain unchanged.��

2.8.2.3	Test:�Turning the Control Panel Off With Summary Line On.��Input:�Run a query which produces a layer and bucket with visible objects.

Select Clutter/Declutter tool.

Select layer and bucket resulting from previous query.

Select Count�By.

Select Control Panel.

Select Off.��Expected Results:�The following buttons disappear: Sort By, Order, Display By, Save Parameters, Delete Parameters, Print, Hide, Hide Except, Show. Summary Line attaches at the top below the Coupling, Control Panel, Summary buttons, and the Count�By Result Area attaches at the top to bottom of the Summary Line and attaches at the bottom to the Cancel and Help buttons. The overall dimensions of the Count�By Window remain unchanged.��

2.8.2.4	Test:�Turning the Control Panel On With Summary Line On. Perform as continuation of previous test.��Input:�Select Control Panel.

Select On.��Expected Results:�The following buttons reappear: Sort By, Order, Display By, Save Parameters, Delete Parameters, Print, Hide, Hide Except, Show.

Summary Line attaches at the top to the Sort By, Order, Display By buttons, and the Count�By Result Area attaches at the bottom to Hide, Hide Except, Show buttons. The overall dimensions of the Count�By Window remain unchanged.��

2.8.2.5	Test:�Turning the Control Panel and Summary Line Off. Perform as continuation of previous test.��Input:�Select Control Panel.

Select Off.

Select Summary.

Select Off.��Expected Results:�The following buttons disappear: Sort By, Order, Display By, Save Parameters, Delete Parameters, Print, Hide, Hide Except, Show. The Summary Line disappears. The Count�By Result Area attaches at the top to bottom of the Coupling, Control Panel, Summary buttons, and attaches at the bottom to the Cancel and Help buttons. The overall dimensions of the Count�By Window remain unchanged.��

2.8.2.6	Test:�Turning the Control Panel on while Summary Line Off. Perform as continuation of previous test.��Input:�Select Control Panel.

Select On.��Expected Results:�The following buttons reappear: Sort By, Order, Display By, Save Parameters, Delete Parameters, Print, Hide, Hide Except, Show.

The Count�By Result Area attaches at the top to the Sort By, Order, Display By buttons, and at the bottom to Hide, Hide Except, Show buttons. The overall dimensions of the Count�By Window remain unchanged.��Count�By Window and X Events

2.8.3.1	Test:�Resize Count�By Window.��Input:�Run a query which produces a layer and bucket with visible objects.

Select Clutter/Declutter tool.

Select layer and bucket resulting from previous query.

Select Count�By.

Select and Drag any corner or edge of Count�By Window.��Expected Results:�Count�By Window shape changes to conform to previous operation. All Count�By Window components maintain their attachments to each other and the Count�By Result Area grows or shrinks to maintain its attachments to the sides of the window and the Summary Line at the top and Save Preferences, Delete Preferences, Print buttons at the bottom. The number of columns in the Count�By Result Area will increase or decrease as the width of the Count�By Window allows.��

2.8.3.2	Test:�Expose Obscured Count�By Window.��Input:�Run a query which produces a layer and bucket with visible objects.

Select Clutter/Declutter tool.

Select layer and bucket resulting from previous query.

Select Count�By.

Drag the Clutter/Declutter window so it partially hides the Count�By Window Count�By Result Area.

Re�expose the Count�By Window by forcing it to the top or by moving the Clutter/Declutter window.��Expected Results:�The Count�By Window is fully visible and all of the components, including the Count�By Result Area, appear correctly.��Count�By User Preferences.

2.8.4.1	Test:�Sorting By Frequency rather than value.��Input:�Run a query which produces a layer and bucket with visible objects.

Select Clutter/Declutter tool.

Select layer and bucket resulting from previous query.

Select Count�By.

Select Sort By.

Select Frequency.��Expected Results:�The Count Results in the Count�By Result Area will be resorted and displayed based on the frequency of occurrence rather than the value.��

2.8.4.2	Test:�Sorting in descending frequency order rather than ascending order.

Perform as continuation of previous test.��Input:�Select Order.

Select Descending.��Expected Results:�The Count�By Results in the Count�By Result Area will be resorted and displayed in the opposite order, with the highest frequency first and the lowest frequency last.��

2.8.4.3	Test:�Sorting in descending value order rather than descending frequency order.

Perform as continuation of previous test.��Input:�Select Sort By.

Select Value.��Expected Results:�The Count�By Results in the Count�By Result Area will be resorted and displayed based on column value rather than frequency of occurrence, with the highest alphabetical value displayed first, and the lowest alphabetical value last.��

2.8.4.4	Test:�Sorting value in ascending rather than descending order. Perform as continuation of previous test.��Input:�Select Order.

Select Ascending.��Expected Results:�The Count�By Results in the Count�By Result Area will be resorted and displayed in ascending rather then descending order, with the lowest alphabetical values displayed first and the highest alphabetical value displayed last.��

2.8.4.5	Test:�Displaying in Row�major format.��Input:�Run a query which produces a layer and bucket with visible objects.

Select Clutter/Declutter tool.

Select layer and bucket resulting from previous query.

Select Count�By.

Select Display By.

Select Row.��Expected Results:�The Count�By Results in The Count�By Result Area will be redisplayed with the increasing values appearing across columns then down in successive rows rather than from top to bottom in successive columns��

2.8.4.6	Test:�Displaying in Column�major format. Perform this as continuation of previous test.��Input:�Select Display By.

Select Column.��Expected Results:�The Count�By Results in the Count�By Result Area will be redisplayed with increasing values appearing from top to bottom in columns rather than across columns then down in successive rows.��

2.8.4.7	Test:�Saving User Preferences.��Input:�Run a query which produces a layer and bucket with visible objects.

Select Clutter/Declutter tool.

Select layer and bucket resulting from previous query.

Select Count�By.

Select Sort By.

Select Frequency.

Select Order.

Select Descending.

Select Display By.

Select Row.

Select Clutter/Declutter tool.

Select layer and bucket resulting from previous query.

Select Count�By.

Select Save Preferences in the original Count�By Window.

Select Clutter/Declutter tool.

Select layer and bucket resulting from previous query.

Select Count�By.��Expected Results:�There will be two additional Count�By Windows in addition to the original window in which all of the default values were changes. The second Count�By Window will have the following values:

	Sort By: Value.

	Order: Ascending.

	Display By: Column.

The original and third Count�By Windows will have the following values:

	Sort By: Frequency.

Order: Descending.

	Display By: Row.��

2.8.4.8	Test:�Delete User Preferences.��Input:�Run a query which produces a layer and bucket with visible objects.

Select Clutter/Declutter tool.

Select layer and bucket resulting from previous query.

Select Count�By.

Select Delete Preferences.

Select Clutter/Declutter tool.

Select layer and bucket resulting from previous query.

Select Count�By.��Expected Results:�There will be two Count�By Windows. The first in which Delete Preferences was selected will have the following values:

	Sort By: Frequency.

	Order By: Descending.

	Display By: Row.

The second will have the following values:

	Sort By: Value.

	Order By: Ascending.

	Display By: Column.��Local actions while Coupled.

2.8.5.1	Test:�Hooking Count�By Result.��Input:�Run a query which produces a layer and bucket with visible objects.

Select Clutter/Declutter tool.

Select layer and bucket resulting from previous query.

Select Text Tool.

Select Count�By.

Select a Count�By Result.��Expected Results:�The selected Count�By Result should be appear as highlighted. The bucket objects corresponding to the selected result should appear as highlighted on the map and in the Text Tool.��

2.8.5.2	Test:�Unhooking Count�By Result. Perform this as continuation of previous test.��Input:�Select previously hooked Count�By Result.��Expected Results:�The selected Count�By Result should appear as unhighlighted. The bucket objects corresponding to the selected result should appear as unhighlighted on the map and in the Text Tool.��

2.8.5.3	Test:�Hooking a different Count�By Result.��Input:�Run a query which produces a layer and bucket with visible objects.

Select Clutter/Declutter tool.

Select layer and bucket resulting from previous query.

Select Text Tool.

Select Count�By.

Select a Count�By Result.

Select a different Count�By Result.��Expected Results:�Only the second selected Count�By Result should be appear as highlighted. Only the bucket objects corresponding to the selected result should appear as highlighted on the map and in the Text Tool.��

2.8.5.4	Test:�Hooking Multiple Count�By Results.��Input:�Run a query which produces a layer and bucket with visible objects.

Select Clutter/Declutter tool.

Select layer and bucket resulting from previous query.

Select Text Tool.

Select Count�By.

Select a Count�By Result.

Press the Shift key and select a second Count�By Result.��Expected Results:�The previously and newly selected Count�By Results should be appear as highlighted. The bucket objects corresponding to the selected results should appear as highlighted on the map and in the Text Tool.��

2.8.5.5	Test:�Hide a Count�By Result.��Input:�Run a query which produces a layer and bucket with visible objects.

Select Clutter/Declutter tool.

Select layer and bucket resulting from previous query.

Select Text Tool.

Select Count�By.

Select a Count�By Result.

Select Hide.��Expected Results:�The selected Count�By Result will no longer appear in the Count�By Result Area. The number in the summary line will be decreased by one. The bucket objects corresponding to the selected result will no longer appear on the map nor in the Text Tool.��

2.8.5.6	Test:�Hide/Except Count�By Results.��Input:�Run a query which produces a layer and bucket with visible objects.

Select Clutter/Declutter tool.

Select layer and bucket resulting from previous query.

Select Text Tool.

Select Count�By.

Select a Count�By Result.

Select Hide Except.��Expected Results:�The selected Count�By Result will be the only one remaining in the Count�By Result Area. The number in the summary line will be ë1í. The bucket objects corresponding to the selected result will be the only ones to appear on the map and in the Text Tool.��

2.8.5.7	Test:�Show All Count�By Results. Perform this as continuation of previous test.��Input:�Select Show All.��Expected Results:�All Count�By Results will be displayed in the Count�By Result Area. The number in the summary line will reflect all Count�By Results. All bucket objects corresponding to the Count�By Results will be visible on the map and in the Text Tool.��Local actions while Decoupled.

2.8.6.1	Test:�Hooking Count�By Result.��Input:�Run a query which produces a layer and bucket with visible objects.

Select Clutter/Declutter tool.

Select layer and bucket resulting from previous query.

Select Text Tool.

Select Count�By.

Select Decouple.

Select a Count�By Result.��Expected Results:�The selected Count�By Result should be appear as highlighted. The bucket objects corresponding to the selected result should NOT appear as highlighted on the map and in the Text Tool.��

2.8.6.2	Test:�Unhooking Count�By Result. Perform this as continuation of previous test.��Input:�Select previously hooked Count�By Result.��Expected Results:�The selected Count�By Result should appear as unhighlighted. The bucket objects corresponding to the selected result should remain unhighlighted on the map and in the Text Tool.��

2.8.6.3	Test:�Hooking a different Count�By Result.��Input:�Run a query which produces a layer and bucket with visible objects.

Select Clutter/Declutter tool.

Select layer and bucket resulting from previous query.

Select Text Tool.

Select Count�By.

Select Decouple.

Select a Count�By Result.

Select a different Count�By Result.��Expected Results:�Only the second selected Count�By Result should be appear as highlighted. No bucket objects corresponding to the selected result should appear as highlighted on the map and in the Text Tool.��

2.8.6.4	Test:�Hooking Multiple Count�By Results.��Input:�Run a query which produces a layer and bucket with visible objects.

Select Clutter/Declutter tool.

Select layer and bucket resulting from previous query.

Select Text Tool.

Select Count�By.

Select Decouple.

Select a Count�By Result.

Press the Shift key and select a second Count�By Result.��Expected Results:�The previously and newly selected Count�By Results should be appear as highlighted. No bucket objects corresponding to the selected results should appear as highlighted on the map and in the Text Tool.��

2.8.6.5	Test:�Hide a Count�By Result.��Input:�Run a query which produces a layer and bucket with visible objects.

Select Clutter/Declutter tool.

Select layer and bucket resulting from previous query.

Select Text Tool.

Select Count�By.

Select Decouple.

Select a Count�By Result.

Select Hide.��Expected Results:�The selected Count�By Result will no longer appear in the Count�By Result Area. The number in the summary line will be decreased by one. The bucket objects corresponding to the selected result will still appear on the map and in the Text Tool.��

2.8.6.6	Test:�Hide/Except Count�By Results.��Input:�Run a query which produces a layer and bucket with visible objects.

Select Clutter/Declutter tool.

Select layer and bucket resulting from previous query.

Select Text Tool.

Select Count�By.

Select Decouple.

Select a Count�By Result.

Select Hide Except.��Expected Results:�The selected Count�By Result will be the only one remaining in the Count�By Result Area. The number in the summary line will be ë1í. All bucket objects corresponding to the selected result will continue to appear on the map and in the Text Tool.��

2.8.6.7	Test:�Show All Count�By Results. Perform this as continuation of previous test.��Input:�Select Show All.��Expected Results:�All Count�By Results will be displayed in the Count�By Result Area. The number in the summary line will reflect all Count�By Results. All bucket objects corresponding to the Count�By Results will remain visible on the map and in the Text Tool.��Local Actions with Coupled and Decoupled Count�By Windows

2.8.7.1	Test:�Hooking Count�By Result.��Input:�Run a query which produces a layer and bucket with visible objects.

Select Clutter/Declutter tool.

Select layer and bucket resulting from previous query.

Select Text Tool.

Select Count�By.

Select Count�By again.

Select Decouple in first Count�By Window.

Select a Count�By Result in first Count�By Window.��Expected Results:�The selected Count�By Result should be appear as highlighted in only the first Count�By Window. The bucket objects corresponding to the selected result should NOT appear as highlighted on the map and in the Text Tool.��

2.8.7.2	Test:�Unhooking Count�By Result. Perform this as continuation of previous test.��Input:�Select previously hooked Count�By Result.��Expected Results:�The selected Count�By Result should appear as unhighlighted in both Count�By Windows. The bucket objects corresponding to the selected result should remain unhighlighted on the map and in the Text Tool.��

2.8.7.3	Test:�Hide a Count�By Result.��Input:�Run a query which produces a layer and bucket with visible objects.

Select Clutter/Declutter tool.

Select layer and bucket resulting from previous query.

Select Text Tool.

Select Count�By.

Select Count�By again.

Select Decouple in the first Count�By Window.

Select a Count�By Result in the first Count�By Window.

Select Hide in the first Count�By Window.��Expected Results:�The selected Count�By Result will no longer appear in the Count�By Result Area of the first Count�By Window, but will appear in the second Count�By Window. The number in the summary line in the first Count�By Window will be decreased by one. The bucket objects corresponding to the selected result will still appear on the map and in the Text Tool.��

2.8.7.4	Test:�Hide/Except Count�By Results.��Input:�Run a query which produces a layer and bucket with visible objects.

Select Clutter/Declutter tool.

Select layer and bucket resulting from previous query.

Select Text Tool.

Select Count�By.

Select Count�By again.

Select Decouple in the first Count�By Window.

Select a Count�By Result in the first Count�By Window.

Select Hide Except in the first Count�By Window.��Expected Results:�The selected Count�By Result will be the only one remaining in the Count�By Result Area of the first Count�By Window. The number in the summary of the first Count�By Window line will be ë1í. All bucket objects corresponding to the selected result will continue to appear on the map and in the Text Tool.��

2.8.7.5	Test:�Show All Count�By Results. Perform this as continuation of previous test.��Input:�Select Show All in the first Count�By Window.��Expected Results:�The Count�By Result Area of the first Count�By Window will now match the second Count�By Window. The number in the summary line of the first Count�By Window will match the second Count�By Window. All bucket objects corresponding to the Count�By Results will remain visible on the map and in the Text Tool.��

2.8.7.6	Test:�Recoupling a Count�By Window.��Input:�Run a query which produces a layer and bucket with visible objects.

Select Clutter/Declutter tool.

Select layer and bucket resulting from previous query.

Select Text Tool.

Select Count�By.

Select Count�By again.

Select Decouple in the first Count�By Window.

Select a row from the Text Tool.

Select Hide Except from the Text Tool.

Select Recouple from the Count�By Window.��Expected Results:�When selecting Hide/Except from the Text Tool, all objects except the selected object will disappear from the map and Text Tool, but the Count�By Results will not change. After selecting Recouple, all of the previously hidden objects will reappear on the map and in the Text Tool.��

2.8.7.7	Test:�Recoupling Multiple Count�By Windows.��Input:�Run a query which produces a layer and bucket with visible objects.

Select Clutter/Declutter tool.

Select layer and bucket resulting from previous query.

Select Text Tool.

Select Count�By.

Select Count�By again.

Select Decouple in the first Count�By Window.

Select Decouple in the second Count�By Window.

Select a Count�By Result in the first Count�By Window.

Select Hide Except in the first Count�By Window.

Select a different Count�By Result in the second Count�By Window.

Select Hide Except in the second Count�By Window.

Select Recouple from the first Count�By Window.

Select Recouple from the second Count�By Window.��Expected Results:�After selecting Recouple from the first Count�By Window, only the bucket objects corresponding to the Count�By Result selected in the first Count�By Window will appear on the map and in the Text Tool. The second Count�By Window will not be affected. After selecting Recouple from the second Count�By Window, only the bucket objects corresponding to the Count�By Result selected in the second Count�By Window will appear on the map and in the Text Tool, and the only Count�By Result appearing in the second Count�By Window will be appear in the first Count�By Window. ��External Actions While Decoupled

2.8.8.1	Test:�Hook a bucket object from the map.��Input:�Run a query which produces a layer and bucket with visible objects.

Select Clutter/Declutter tool.

Select layer and bucket resulting from previous query.

Select Text Tool.

Select Count�By.

Select Decouple.

Hook an object on the map.��Expected Results:�Map object and corresponding row in Text Tool will highlight, but nothing will highlight in Count�By Result Area.��

2.8.8.2	Test:�Unhook map object. Perform this as continuation of previous test.��Input:�Unhook the highlighted object on the map.��Expected Results:�Unhooked object will no longer be highlighted on map nor in Text Tool, and all Count�By Results remain unhighlighted.��

2.8.8.3	Test:�Hook Text Tool object.��Input:�Run a query which produces a layer and bucket with visible objects.

Select Clutter/Declutter tool.

Select layer and bucket resulting from previous query.

Select Text Tool.

Select Count�By.

Select Decouple.

Hook an object from the Text Tool.��Expected Results:�Hooked row in Text Tool and corresponding map object will highlight, but nothing will highlight in Count�By Result Area.��

2.8.8.4	Test:�Unhook Text Tool object. Run as continuation of previous test.��Input:�Unhook selected Text Tool row.��Expected Result:�Unhooked object will no longer be highlighted on map nor in Text Tool, and all Count�By Results remain unhighlighted.��

2.8.8.5	Test:�Hide Text Tool object.��Input:�Run a query which produces a layer and bucket with visible objects.

Select Clutter/Declutter tool.

Select layer and bucket resulting from previous query.

Select Text Tool.

Select Count�By.

Select Decouple.

Hook an object from the Text Tool.

Select Hide.��Expected Results:�Selected row in Text Tool and corresponding map object will disappear. No effect on Count�By Window.��

2.8.8.6	Test:�Hide Except Text Tool object.��Input:�Run a query which produces a layer and bucket with visible objects.

Select Clutter/Declutter tool.

Select layer and bucket resulting from previous query.

Select Text Tool.

Select Count�By.

Select Decouple.

Hook an object from the Text Tool.

Select Hide Except.��Expected Results:�All rows other than the selected row will disappear in the Text Tool, and all bucket objects other than the one corresponding to selected row will disappear from map. No effect on Count�By Window.��

2.8.8.7	Test:�Show All. Perform as continuation of previous test.��Input:�Select Show All.��Expected Results:�All rows will once again be displayed in Text Tool and corresponding map objects will reappear. No effect on Count�By Window.��External Actions While Coupled

2.8.9.1	Test:�Hook a bucket object from the map.��Input:�Run a query which produces a layer and bucket with visible objects.

Select Clutter/Declutter tool.

Select layer and bucket resulting from previous query.

Select Text Tool.

Select Count�By.

Hook an object on the map.��Expected Results:�Map object and corresponding row in Text Tool will highlight, and the corresponding Count�By Result will highlight in Count�By Result Area.��

2.8.9.2	Test:�Unhook map object. Perform this as continuation of previous test.��Input:�Unhook the highlighted object on the map.��Expected Results:�Unhooked object will no longer be highlighted on map, in Text Tool, nor the Count�By Result Area.��

2.8.9.3	Test:�Hook Text Tool object.��Input:�Run a query which produces a layer and bucket with visible objects.

Select Clutter/Declutter tool.

Select layer and bucket resulting from previous query.

Select Text Tool.

Select Count�By.

Hook an object from the Text Tool.��Expected Results:�Hooked row in Text Tool and corresponding map object will highlight, as will the corresponding Count�By Result in Count�By Result Area.��

2.8.9.4	Test:�Unhook Text Tool object. Run as continuation of previous test.��Input:�Unhook selected Text Tool row.��Expected Result:�Unhooked object will no longer be highlighted on map, in Text Tool, nor in Count�By Result Area.��

2.8.9.5	Test:�Hide Text Tool object.��Input:�Run a query which produces a layer and bucket with visible objects.

Select Clutter/Declutter tool.

Select layer and bucket resulting from previous query.

Select Text Tool.

Select Count�By.

Hook an object from the Text Tool.

Select Hide.��Expected Results:�Selected row in Text Tool and corresponding map object will disappear. Corresponding Count�By Result will disappear.��

2.8.9.6	Test:�Hide Except Text Tool object.��Input:�Run a query which produces a layer and bucket with visible objects.

Select Clutter/Declutter tool.

Select layer and bucket resulting from previous query.

Select Text Tool.

Select Count�By.

Hook an object from the Text Tool.

Select Hide Except.��Expected Results:�All rows other than the selected row will disappear in the Text Tool, and all bucket objects other than the one corresponding to selected row will disappear from map. Count�By Result corresponding to remaining object will remain in the Count�By Result Area.��

2.8.9.7	Test:�Show All. Perform as continuation of previous test.��Input:�Select Show All.��Expected Results:�All rows will once again be displayed in Text Tool and corresponding map objects will reappear. All Count�By Results will display in Count�By Result Area.��Exporting Count�By Results

2.8.10.1	Test:�Copy and Paste from Count�By Window to Paste�capable program.��Input:�Run a query which produces a layer and bucket with visible objects.

Select Clutter/Declutter tool.

Select layer and bucket resulting from previous query.

Select Count�By.

Open a paste�capable program.

Hook one or more Count�By Results.

In paste�capable program, perform paste operation.��Expected Results:�The Hooked Count�By Results will appear in the paste�capable program.��

2.8.10.2	Test:�Print All Count�By Results.��Input:�Run a query which produces a layer and bucket with visible objects.

Select Clutter/Declutter tool.

Select layer and bucket resulting from previous query.

Select Count�By.

Select Print. Follow normal print tool procedures.��Expected Results:�A report will be prepared containing all Count�By Results displayed in the Count�By Result Area.��

2.8.10.3	Test:�Print Unhidden Count�By Results.��Input:�Run a query which produces a layer and bucket with visible objects.

Select Clutter/Declutter tool.

Select layer and bucket resulting from previous query.

Select Count�By.

Select one or more Count�By Results.

Select Hide.

Select Print. Follow normal print tool procedures.��Expected Results:�A report will be prepared containing only those Count�By Results displayed in the Count�By Result Area.��Keyboard Accelerators

2.8.11.1	Test:�Keyboard accelerators.��Input:�Run a query which produces a layer and bucket with visible objects.

Select Clutter/Declutter tool.

Select layer and bucket resulting from previous query.

Select Count-By.

Ascertain that Count-By Results are displayed in Column-major order.

Press the keyboard accelerator keys for Display By Row.��Expected Results:�Count-By results will be redisplayed in Row-major order��

2.8.11.2	Test:�Keyboard accelerators while Control Panel is off.��Input:�Run a query which produces a layer and bucket with visible objects.

Select Clutter/Declutter tool.

Select layer and bucket resulting from previous query.

Select Count-By.

Select Control Panel.

Select Off.

Press the keyboard accelerator keys for Sort Order Descending.��Expected Results:�Count-By results will be redisplayed in descending rather than ascending order.��Non-text bucket

2.8.12.1	Test:�Attempt to open a Count-By window for a non-text bucket.��Input:�Produces an annotation bucket.

Select Clutter/Declutter tool.

Select layer and bucket resulting from previous query.

Select Count-By.��Expected Results:�An error message will appear indicating that the selected layer and bucket is not usable for the Count-By function.��Non-spatial bucket

2.8.13.1	Test:�Attempt to open a Count-By window for a non-spatial bucket.��Input:�Run a NID query which produces a new bucket.

Select Clutter/Declutter tool.

Select layer and bucket resulting from previous query.

Select Count-By.��Expected Results:�A Count-By window will appear normally.��Bounds and Performance Goal

2.8.14.1	Test:�Process extremely large query result and compare timing to goal.��Input:�Run a query which produces a layer and bucket with approximately 10000 visible objects.

Select Clutter/Declutter tool.

Select layer and bucket resulting from previous query.

Select Count-By.��Expected Results:�A Count-By window will appear. The goal is to have the window appear within three seconds of selecting Count-By.��NULL and Blank Column Values

2.8.15.1	Test:�Test to assure that NULL and blank column values are considered the same.��Input:�Manually update one NID SAM record with a NULL in any column. Manually update another NID SAM record with ì ì (1 blank) in the same column as above.

Manually update another NID SAM record with ì ì (2 blanks) in the same column as above.

Run a query which will produce a bucket containing the column used above.

Select Clutter/Declutter.

Select the layer and bucket resulting from the previous query.

Select Text.

Select Count-By from the pull down menu above the column used above.��Expected Results:�A Count-By window will appear. There will be one Count-By Result with a blank value and frequency of 3.��Unit Test Plans and Procedures

Entry Criteria:

	Completion of coding.

The environment required to perform unit test on SOR 96-60A consists of a TAMPS development system, a populated database, the DBA or an MPM, and test personnel with bucket object knowledge.

Results of all tests will be noted in Unit Test Log. Unsuccessful tests will be repeated after correction of deficiency causing failure.

Exit Criteria:

	Successful completion of all unit tests, and completion of Unit Test Log.

Figure 2.3-1 lht_handler Modifications

Paths:

1)	1-2 (End)

Path 1:

< No logic branches nor user activity.>

Expected Results: Adds call to Count-By Handler (Fig.2.3-12); Ends.

Figure 2.3-2 Text Tool Modification

Paths:

1)	1-2-3 (End)

Path 1:

< No logic branches nor user activity.>

Expected Results: Adds button for Count-By in Column Pull Down Menu; Adds callback for Count-By Button to call Count-By Init (Fig. 2.3-4); Ends.

Figure 2.3-3 Clutter/Declutter Modification

Paths:

1)	1-2-3 (End)

Path 1:

< No logic branches nor user activity.>

Expected Results: Adds button for Count-By; Adds callback for Count-By Button to call Count-By Init (Fig. 2.3-4); Ends.

Figure 2.3-4 Count-By Init

Segment I:

Paths:

1)	1-2-3-4-5-(6)

2)	1-2-3-5-(6)

3)	1-2-3-4-(6)

4)	1-2-4-5-(6)

5)	1-2-4-(6)

Path 1:

Column name argument is blank; there is a column name in User Preferences; that column name does not exist in Bucket Info.

Expected Results: gets bucket info for given layer & bucket; checks if column name argument is blank; checks if there is a column name in User Preferences; checks if that column name exists in the bucket info; uses 1st column in the bucket info; proceeds to Segment II (step 6).

Path 2:

Column name argument is blank; there is not a column name in User Preferences.

Expected Results: gets bucket info for given layer & bucket; checks if column name argument is blank; checks if there is a column name in User Preferences; uses 1st column in the bucket info; proceeds to Segment II (step 6).

Path 3:

Column name argument is blank; there is a column name in User Preferences; that column name does exist in Bucket Info.

Expected Results: gets bucket info for given layer & bucket; checks if column name argument is blank; checks if there is a column name in User Preferences; checks if that column name exists in the bucket info; proceeds to Segment II (step 6).

Path 4:

Column name argument is not blank; that column name does not exist in Bucket Info.

Expected Results: gets bucket info for given layer & bucket; checks if column name argument is blank; checks if that column name exists in the bucket info; uses 1st column in the bucket info; proceeds to Segment II (step 6).

Path 5:

Column name argument is not blank; that column name does exist in Bucket Info.

Expected Results: gets bucket info for given layer & bucket; checks if column name argument is blank; checks if that column name exists in the bucket info; proceeds to Segment II (step 6).

Figure 2.3-4 Count-By Init

Segment II:

Paths:

1)	6-7-8 (Fatal Error)

2)	6-7-9-10-11-12 (Fatal Error)

3)	6-7-9-10-11-13-14-15 (End)

4)	6-7-9-13-14-15 (End)

Path 1:

Creation of new Count-By window object fails.

Expected Results: attempts to create a new Count-By window object (Fig. 2.3-5); Fatal Error occurs.

Path 2:

Creation of new Count-By window object succeeds; there is not a Count-By object list; creation of new Count-By object list fails.

Expected Results: attempts to create a new Count-By window object (Fig. 2.3-5); checks if there is a Count-By object list; attempts unsuccessfully to create a new Count-By object list; Fatal Error occurs.

Path 3:

Creation of new Count-By window object succeeds; there is not a Count-By object list; creation of Count-By object list succeeds.

Expected Results: attempts to create a new Count-By window object (Fig. 2.3-5); checks if there is a Count-By object list; creates a new Count-By object list; checks failure status of creation attempt; creates new Count-By object (Figure 2.3-11); adds Count-By object to Count-By object list; Ends.

Path 4:

Creation of new Count-By window object succeeds; there is a Count-By object list.

Expected Results: attempts to create a new Count-By window object (Fig. 2.3-5); checks if there is a Count-By object list; creates new Count-By object (Figure 2.3-11); adds Count-By object to Count-By object list; Ends.

Figure 2.3-5 Create New Count-By Window Object

Paths:

1)	1-2-3-4-5-6-7 (End)

Path 1:

< No preconditions nor user activity. >

Expected Results: saves layer, bucket, column name arguments; sets coupled state to true; creates HMI (Fig. 2.3-25); creates object map (Figure 2.3-7); creates result list (Fig. 2.3-8); produces Count-By result object area (Fig. 2.3-52); Ends.

Figure 2.3-6 Destroy Count-By Window

Paths:

1)	1-2-3-4-5-6-7-8 (End)

2)	1-2-3-4-5-6-8 (End)

3)	1-2-3-4-6-7-8 (End)

4)	1-2-3-4-6-8 (End)

5)	1-3-4-5-6-7-8 (End)

6)	1-3-4-5-6-8 (End)

7)	1-3-4-6-7-8 (End)

8)	1-3-4-6-8 (End)

Path 1:

There is a Count-By result list; there is a Count-By object list; there is a Count-By Triad list.

Expected Results: checks if there is a Count-By result list; destroys the result list (Fig. 2.3-9); destroys the Count-By window widget; checks if there is a Count-By object list; deletes the Count-By object from the Count-By object list; checks if there is a Count-By Triad list; deletes the Count-By triad from the Count-By Triad list; Ends.

Path 2:

There is a Count-By result list; there is a Count-By object list; there is not a Count-By Triad list.

Expected Results: checks if there is a Count-By result list; destroys the result list (Fig. 2.3-9); destroys the Count-By window widget; checks if there is a Count-By object list; deletes the Count-By object from the Count-By object list; checks if there is a Count-By Triad list; Ends.

Path 3:

There is a Count-By result list; there is not a Count-By object list; there is a Count-By Triad list.

Expected Results: checks if there is a Count-By result list; destroys the result list (Fig. 2.3-9); destroys the Count-By window widget; checks if there is a Count-By object list; checks if there is a Count-By Triad list; deletes the Count-By triad from the Count-By Triad list; Ends.

Path 4:

There is a Count-By result list; there is not a Count-By object list; there is not a Count-By Triad list.

Expected Results: checks if there is a Count-By result list; destroys the result list (Fig. 2.3-9); destroys the Count-By window widget; checks if there is a Count-By object list; checks if there is a Count-By Triad list; Ends.

Path 5:

There is not a Count-By result list; there is a Count-By object list; there is a Count-By Triad list.

Expected Results: checks if there is a Count-By result list; checks if there is a Count-By object list; deletes the Count-By object from the Count-By object list; checks if there is a Count-By Triad list; deletes the Count-By triad from the Count-By Triad list; Ends.

Path 6:

There is not a Count-By result list; there is a Count-By object list; there is not a Count-By Triad list.

Expected Results: checks if there is a Count-By result list; checks if there is a Count-By object list; deletes the Count-By object from the Count-By object list; checks if there is a Count-By Triad list; Ends.

Path 7:

There is not a Count-By result list; there is not a Count-By object list; there is a Count-By Triad list.

Expected Results: checks if there is a Count-By result list; checks if there is a Count-By object list; checks if there is a Count-By Triad list; deletes the Count-By triad from the Count-By Triad list; Ends.

Path 8:

There is not a Count-By result list; there is not a Count-By object list; there is not a Count-By Triad list.

Expected Results: checks if there is a Count-By result list; checks if there is a Count-By object list; checks if there is a Count-By Triad list; Ends.

Figure 2.3-7 Create Object Map

Paths:

1)	1-2-4 (End)

2)	1-2-3-5-4 (End)

3)	1-2-3-5-6-7-9-4 (End)

4)	1-2-3-5-6-7-8-3 (loop)

Path 1:

There is no bucket object list.

Expected Results: Gets list of bucket objects for selected layer and bucket; checks if there is a bucket object list; Ends.

Path 2:

There is a bucket object list; completes reading through the entire list.

Expected Results: Gets list of bucket objects for selected layer and bucket; checks if there is a bucket object list; reads a bucket object from the list; checks if end of list has been reached; Ends.

Path 3:

There is a bucket object list; has not finished reading through the entire list; attempt to create a new Count-By bucket object fails.

Expected Results: Gets list of bucket objects for selected layer and bucket; checks if there is a bucket object list; reads a bucket object from the list; checks if end of list has been reached; attempts to create a new Count-By bucket object (Fig. 2.3-10); displays error message: ìCannot create Count-By Bucket Object Mapî; Ends.

Path 4:

There is a bucket object list; has not finished reading through the entire list; attempt to create a new Count-By bucket object succeeds.

Expected Results: Gets list of bucket objects for selected layer and bucket; checks if there is a bucket object list; reads a bucket object from the list; checks if end of list has been reached; attempts to create a new Count-By bucket object (Fig. 2.3-10); adds Count-By bucket object to Count-By bucket object map; loops back to (3) for next bucket object in list.

Figure 2.3-8 Create Result List

Paths:

1)	1-2-3-4 (End)

2)	1-3-4 (End)

Path 1:

A result list does exist.

Expected Results: checks if a result list exists; destroys result list (Fig. 2.3-9); executes Count-By (Fig. 2.3-42); Ends.

Path 2:

A result list does not exist.

Expected Results: checks if a result list exists; executes Count-By (Fig. 2.3-42); Ends.

Figure 2.3-9 Destroy Result List

Paths:

1)	1-2-3-1 (loop)

2)	1-2-4-5-6 (End)

Path 1:

Has not finished reading the Count-By Result List.

Expected Results: reads a Count-By result from the Count-By Result list; checks if the end of the list has been reached; deletes Count-By result object; loops back to (1) for next Count-By result.

Path 2:

Has finished reading the Count-By Result List.

Expected Results: reads a Count-By result from the Count-By Result list; checks if the end of the list has been reached; deletes Count-By result list; sets Count-By result list to Null; Ends.

Figure 2.3-10 Create New Count-By Bucket Object

Paths:

1)	1-2-3-4-5-6-7-8-9-10-13-14 (End)

2)	1-2-3-4-5-6-7-8-9-11-12-13-14 (End)

3)	1-2-3-4-5-6-7-8-9-11-13-14 (End)

4)	1-2-3-4-5-6-8-9-10-13-14 (End)

5)	1-2-3-4-5-6-8-9-11-12-13-14 (End)

6)	1-2-3-4-5-6-8-9-11-13-14 (End)

Path 1:

There is not a ColByName found; column data is null.

Expected Results: sets BKOBJ to Bucket Object *; sets Hidden to Bucket

Object->Hidden attribute; sets Hooked to Bucket Object->Hooked attribute; gets bucket info; calls lbt_setColByName; checks if ìno such columnî; uses first column in bucket info; gets column data; checks if column data is null; sets column data to one blank space; copies column data; Ends.

Path 2:

There is not a ColByName found; column data is not null; the column data is not of type String.

Expected Results: sets BKOBJ to Bucket Object *; sets Hidden to Bucket

Object-> Hidden attribute; sets Hooked to Bucket Object->Hooked attribute; gets bucket info; calls lbt_setColByName; checks if ìno such columnî; uses first column in bucket info; gets column data; checks if column data is null; checks if column data is type String; sets column data to type String; copies column data; Ends.

Path 3:

There is not a ColByName found; column data is not null; the column data is of type String.

Expected Results: sets BKOBJ to Bucket Object *; sets Hidden to Bucket

Object-> Hidden attribute; sets Hooked to Bucket Object->Hooked attribute; gets bucket info; calls lbt_setColByName; checks if ìno such columnî; uses first column in bucket info; gets column data; checks if column data is null; checks if column data is type String; copies column data; Ends.

Path 4:

There is a ColByName found; column data is null.

Expected Results: sets BKOBJ to Bucket Object *; sets Hidden to Bucket

Object-> Hidden attribute; sets Hooked to Bucket Object->Hooked attribute; gets bucket info; calls lbt_setColByName; checks if ìno such columnî; gets column data; checks if column data is null; sets column data to one blank space; copies column data; Ends.

Path 5:

There is a ColByName found; column data is not null; the column data is not of type String.

Expected Results: sets BKOBJ to Bucket Object *; sets Hidden to Bucket

Object-> Hidden attribute; sets Hooked to Bucket Object->Hooked attribute; gets bucket info; calls lbt_setColByName; checks if ìno such columnî; gets column data; checks if column data is null; checks if column data is type String; sets column data to type String; copies column data; Ends.

Path 6:

There is a ColByName found; column data is not null; the column data is of type String.

Expected Results: sets BKOBJ to Bucket Object *; sets Hidden to Bucket

Object-> Hidden attribute; sets Hooked to Bucket Object->Hooked attribute; gets bucket info; calls lbt_setColByName; checks if ìno such columnî; gets column data; checks if column data is null; checks if column data is type String; copies column data; Ends.

Figure 2.3-11 Create New Count-By Object

Paths:

1)	1-2 (End)

Path 1:

< No preconditions, logic branches, nor operator activity. >

Expected Results: sets layer, bucket, column name, and Count-By window; Ends.

Figure 2.3-12 Count-By Handler

Paths:

1)	1-2 (End)

2)	1-3-4-2 (End)

3)	1-3-4-5-3 (loop)

4)	1-3-4-5-6-3 (loop)

Path 1:

There is no Count-By object list.

Expected Results: checks if there is a Count-By object list; Ends.

Path 2:

There is a Count-By object list; the end of the list is reached.

Expected Results: checks if there is a Count-By object list; reads a Count-By object from the Count-By object list; checks if the end of the list has been reached; Ends.

Path 3:

There is a Count-By object list; the end of the list has not been reached; the Count-By object does not match the layer and bucket arguments.

Expected Results: checks if there is a Count-By object list; reads a Count-By object from the Count-By object list; checks if the end of the list has been reached; checks if the Count-By object matches the layer and bucket arguments; loops back to (3) for next Count-By object.

Path 4:

There is a Count-By object list; the end of the list has not been reached; the Count-By object does match the layer and bucket arguments.

Expected Results: checks if there is a Count-By object list; reads a Count-By object from the Count-By object list; checks if the end of the list has been reached; checks if the Count-By object matches the layer and bucket arguments; processes externally generated actions (Fig. 2.3-13); loops back to (3) for next Count-By object.

Figure 2.3-13 Process Externally Generated Actions (Part 1 of 4)

Segment I:

Paths:

1)	1-2-3 (End)

2)	1-4-3 (End)

3)	1-4-5-6-(32)

4)	1-4-5-6-7 (End)

5)	1-4-5 (8)

Path 1:

The input action is ìDeleteî.

Expected Results: checks if the input action is ìDeleteî; destroys Count-By window (Fig. 2.3-6); Ends.

Path 2:

The input action is not ìDeleteî; the Count-By window is not coupled.

Expected Results: checks if the input action is ìDeleteî; checks if the Count-By window is coupled; Ends.

Path 3:

The input action is not ìDeleteî; the Count-By window is coupled; the input action is neither ìHookî nor ìUnhookî; the input action is ìShowî or ìHideî.

Expected Results: checks if the input action is ìDeleteî; checks if the Count-By window is coupled; checks if input action is ìHookî or ìUnhookî; checks if input action is ìShowî or ìHideî; proceeds to Segment V (step 32).

Path 4:

The input action is not ìDeleteî; the Count-By window is coupled; the input action is neither ìHookî nor ìUnhookî; the input action is neither ìShowî nor ìHideî.

Expected Results: checks if the input action is ìDeleteî; checks if the Count-By window is coupled; checks if input action is ìHookî or ìUnhookî; checks if input action is ìShowî or ìHideî; Ends.

Path 5:

The input action is not ìDeleteî; the Count-By window is coupled; the input action is ìHookî or ìUnhookî.

Expected Results: checks if the input action is ìDeleteî; checks if the Count-By window is coupled; checks if input action is ìHookî or ìUnhookî; proceeds to Segment II (step 8).

Figure 2.3-13 Process Externally Generated Actions (Part 1 of 4)

Segment II:

Paths:

1)	8-9-10-(20)

2)	8-9-10-11-12-9 (loop)

3)	8-9-10-11-13-9 (loop)

4)	8-14-15-(20)

5)	8-14-15-16-17-19-(14)

6)	8-14-15-16-17-18-(14)

Path 1:

The bucket object list is null; has read to the end of the Count-By result object map.

Expected Results: checks if the bucket object list is null; reads a Count-By bucket object from the Count-By result object map; checks if the end of the map has been reached; proceeds to Segment III (step 20).

Path 2:

The bucket object list is null; has not read to the end of the Count-By result object map; the action is not ìHook.

Expected Results: checks if the bucket object list is null; reads a Count-By bucket object from the Count-By result object map; checks if the end of the map has been reached; checks if the action is ìHookî; clears the Count-By object hook state; loops back to (9) for next Count-By bucket object.

Path 3:

The bucket object list is null; has not read to the end of the Count-By result object map; the action is ìHook.

Expected Results: checks if the bucket object list is null; reads a Count-By bucket object from the Count-By result object map; checks if the end of the map has been reached; checks if the action is ìHookî; sets the Count-By object hook state; loops back to (9) for next Count-By bucket object.

Path 4:

The bucket object list is not null; has read to the end of the bucket object list.

Expected Results: checks if the bucket object list is null; reads a bucket object from the input list; checks if the end of the input list has been reached; proceeds to Segment III (step 20).

Path 5:

The bucket object list is not null; has not read to the end of the bucket object list; the input action is not ìHookî.

Expected Results: checks if the bucket object list is null; reads a bucket object from the input list; checks if the end of the input list has been reached; accesses Count-By bucket object from the Count-By bucket object map using the bucket object as the key; checks if the input action was ìHookî; clears the Count-By bucket object Hook state; loops to (14) for next bucket object.

Path 6:

The bucket object list is not null; has not read to the end of the bucket object list; the input action is ìHookî.

Expected Results: checks if the bucket object list is null; reads a bucket object from the input list; checks if the end of the input list has been reached; accesses Count-By bucket object from the Count-By bucket object map using the bucket object as the key; checks if the input action was ìHookî; sets the Count-By bucket object Hook state; loops to (14) for next bucket object.

Figure 2.3-14 Process Externally Generated Actions (Part 2 of 4)

Segment III:

Paths:

1)	20-21-22-23-24 (End)

2)	20-21-22-25-26-27-28-26 (loop)

3)	20-21-22-25-26-27-28-29-30-(31)

4)	20-21-22-25-26-27-29-30-(31)

Path 1:

The end of the Count-By result list has been reached.

Expected Results: starts clipboard; reads Count-By object from the Count-By result list; checks if end of list has been reached; ends clipboard; Ends.

Path 2:

The end of the Count-By result list has not been reached; the end of the Count-By result list of Count-By objects has not been reached; the Count-By objectís Hook state has not been set.

Expected Results: starts clipboard; reads Count-By object from the Count-By result list; checks if end of list has been reached; clears Count-By result object Hook state; reads Count-By bucket object from the Count-By result list of Count-By objects; checks if the end of the result list has been reached; checks if the Count-By objectís Hook state is set; loops back to (26) for next Count-By bucket object.

Path 3:

The end of the Count-By result list has not been reached; the end of the Count-By result list of Count-By objects has not been reached; the Count-By objectís Hook state has been set.

Expected Results: starts clipboard; reads Count-By object from the Count-By result list; checks if end of list has been reached; clears Count-By result object Hook state; reads Count-By bucket object from the Count-By result list of Count-By objects; checks if the end of the result list has been reached; checks if the Count-By objectís Hook state is set; sets Count-By result object Hook state; adds Count-By result object to clipboard; proceeds to Segment IV (step 31).

Path 4:

The end of the Count-By result list has not been reached; the end of the Count-By result list of Count-By objects has been reached.

Expected Results: starts clipboard; reads Count-By object from the Count-By result list; checks if end of list has been reached; clears Count-By result object Hook state; reads Count-By bucket object from the Count-By result list of Count-By objects; checks if the end of the result list has been reached; adds Count-By result object to clipboard; proceeds to Segment IV (step 31).

Figure 2.3-15 Process Externally Generated Actions (Part 3 of 4)

Segment IV:

Paths:

1)	31-(20)

Path 1:

< No preconditions, logic branches, nor user activity. >

Expected Results: redraws Count-By result object in the Count-By result area display (Fig. 2.3-56); proceeds to Segment III (step 20).

Figure 2.3-16 Process Externally Generated Actions (Part 4 of 4)

Segment V:

Paths:

1)	32-33-34-44-45-46 (End)

2)	32-33-34-35-36-33 (loop)

3)	32-33-34-35-37-33 (loop)

4)	32-38-39-44-45-46 (End)

5)	32-38-39-40-41-43-44-45-46 (End)

6)	32-38-39-40-41-42-44-45-46 (End)

Path 1:

Bucket object list is null; the end of the Count-By object map has been reached;

Expected Results: checks if bucket object list is null; reads Count-By bucket object from the Count-By object map; checks if the end of the map has been reached; creates the result list (Fig. 2.3-8); produces the Count-By result area display (F.g 2.3-52); Ends.

Path 2:

Bucket object list is null; the end of the Count-By object map has not been reached; the action is ìHideî.

Expected Results: checks if bucket object list is null; reads Count-By bucket object from the Count-By object map; checks if the end of the map has been reached; checks if the action is ìHideî; sets the Count-By bucket objectís Hide state; loops back to (33) for next bucket object.

Path 3:

Bucket object list is null; the end of the Count-By object map has not been reached; the action is not ìHideî.

Expected Results: checks if bucket object list is null; reads Count-By bucket object from the Count-By object map; checks if the end of the map has been reached; checks if the action is ìHideî; clears the Count-By bucket objectís Hide state; loops back to (33) for next bucket object.

Path 4:

Bucket object list is not null; the end of the input list has been reached.

Expected Results: checks if bucket object list is null; reads Count-By bucket object from the input list; checks if the end of the input list has been reached; creates the result list (Fig. 2.3-8); produces the Count-By result area display (F.g 2.3-52); Ends.

Path 5:

Bucket object list is not null; the end of the input list has not been reached; the input action is not ìHideî.

Expected Results: checks if bucket object list is null; reads Count-By bucket object from the input list; checks if the end of the input list has been reached; accesses the Count-By bucket object from the Count-By bucket object map using the bucket object as the key; checks if the input action is ìHideî; clears the Count-By bucket objectís Hide state; creates the result list (Fig. 2.3-8); produces the Count-By result area display (F.g 2.3-52); Ends.

Path 6:

Bucket object list is not null; the end of the input list has not been reached; the input action is ìHideî.

Expected Results: checks if bucket object list is null; reads Count-By bucket object from the input list; checks if the end of the input list has been reached; accesses the Count-By bucket object from the Count-By bucket object map using the bucket object as the key; checks if the input action is ìHideî; sets the Count-By bucket objectís Hide state; creates the result list (Fig. 2.3-8); produces the Count-By result area display (Fig. 2.3-52); Ends.

Figure 2.3-17 Process Locally Generated Hook Action (Part 1 of 4)

Segment I:

Paths:

1)	1-2-3 (End)

2)	1-2-4-5-(45)

3)	1-2-4-5-6-(31)

4)	1-2-4-5-6-7-12-(23)

5)	1-2-4-5-6-7-12-13-14-(23)

6)	1-2-4-5-6-7-12-13-14-11 (Fatal Error)

7)	1-2-4-5-6-7-8-(15)

8)	1-2-4-5-6-7-8-9-10-(15)

9)	1-2-4-5-6-7-8-9-10-11 (Fatal Error)

Path 1:

Index does = -1.

Expected Results: identifies triad from X,Y display location (Fig. 2.3-55); checks if index = -1; Ends.

Path 2:

Index does not = -1; has reached end of Count-By result object list.

Expected Results: identifies triad from X,Y display location (Fig. 2.3-55); checks if index = -1; reads Count-By result object from Count-By result object list; checks if end of list has been reached; proceeds to Segment V (step 45).

Path 3:

Index does not = -1; has not reached end of Count-By result object list; the index is not the index numbered Count-By result object.

Expected Results: identifies triad from X,Y display location (Fig. 2.3-55); checks if index = -1; reads Count-By result object from Count-By result object list; checks if end of list has been reached; checks if this is the index numbered Count-By result object; proceeds to Segment IV (step 31).

Path 4:

Index does not = -1; has not reached end of Count-By result object list; the index is the index numbered Count-By result object; the Count-By result object is not already hooked; there is a temp hook list.

Expected Results: identifies triad from X,Y display location (Fig. 2.3-55); checks if index = -1; reads Count-By result object from Count-By result object list; checks if end of list has been reached; checks if this is the index numbered Count-By result object; checks if the Count-By object is already hooked; checks if there is a temp hook list; proceeds to Segment III (step 23).

Path 5:

Index does not = -1; has not reached end of Count-By result object list; the index is the index numbered Count-By result object; the Count-By result object is not already hooked; there is not a temp hook list; attempt to create a new temp hook list succeeds.

Expected Results: identifies triad from X,Y display location (Fig. 2.3-55); checks if index = -1; reads Count-By result object from Count-By result object list; checks if end of list has been reached; checks if this is the index numbered Count-By result object; checks if the Count-By object is already hooked; checks if there is a temp hook list; attempts to create a new temp hook list; proceeds to Segment III (step 23).

Path 6:

Index does not = -1; has not reached end of Count-By result object list; the index is the index numbered Count-By result object; the Count-By result object is not already hooked; there is not a temp hook list; attempt to create a new temp hook list fails.

Expected Results: identifies triad from X,Y display location (Fig. 2.3-55); checks if index = -1; reads Count-By result object from Count-By result object list; checks if end of list has been reached; checks if this is the index numbered Count-By result object; checks if the Count-By object is already hooked; checks if there is a temp hook list; attempts to create a new temp hook list; Fatal Error occurs.

Path 7:

Index does not = -1; has not reached end of Count-By result object list; the index is the index numbered Count-By result object; the Count-By result object is already hooked; there is a temp unhook list.

Expected Results: identifies triad from X,Y display location (Fig. 2.3-55); checks if index = -1; reads Count-By result object from Count-By result object list; checks if end of list has been reached; checks if this is the index numbered Count-By result object; checks if the Count-By object is already hooked; checks if there is a temp unhook list; proceeds to Segment II (step 15).

Path 8:

Index does not = -1; has not reached end of Count-By result object list; the index is the index numbered Count-By result object; the Count-By result object is already hooked; there is not a temp unhook list; attempt to create one succeeds.

Expected Results: identifies triad from X,Y display location (Fig. 2.3-55); checks if index = -1; reads Count-By result object from Count-By result object list; checks if end of list has been reached; checks if this is the index numbered Count-By result object; checks if the Count-By object is already hooked; checks if there is a temp unhook list; attempts to create a new temp unhook list; checks if attempt fails; proceeds to Segment II (step 15).

Path 9:

Index does not = -1; has not reached end of Count-By result object list; the index is the index numbered Count-By result object; the Count-By result object is already hooked; there is not a temp unhook list; attempt to create one fails.

Expected Results: identifies triad from X,Y display location (Fig. 2.3-55); checks if index = -1; reads Count-By result object from Count-By result object list; checks if end of list has been reached; checks if this is the index numbered Count-By result object; checks if the Count-By object is already hooked; checks if there is a temp unhook list; attempts to create a new temp unhook list; checks if attempt fails; Fatal Error occurs.

Figure 2.3-18 Process Locally Generated Hook Action (Part 2 of 4)

Segment II:

Paths:

1)	15-16-17-18-19-(4)

2)	15-16-17-18-19-20-22-18 (loop)

3)	15-16-17-18-19-20-21-18 (loop)

4)	15-18-19-(4)

5)	15-18-19-20-22-18 (loop)

6)	15-18-19-20-21-18 (loop)

Path 1:

Count-By window is not coupled; end of Count-By bucket object list has been reached.

Expected Results: checks if Count-By window is coupled; clears Count-By result object Hook state; redraws Count-By result object in Count-By result area display (Fig. 2.3-56); reads Count-By bucket object from Count-By result object Count-By bucket object list; checks if end of list has been reached; proceeds to Segment I (step 4).

Path 2:

Count-By window is not coupled; end of Count-By bucket object list has not been reached; coupled state is true.

Expected Results: checks if Count-By window is coupled; clears Count-By result object Hook state; redraws Count-By result object in Count-By result area display (Fig. 2.3-56); reads Count-By bucket object from Count-By result object Count-By bucket object list; checks if end of list has been reached; checks if coupled state is true; adds Count-By bucket object ìBucket_Objectî to temp unhook list; loops back to (18) for next Count-By bucket object.

Path 3:

Count-By window is not coupled; end of Count-By bucket object list has not been reached; coupled state is false.

Expected Results: checks if Count-By window is coupled; clears Count-By result object Hook state; redraws Count-By result object in Count-By result area display (Fig. 2.3-56); reads Count-By bucket object from Count-By result object Count-By bucket object list; checks if end of list has been reached; checks if coupled state is true; clears Count-By bucket object Hook state; loops back to (18) for next Count-By bucket object.

Path 4:

Count-By window is coupled; end of Count-By bucket object list has been reached.

Expected Results: checks if Count-By window is coupled; reads Count-By bucket object from Count-By result object Count-By bucket object list; checks if end of list has been reached; proceeds to Segment I (step 4).

Path 5:

Count-By window is coupled; end of Count-By bucket object list has not been reached; coupled state is true.

Expected Results: checks if Count-By window is coupled; reads Count-By bucket object from Count-By result object Count-By bucket object list; checks if end of list has been reached; checks if coupled state is true; adds Count-By bucket object ìBucket_Objectî to temp unhook list; loops back to (18) for next Count-By bucket object.

Path 6:

Count-By window is coupled; end of Count-By bucket object list has not been reached; coupled state is false.

Expected Results: checks if Count-By window is coupled; reads Count-By bucket object from Count-By result object Count-By bucket object list; checks if end of list has been reached; checks if coupled state is true; clears Count-By bucket object Hook state; loops back to (18) for next Count-By bucket object.

Figure 2.3-18 Process Locally Generated Hook Action (Part 2 of 4)

Segment III:

Paths:

1)	23-24-25-26-27-(4)

2)	23-24-25-26-27-28-30-26 (loop)

3)	23-24-25-26-27-28-29-26 (loop)

4)	23-26-27-(4)

5)	23-26-27-28-30-26 (loop)

6)	23-26-27-28-29-26 (loop)

Path 1:

Count-By window is not coupled; end of Count-By bucket object list has been reached.

Expected Results: checks if Count-By window is coupled; sets Count-By result object Hook state; redraws Count-By result object in Count-By result area display (Fig. 2.3-56); reads Count-By bucket object from Count-By result object Count-By bucket object list; checks if end of list has been reached; proceeds to Segment I (step 4).

Path 2:

Count-By window is not coupled; end of Count-By bucket object list has not been reached; coupled state is true.

Expected Results: checks if Count-By window is coupled; sets Count-By result object Hook state; redraws Count-By result object in Count-By result area display (Fig. 2.3-56); reads Count-By bucket object from Count-By result object Count-By bucket object list; checks if end of list has been reached; checks if coupled state is true; adds Count-By bucket object ìBucket_Objectî to temp hook list; loops back to (26) for next Count-By bucket object.

Path 3:

Count-By window is not coupled; end of Count-By bucket object list has not been reached; coupled state is false.

Expected Results: checks if Count-By window is coupled; sets Count-By result object Hook state; redraws Count-By result object in Count-By result area display (Fig. 2.3-56); reads Count-By bucket object from Count-By result object Count-By bucket object list; checks if end of list has been reached; checks if coupled state is true; sets Count-By bucket object Hook state; loops back to (26) for next Count-By bucket object.

Path 4:

Count-By window is coupled; end of Count-By bucket object list has been reached.

Expected Results: checks if Count-By window is coupled; reads Count-By bucket object from Count-By result object Count-By bucket object list; checks if end of list has been reached; proceeds to Segment I (step 4).

Path 5:

Count-By window is coupled; end of Count-By bucket object list has not been reached; coupled state is true.

Expected Results: checks if Count-By window is coupled; reads Count-By bucket object from Count-By result object Count-By bucket object list; checks if end of list has been reached; checks if coupled state is true; adds Count-By bucket object ìBucket_Objectî to temp hook list; loops back to (26) for next Count-By bucket object.

Path 6:

Count-By window is coupled; end of Count-By bucket object list has not been reached; coupled state is false.

Expected Results: checks if Count-By window is coupled; reads Count-By bucket object from Count-By result object Count-By bucket object list; checks if end of list has been reached; checks if coupled state is true; sets Count-By bucket object Hook state; loops back to (26) for next Count-By bucket object.

Figure 2.3-19 Process Locally Generated Hook Action (Part 3 of 4)

Segment IV:

Paths:

1)	31-(45)

2)	31-32-(45)

3)	31-32-33-34-35-36 (Fatal Error)

4)	31-32-33-34-35-37-38-42-43-44-(45)

5)	31-32-33-34-35-37-38-42-(45)

6)	31-32-33-34-35-37-38-39-40-37 (loop)

7)	31-32-33-34-35-37-38-39-41-37 (loop)

8)	31-32-33-37-38-42-43-44-(45)

9)	31-32-33-37-38-42-(45)

10)	31-32-33-37-38-39-40-37 (loop)

11)	31-32-33-37-38-39-41-37 (loop)

Path 1:

Count-By result object is not hooked.

Expected Results: checks if Count-By result object is hooked; proceeds to Segment V (step 45).

Path 2:

Count-By result object is hooked; shift hook state is true.

Expected Results: checks if Count-By result object is hooked; checks if shift hook state is true; proceeds to Segment V (step 45).

Path 3:

Count-By result object is hooked; shift hook state is false; there is not a temp unhook list; fails in creating a new temp unhook list.

Expected Results: checks if Count-By result object is hooked; checks if shift hook state is true; checks if there is a temp unhook list; attempts unsuccessfully to create a new temp unhook list; Fatal Error occurs.

Path 4:

Count-By result object is hooked; shift hook state is false; there is not a temp unhook list; succeeds in creating a new temp unhook list; end of Count-By bucket object list has been reached; coupled state is false.

Expected Results: checks if Count-By result object is hooked; checks if shift hook state is true; checks if there is a temp unhook list; attempts successfully to create a new temp unhook list; reads Count-By bucket object from Count-By result object Count-By bucket object list; checks if end of list has been reached; checks coupled state; clears Count-By result object Hook state; redraws Count-By result object in Count-By result area display (Fig. 2.3-56); proceeds to Segment V (step 45).

Path 5:

Count-By result object is hooked; shift hook state is false; there is not a temp unhook list; succeeds in creating a new temp unhook list; end of Count-By bucket object list has been reached; coupled state is true.

Expected Results: checks if Count-By result object is hooked; checks if shift hook state is true; checks if there is a temp unhook list; attempts successfully to create a new temp unhook list; reads Count-By bucket object from Count-By result object Count-By bucket object list; checks if end of list has been reached; checks coupled state; proceeds to Segment V (step 45).

Path 6:

Count-By result object is hooked; shift hook state is false; there is not a temp unhook list; succeeds in creating a new temp unhook list; end of Count-By bucket object list has not been reached; coupled state is false.

Expected Results: checks if Count-By result object is hooked; checks if shift hook state is true; checks if there is a temp unhook list; attempts successfully to create a new temp unhook list; reads Count-By bucket object from Count-By result object Count-By bucket object list; checks if end of list has been reached; checks coupled state; clears Count-By bucket object Hook state; loops back to (37) for next Count-By bucket object.

Path 7:

Count-By result object is hooked; shift hook state is false; there is not a temp unhook list; succeeds in creating a new temp unhook list; end of Count-By bucket object list has not been reached; coupled state is true.

Expected Results: checks if Count-By result object is hooked; checks if shift hook state is true; checks if there is a temp unhook list; attempts successfully to create a new temp unhook list; reads Count-By bucket object from Count-By result object Count-By bucket object list; checks if end of list has been reached; checks coupled state; adds Count-By bucket object ìBucket_Objectî to temp unhook list; loops back to (37) for next Count-By bucket object.

Path 8:

Count-By result object is hooked; shift hook state is false; there is a temp unhook list; end of Count-By bucket object list has been reached; coupled state is false.

Expected Results: checks if Count-By result object is hooked; checks if shift hook state is true; checks if there is a temp unhook list; reads Count-By bucket object from Count-By result object Count-By bucket object list; checks if end of list has been reached; checks coupled state; clears Count-By result object Hook state; redraws Count-By result object in Count-By result area display (Fig. 2.3-56); proceeds to Segment V (step 45).

Path 9:

Count-By result object is hooked; shift hook state is false; there is a temp unhook list; end of Count-By bucket object list has been reached; coupled state is true.

Expected Results: checks if Count-By result object is hooked; checks if shift hook state is true; checks if there is a temp unhook list; reads Count-By bucket object from Count-By result object Count-By bucket object list; checks if end of list has been reached; checks coupled state; proceeds to Segment V (step 45).

Path 10:

Count-By result object is hooked; shift hook state is false; there is a temp unhook list; end of Count-By bucket object list has not been reached; coupled state is false.

Expected Results: checks if Count-By result object is hooked; checks if shift hook state is true; checks if there is a temp unhook list; reads Count-By bucket object from Count-By result object Count-By bucket object list; checks if end of list has been reached; checks coupled state; clears Count-By bucket object Hook state; loops back to (37) for next Count-By bucket object.

Path 11:

Count-By result object is hooked; shift hook state is false; there is a temp unhook list; end of Count-By bucket object list has not been reached; coupled state is true.

Expected Results: checks if Count-By result object is hooked; checks if shift hook state is true; checks if there is a temp unhook list; reads Count-By bucket object from Count-By result object Count-By bucket object list; checks if end of list has been reached; checks coupled state; adds Count-By bucket object ìBucket_Objectî to temp unhook list; loops back to (37) for next Count-By bucket object.

Figure 2.3-20 Process Locally Generated Hook Action (Part 4 of 4)

Segment V:

Paths:

1)	45-46-47-48-46 (loop)

2)	45-46-47-48-49-46 (loop)

3)	45-46-47-50-51-52 (End)

4)	45-46-47-50-53-54-55-56-57-58-51-52 (End)

5)	45-46-47-50-53-54-55-56-51-52 (End)

6)	45-46-47-50-53-56-57-58-51-52 (End)

7)	45-46-47-50-53-56-51-52 (End)

Path 1:

End of Count-By result object list has not been reached; Count-By result object has not been hooked.

Expected Results: starts clipboard; reads Count-By result object from Count-By result object list; checks if end of list has been reached; checks if Count-By result object is hooked; loops back to (46) for next Count-By result object.

Path 2:

End of Count-By result object list has not been reached; Count-By result object has been hooked.

Expected Results: starts clipboard; reads Count-By result object from Count-By result object list; checks if end of list has been reached; checks if Count-By result object is hooked; adds Count-By result objects to clipboard; loops back to (46) for next Count-By result object.

Path 3:

End of Count-By result object list has been reached; coupled state is false.

Expected Results: starts clipboard; reads Count-By result object from Count-By result object list; checks if end of list has been reached; checks coupled state; ends clipboard; Ends.

Path 4:

End of Count-By result object list has been reached; coupled state is true; there is a temp unhook list; there is a temp hook list.

Expected Results: starts clipboard; reads Count-By result object from Count-By result object list; checks if end of list has been reached; checks coupled state; checks if there is a temp unhook list; calls lbt_Notify with unhook list and Action=Temp Unhook; deletes temp unhook list; checks if there is a temp hook list; calls lbt_Notify with temp hook list and Action=Hook; deletes temp hook list; ends clipboard; Ends.

Path 5:

End of Count-By result object list has been reached; coupled state is true; there is a temp unhook list; there is not a temp hook list.

Expected Results: starts clipboard; reads Count-By result object from Count-By result object list; checks if end of list has been reached; checks coupled state; checks if there is a temp unhook list; calls lbt_Notify with unhook list and Action=Temp Unhook; deletes temp unhook list; checks if there is a temp hook list; ends clipboard; Ends.

Path 6:

End of Count-By result object list has been reached; coupled state is true; there is not a temp unhook list; there is a temp hook list.

Expected Results: starts clipboard; reads Count-By result object from Count-By result object list; checks if end of list has been reached; checks coupled state; checks if there is a temp unhook list; checks if there is a temp hook list; calls lbt_Notify with temp hook list and Action=Hook; deletes temp hook list; ends clipboard; Ends.

Path 7:

End of Count-By result object list has been reached; coupled state is true; there is not a temp unhook list; there is not a temp hook list.

Expected Results: starts clipboard; reads Count-By result object from Count-By result object list; checks if end of list has been reached; checks coupled state; checks if there is a temp unhook list; checks if there is a temp hook list; ends clipboard; Ends.

Figure 2.3-21 Process Locally Generated Hide Action

Paths:

1)	1-2-3 (Fatal Error)

2)	1-2-4-5-13-15-16-17-18 (End)

3)	1-2-4-5-13-14-17-18 (End)

4)	1-2-4-5-6-4 (loop)

5)	1-2-4-5-6-7-8-4 (loop)

6)	1-2-4-5-6-7-8-9-10-11-7 (loop)

7)	1-2-4-5-6-7-8-9-10-11-12-7 (loop)

8)	1-2-4-5-6-7-8-9-7 (loop)

Path 1:

Creation of temporary bucket object list results in Fatal Error.

Expected Results: unsuccessfully creates temporary bucket object list; Fatal Error condition results.

Path 2:

Creation of temporary bucket object list succeeds; end of Count-By result object list has been reached; coupled state is false.

Expected Results: successfully creates temporary bucket object list; reads Count-By bucket object from Count-By resultís object list; checks if end of list has been reached; checks coupled state; creates result list (Fig. 2.3-8); produces Count-By result area display (Fig. 2.3-52); deletes temporary bucket object list; Ends.

Path 3:

Creation of temporary bucket object list succeeds; end of Count-By result object list has been reached; coupled state is true.

Expected Results: successfully creates temporary bucket object list; reads Count-By bucket object from Count-By resultís object list; checks if end of list has been reached; checks coupled state; calls lbt_Notify with layer, bucket, temp list, and Action=Hide; deletes temporary bucket object list; Ends.

Path 4:

Creation of temporary bucket object list succeeds; end of Count-By result object list has not been reached; Count-By result object is not hooked.

Expected Results: successfully creates temporary bucket object list; reads Count-By bucket object from Count-By resultís object list; checks if end of list has been reached; checks if Count-By result object is hooked; loops back to (4) for next Count-By bucket object.

Path 5:

Creation of temporary bucket object list succeeds; end of Count-By result object list has not been reached; Count-By result object is hooked; end of Count-By object list has been reached.

Expected Results: successfully creates temporary bucket object list; reads Count-By bucket object from Count-By resultís object list; checks if end of list has been reached; checks if Count-By result object is hooked; reads Count-By bucket object from result objectís Count-By object list; checks if end of Count-By object list has been reached; loops back to (4) for next Count-By bucket object.

Path 6:

Creation of temporary bucket object list succeeds; end of Count-By result object list has not been reached; Count-By result object is hooked; end of Count-By object list has not been reached; Count-By bucket object is not hidden; coupled state is true.

Expected Results: successfully creates temporary bucket object list; reads Count-By bucket object from Count-By resultís object list; checks if end of list has been reached; checks if Count-By result object is hooked; reads Count-By bucket object from result objectís Count-By object list; checks if end of Count-By object list has been reached; checks if Count-By bucket object is hidden; adds Count-By bucket objectís bucket object pointer to temporary bucket object list; checks coupled state; loops back to (7) for next Count-By bucket object.

Path 7:

Creation of temporary bucket object list succeeds; end of Count-By result object list has not been reached; Count-By result object is hooked; end of Count-By object list has not been reached; Count-By bucket object is not hidden; coupled state is false.

Expected Results: successfully creates temporary bucket object list; reads Count-By bucket object from Count-By resultís object list; checks if end of list has been reached; checks if Count-By result object is hooked; reads Count-By bucket object from result objectís Count-By object list; checks if end of Count-By object list has been reached; checks if Count-By bucket object is hidden; adds Count-By bucket objectís bucket object pointer to temporary bucket object list; checks coupled state; sets Count-By bucket object Hide state; loops back to (7) for next Count-By bucket object.

Path 8:

Creation of temporary bucket object list succeeds; end of Count-By result object list has not been reached; Count-By result object is hooked; end of Count-By object list has not been reached; Count-By bucket object is hidden.

Expected Results: successfully creates temporary bucket object list; reads Count-By bucket object from Count-By resultís object list; checks if end of list has been reached; checks if Count-By result object is hooked; reads Count-By bucket object from result objectís Count-By object list; checks if end of Count-By object list has been reached; checks if Count-By bucket object is hidden; loops back to (7) for next Count-By bucket object.

Figure 2.3-22 Process Locally Generated Hide Except Action

Paths:

1)	1-2-3 (Fatal Error)

2)	1-2-4-5-13-15-16-4 (loop)

3)	1-2-4-5-13-14-4 (loop)

4)	1-2-4-5-6-7-8-11-12 (End)

5)	1-2-4-5-6-9-10-11-12 (End)

Path 1:

Creation of temporary bucket object list results in Fatal Error.

Expected Results: unsuccessfully creates temporary bucket object list; Fatal Error condition results.

Path 2:

Creation of temporary bucket object list succeeds; end of Count-By bucket object map has not been reached; Count-By bucket object is hooked.

Expected Results: successfully creates temporary bucket object list; accesses Count-By bucket object from Count-By bucket object map; checks if end of map has been reached; checks if Count-By bucket object has been hooked; clears Count-By bucket object Hide state; adds Count-By bucket objectís bucket object pointer to temp bucket object list; loops back to (4) for next Count-By bucket object.

Path 3:

Creation of temporary bucket object list succeeds; end of Count-By bucket object map has not been reached; Count-By bucket object is not hooked.

Expected Results: successfully creates temporary bucket object list; accesses Count-By bucket object from Count-By bucket object map; checks if end of map has been reached; checks if Count-By bucket object has been hooked; sets Count-By bucket object Hide state; loops back to (4) for next Count-By bucket object.

Path 4:

Creation of temporary bucket object list succeeds; end of Count-By bucket object map has been reached; coupled state is true.

Expected Results: successfully creates temporary bucket object list; accesses Count-By bucket object from Count-By bucket object map; checks if end of map has been reached; checks coupled state; calls lbt_Notify with null list and Action=Hide; calls lbt_Notify with temp bucket object list and Action=Show; deletes temp bucket object list; Ends.

Path 5:

Creation of temporary bucket object list succeeds; end of Count-By bucket object map has been reached; coupled state is false.

Expected Results: successfully creates temporary bucket object list; accesses Count-By bucket object from Count-By bucket object map; checks if end of map has been reached; checks coupled state; creates result list (Fig. 2.3-8); produces Count-By result area display (Fig. 2.3-52); deletes temp bucket object list; Ends.

Figure 2.3-23 Process Locally Generated Show Action

Paths:

1)	1-2-3 (End)

2)	1-4-5-6-4 (loop)

3)	1-4-5-7-8-3 (End)

Path 1:

Coupled state is true.

Expected Results: checks coupled state; calls lbt_Notify with null list and Action=Show; Ends.

Path 2:

Coupled state is false; end of Count-By bucket object map has not been reached.

Expected Results: checks coupled state; accesses Count-By bucket object from the Count-By bucket object map; checks if end of map has been reached; clears Count-By bucket object Hide state; loops back to (4) for next bucket object.

Path 3:

Coupled state is false; end of Count-By bucket object map has been reached.

Expected Results: checks coupled state; accesses Count-By bucket object from the Count-By bucket object map; checks if end of map has been reached; creates result list (Fig. 2.3-8); produces Count-By result area display (Fig. 2.3-52); Ends.

Figure 2.3-24 Recouple

Paths:

1)	1-2-3 (Fatal Error)

2)	1-2-4-5-6-4 (loop)

3)	1-2-4-5-6-7-4 (loop)

4)	1-2-4-5-8-9-10-11 (End)

Path 1:

Hook list creation fails.

Expected Results: unsuccessfully creates hook list; Fatal Error condition results.

Path 2:

Hook list creation succeeds; end of Count-By bucket object map has not been reached; Count-By bucket object is hidden.

Expected Results: successfully creates hook list; reads Count-By bucket object from Count-By bucket object map; checks if end of map has been reached; checks if Count-By bucket object is hidden; loops back to (4) for next bucket object.

Path 3:

Hook list creation succeeds; end of Count-By bucket object map has not been reached; Count-By bucket object is not hidden.

Expected Results: successfully creates hook list; reads Count-By bucket object from Count-By bucket object map; checks if end of map has been reached; checks if Count-By bucket object is hidden; adds Count-By bucket object ìBucket_Objectî to hook list; loops back to (4) for next bucket object.

Path 4:

Hook list creation succeeds; end of Count-By bucket object map has been reached.

Expected Results: successfully creates hook list; reads Count-By bucket object from Count-By bucket object map; checks if end of map has been reached; calls lbt_Notify with layer, bucket, null list, and Action=Hide; calls lbt_Notify with layer, bucket, Hook list, and Action=Show; sets coupled state; Ends.

Figure 2.3-25 Create HMI

Paths:

1)	1-2-3-4-5-6-7- (End)

Path 1:

< No preconditions, logic branches, nor user activity. >

Expected Results: creates & manages widgets for the Count-By window, all of the control buttons, and display areas; makes all widgets visible and applies appropriate widget attachments; sets the button text for the user defaults values for sort field, sort order, display order, and column name; creates the Count-By callback structure for each callback; sets each callback structure Count-By window to the ID of the current Count-By window, and the optional argument as necessary for the callback; adds the callbacks and uses the Count-By callback structure as the Client_Data field; Ends.

Figure 2.3-26 Typical Count-By HMI Callback

Paths:

1)	1-2-3 (End)

Path 1:

< No preconditions, logic branches, nor user activity. >

Expected Results: converts the Client_Data argument to a Count-By callback structure; calls the Count-By callback structureís Count-By windowís handler for this callback event; Ends.

Figure 2.3-27 Column Button Handler

Paths:

1)	1-2-3-4 (End)

2)	1-4 (End)

Path 1:

The selected column is different from the current column.

Expected Results: checks if the selected column is different from the current column; destroys the Count-By window (Fig. 2.3-6); performs Count-By Init (Fig. 2.3-4); Ends.

Path 2:

The selected column is not different from the current column.

Expected Results: checks if the selected column is different from the current column; Ends.

Figure 2.3-28 Display by Button Handler

Paths:

1)	1-2-3 (End)

2)	1-2-4-5-10-11-12 (End)

3)	1-6-7 (End)

4)	1-6-8-9-10-11-12 (End)

Path 1:

User has not selected row; display by is currently column.

Expected Results: checks if the user selected row; checks if display by is currently column; Ends.

Path 2:

User has not selected row; display by is not currently column.

Expected Results: checks if the user selected row; checks if display by is currently column; sets Display_By to ìcolumnî; sets Display By button text to ìColumnî; updates Display_By in Count-By user preferences; produces the Count-By result area display (Fig. 2.3-52); Ends.

Path 3:

User has selected row; display by is currently row.

Expected Results: checks if the user selected row; checks if display by is currently row; Ends.

Path 4:

User has selected row; display by is not currently row.

Expected Results: checks if the user selected row; checks if display by is currently row; sets Display_By to ìrowî; sets Display By button text to ìRowî; updates Display_By in Count-By user preferences; produces the Count-By result area display (Fig. 2.3-52); Ends.

Figure 2.3-29 Sort by Button Handler

Paths:

1)	1-2-3 (End)

2)	1-2-4-5-10-11-12-13 (End)

3)	1-6-7 (End)

4)	1-6-8-9-10-11-12-13 (End)

Path 1:

User has not selected value; sort by is currently frequency.

Expected Results: checks if the user selected value; checks if sort by is currently frequency; Ends.

Path 2:

User has not selected value; sort by is not currently frequency.

Expected Results: checks if the user selected value; checks if sort by is currently frequency; sets Sort_By to ìfrequencyî; sets Sort_By button text to ìFrequencyî; updates Sort By in Count-By user preferences; creates Result list (Fig. 2.3-8); produces Count-By result area display (Fig. 2.3-52); Ends.

Path 3:

User has selected value; sort by is currently value.

Expected Results: checks if the user selected value; checks if sort by is currently value; Ends.

Path 4:

User has selected value; sort by is not currently value.

Expected Results: checks if the user selected value; checks if sort by is currently value; sets Sort_By to ìvalueî; sets Sort_By button text to ìvalueî; updates Sort By in Count-By user preferences; creates Result list (Fig. 2.3-8); produces Count-By result area display (Fig. 2.3-52); Ends.

�Figure 2.3-30 Sort Order Button Handler

Paths:

1)	1-2-3 (End)

2)	1-2-4-5-10-11-12-13 (End)

3)	1-6-7 (End)

4)	1-6-8-9-10-11-12-13 (End)

Path 1:

User has not selected Ascending; sort order is currently Descending.

Expected Results: checks if the user selected Ascending; checks if sort order is currently Descending; Ends.

Path 2:

User has not selected Ascending; sort order is not currently Descending.

Expected Results: checks if the user selected Ascending; checks if sort order is currently Descending; sets Sort_Order to ìDescendingî; sets Sort_Order button text to ìDescendingî; updates Sort Order in Count-By user preferences; creates result list (Fig. 2.3-8); produces Count-By result area display (Fig. 2.3-52); Ends.

Path 3:

User has selected Ascending; sort order is currently Ascending.

Expected Results: checks if the user selected Ascending; checks if sort order is currently Ascending; Ends.

Path 4:

User has selected Ascending; sort order is not currently Ascending.

Expected Results: checks if the user selected Ascending; checks if sort order is currently Ascending; sets Sort_Order to ìAscendingî; sets Sort_Order button text to ìAscendingî; updates Sort Order in Count-By user preferences; creates result list (Fig. 2.3-8); produces Count-By result area display (Fig. 2.3-52); Ends.

Figure 2.3-31 Summary Line Button Handler

Paths:

1)	1-2-3 (End)

2)	1-2-4-5-6-7-8-10-11-12 (End)

3)	1-2-4-5-6-7-9-10-11-12 (End)

4)	1-13-14 (End)

5)	1-13-15-16-17-18-20-21-10-11-12 (End)

6)	1-13-15-16-17-19-20-21-10-11-12 (End)

Path 1:

User has not selected Summary Display On; Summary Display is currently off.

Expected Results: checks if the user selected Summary Display On; checks if Summary Display is currently off; Ends.

Path 2:

User has not selected Summary Display On; Summary Display is currently on; control panel is on.

Expected Results: checks if the user selected Summary Display On; checks if Summary Display is currently off; sets Summary Display to ìoffî; unmanages Summary Display; sets Summary Display button text to ìoffî; checks if Control Panel is off; attaches top of Count-By result area to bottom of second row of buttons; updates Summary Display in Count-By user preferences; produces Count-By result area display (Fig. 2.3-52); Ends.

Path 3:

User has not selected Summary Display On; Summary Display is currently on; control panel is off.

Expected Results: checks if the user selected Summary Display On; checks if Summary Display is currently off; sets Summary Display to ìoffî; unmanages Summary Display; sets Summary Display button text to Off; checks if Control Panel is off; attaches top of Count-By result area to bottom of first row of buttons; updates Summary Display in Count-By user preferences; produces Count-By result area display (Fig. 2.3-52); Ends.

Path 4:

User has selected Summary Display On; Summary Display is currently on.

Expected Results: checks if the user selected Summary Display On; checks if Summary Display is currently on; Ends.

Path 5:

User has selected Summary Display On; Summary Display is currently off; control panel is off.

Expected Results: checks if the user selected Summary Display On; checks if Summary Display is currently on; sets Summary Display to ìonî; sets Summary Display button text to ìonî; checks if Control Panel is off; attaches top of Summary Display to bottom of first row of buttons; manages Summary Display; attaches top of Count-By result area to bottom of Summary Display; updates Summary Display in Count-By user preferences; produces Count-By result area display (Fig. 2.3-52); Ends.

Path 6:

User has selected Summary Display On; Summary Display is currently off; control panel is on.

Expected Results: checks if the user selected Summary Display On; checks if Summary Display is currently on; sets Summary Display to ìonî; sets Summary Display button text to ìonî; checks if Control Panel is off; attaches top of Summary Display to bottom of second row of buttons; manages Summary Display; attaches top of Count-By result area to bottom of Summary Display; updates Summary Display in Count-By user preferences; produces Count-By result area display (Fig. 2.3-52); Ends.

Figure 2.3-32 Control Panel Button Handler

Paths:

1)	1-2-3 (End)

2)	1-2-4-5-6-7-9-10-11-12-13 (End)

3)	1-2-4-5-6-7-8-10-11-12-13 (End)

4)	1-14-15 (End)

5)	1-14-16-17-18-20-21-11-12-13 (End)

6)	1-14-16-17-18-19-21-11-12-13 (End)

Path 1:

User has not selected Control Panel On; Control Panel is currently off.

Expected Results: checks if the user selected Control Panel On; checks if Control Panel is currently off; Ends.

Path 2:

User has not selected Control Panel On; Control Panel is currently on; Summary Display is on.

Expected Results: checks if the user selected Control Panel On; checks if Control Panel is currently off; sets Control Panel to ìOffî; sets Control Panel button text to ìOffî; unmanages Control Panel buttons; checks if Summary Display is off; attaches top of Summary Display to bottom of second row of buttons; attaches bottom of Count-By result area to top of lower control panel buttons; updates Control Panel in Count-By user preferences; produces Count-By result area display (Fig.2.3-52); Ends.

Path 3:

User has not selected Control Panel On; Control Panel is currently on; Summary Display is off.

Expected Results: checks if the user selected Control Panel On; checks if Control Panel is currently off; sets Control Panel to ìOffî; sets Control Panel button text to ìOffî; unmanages Control Panel buttons; checks if Summary Display is off; attaches top of Count-By result area to bottom of second row of buttons; attaches bottom of Count-By result area to top of lower control panel buttons; updates Control Panel in Count-By user preferences; produces Count-By result area display (Fig.2.3-52); Ends.

Path 4:

User has selected Control Panel On; Control Panel is currently on.

Expected Results: checks if the user selected Control Panel On; checks if Control Panel is currently on; Ends.

Path 5:

User has selected Control Panel On; Control Panel is currently off; Summary Display is on.

Expected Results: checks if the user selected Control Panel On; checks if Control Panel is currently on; sets Control Panel to ìOnî; sets Control Panel button text to ìOnî; checks if Summary Display is off; attaches top of Summary Display to bottom of second row of buttons; attaches bottom of Count-By result area to top of bottom row of buttons; updates Control Panel in Count-By user preferences; produces Count-By result area display (Fig.2.3-52); Ends.

Path 6:

User has selected Control Panel On; Control Panel is currently off; Summary Display is off.

Expected Results: checks if the user selected Control Panel On; checks if Control Panel is currently on; sets Control Panel to ìOnî; sets Control Panel button text to ìOnî; checks if Summary Display is off; attaches top of Count-By result area to bottom of second row of buttons; attaches bottom of Count-By result area to top of bottom row of buttons; updates Control Panel in Count-By user preferences; produces Count-By result area display (Fig.2.3-52); Ends.

Figure 2.3-33 Save User Preferences Button Handler

Paths:

1)	1-2 (End)

Path 1:

< No preconditions nor user activity. >

Expected Results: saves user preferences (Fig. 2.3-36); Ends.

Figure 2.3-34 Delete User Preferences Button Handler

Paths:

1)	1-2 (End)

Path 1:

< No preconditions nor user activity. >

Expected Results: deletes user preferences (Fig. 2.3-37); Ends.

Figure 2.3-35 Create Count-By User Preferences

Paths:

1)	1-6-7 (End)

2)	1-2-3-5-6-7 (End)

3)	1-2-3-4-7 (End)

Path 1:

The file ì$User/.countByPreferencesî does not exist.

Expected Results: checks if the file ì$User/.countByPreferencesî exists; sets sort sequence to Ascending; sets display sequence to Column Major; sets sort field to Value; sets column name to Null; Ends.

Path 2:

The file ì$User/.countByPreferencesî does exist; file open attempt fails.

Expected Results: checks if the file ì$User/.countByPreferencesî exists; unsuccessfully attempts to open this file; displays error message: ìCannot Read Preferences, Using Defaultsî; sets sort sequence to Ascending; sets display sequence to Column Major; sets sort field to Value; sets column name to Null; Ends.

Path 3:

The file ì$User/.countByPreferencesî does exist; file open attempt succeeds.

Expected Results: checks if the file ì$User/.countByPreferencesî exists; successfully opens this file; reads sort sequence; reads display sequence; reads sort field; reads length of column name; reads column name; closes file; Ends.

Figure 2.3-36 Save User Preferences

Paths:

1)	1-5-6-8-9 (End)

2)	1-5-6-7-9 (End)

3)	1-2-3-8-9 (End)

4)	1-2-3-4-9 (End)

Path 1:

The file ì$User/.countByPreferencesî does not exist; attempt to create and open this file succeeds.

Expected Results: checks if the file ì$User/.countByPreferencesî exists; successfully creates and opens the file; writes sort sequence, display sequence, sort field, length of column name, column name; closes file; Ends.

Path 2:

The file ì$User/.countByPreferencesî does not exist; attempt to create and open this file fails.

Expected Results: checks if the file ì$User/.countByPreferencesî exists; unsuccessfully attempts to create and open the file; displays error message: ìUnable to Create User Preference FIleî; Ends.

Path 3:

The file ì$User/.countByPreferencesî does exist; attempt to open this file succeeds.

Expected Results: checks if the file ì$User/.countByPreferencesî exists; successfully opens the file; writes sort sequence, display sequence, sort field, length of column name, column name; closes file; Ends.

Path 4:

The file ì$User/.countByPreferencesî does exist; attempt to open this file fails.

Expected Results: checks if the file ì$User/.countByPreferencesî exists; unsuccessfully attempts to open the file; displays error message: ìUnable to save User Preference Fileî; Ends.

Figure 2.3-37 Delete User Preferences

Paths:

1)	1-2-3-4 (End)

2)	1-2-4 (End)

Path 1:

Attempt to delete the ì$User/.countByPreferencesî file fails.

Expected Results: attempts unsuccessfully to delete the ì$User/.countByPreferencesî file; display error message: ìUnable to delete User Preference Fileî; Ends.

Path 2:

Attempt to delete the ì$User/.countByPreferencesî file succeeds.

Expected Results: successfully deletes the ì$User/.countByPreferencesî file; Ends.

Figure 2.3-38 Print Button Handler

Paths:

1)	1-2 (End)

Path 1:

< No preconditions nor user activity. >

Expected Results: calls prl_print_function with Function Name ìCount-By Printî; Ends.

Figure 2.3-39 Coupling Button Handler

Paths:

1)	1-2-3-4 (End)

2)	1-2-4 (End)

3)	1-5-6-4 (End)

3)	1-5-4 (End)

Path 1:

User does select Decouple; current state is not Coupled.

Expected Results: checks if user selected ìDecoupleî; checks if current state is ìCoupledî; sets current state to ìDecoupledî; Ends.

Path 2:

User does select Decouple; current state is Coupled.

Expected Results: checks if user selected ìDecoupleî; checks if current state is ìCoupledî; Ends.

Path 3:

User does not select Decouple; current state is not Decoupled.

Expected Results: checks if user selected ìDecoupleî; checks if current state is ìDecoupledî; performs Recouple (Fig. 2.3-24); Ends.

Path 4:

User does not select Decouple; current state is Decoupled.

Expected Results: checks if user selected ìDecoupleî; checks if current state is ìDecoupledî; Ends.

Figure 2.3-40 Help Button Handler

Paths:

1)	1-2 (End)

Path 1:

< No preconditions nor user activity. >

Expected Results: calls the_help_cb; Ends.

Figure 2.3-41 Cancel Button Handler

Paths:

1)	1-2 (End)

Path 1:

< No preconditions nor user activity. >

Expected Results: destroys the Count-By window (Fig. 2.3-6); Ends.

Figure 2.3-42 Count-By (Part 1 of 2)

Segment I:

Paths:

1)	1-2-3-4 (Fatal Error)

2)	1-2-3-5-6-7-(34)

3)	1-2-3-5-6-7-8-(19)

4)	1-2-3-5-6-7-8-9-6 (loop)

5)	1-2-3-5-6-7-8-9-10-11-6 (loop)

6)	1-2-3-5-6-7-8-9-10-12-13-14-15-(16)

Path 1:

Attempt to create Count-By result list fails.

Expected Results: creates Count-By bucket object list (Fig. 2.3-65); unsuccessfully attempts to create Count-By result list; Fatal Error condition results.

Path 2:

Attempt to create Count-By result list succeeds; end of Count-By bucket object map has been reached.

Expected Results: creates Count-By bucket object list (Fig. 2.3-65); successfully creates Count-By result list; clears Node_in_Progress flag, Longest_Value, Highest_Frequency, & Previous_Value, and sets Sequence Number to 0; gets Count-By bucket object from Count-By bucket object map; checks if end of map has been reached; proceeds to Segment IV (step 34).

Path 3:

Attempt to create Count-By result list succeeds; end of Count-By bucket object map has not been reached; this Count-By bucket object value is not the same as the previous value.

Expected Results: creates Count-By bucket object list (Fig. 2.3-65); successfully creates Count-By result list; clears Node_in_Progress flag, Longest_Value, Highest_Frequency, & Previous_Value, and sets Sequence Number to 0; gets Count-By bucket object from Count-By bucket object map; checks if end of map has been reached; checks if this Count-By bucket object value is the same as the previous value; proceeds to Segment II (step 19).

Path 4:

Attempt to create Count-By result list succeeds; end of Count-By bucket object map has not been reached; this Count-By bucket object value is the same as the previous value; this Count-By bucket object is hidden.

Expected Results: creates Count-By bucket object list (Fig. 2.3-65); successfully creates Count-By result list; clears Node_in_Progress flag, Longest_Value, Highest_Frequency, & Previous_Value, and sets Sequence Number to 0; gets Count-By bucket object from Count-By bucket object map; checks if end of map has been reached; checks if this Count-By bucket object value is the same as the previous value; checks if this Count-By bucket object is hidden; loops back to (6) for the next bucket object.

Path 5:

Attempt to create Count-By result list succeeds; end of Count-By bucket object map has not been reached; this Count-By bucket object value is the same as the previous value; this Count-By bucket object is not hidden; this node is in progress.

Expected Results: creates Count-By bucket object list (Fig. 2.3-65); successfully creates Count-By result list; clears Node_in_Progress flag, Longest_Value, Highest_Frequency, & Previous_Value, and sets Sequence Number to 0; gets Count-By bucket object from Count-By bucket object map; checks if end of map has been reached; checks if this Count-By bucket object value is the same as the previous value; checks if this Count-By bucket object is hidden; checks if this node is in progress; increments the Count-By result frequency by 1; loops back to (6) for the next bucket object.

Path 6:

Attempt to create Count-By result list succeeds; end of Count-By bucket object map has not been reached; this Count-By bucket object value is the same as the previous value; this Count-By bucket object is not hidden; this node is not in progress.

Expected Results: creates Count-By bucket object list (Fig. 2.3-65); successfully creates Count-By result list; clears Node_in_Progress flag, Longest_Value, Highest_Frequency, & Previous_Value, and sets Sequence Number to 0; gets Count-By bucket object from Count-By bucket object map; checks if end of map has been reached; checks if this Count-By bucket object value is the same as the previous value; checks if this Count-By bucket object is hidden; checks if this node is in progress; creates new Count-By result object; sets Count-By result object frequency to 1; sets Count-By result object value to the Count-By bucket object value; sets the Count-By result object sequence number to Seq_num and increments Seq_num; proceeds to Segment II (step 16).

Figure 2.3-42 Count-By (Part 1 of 2)

Segment II:

Paths:

1)	16-17-18-(6)

2)	16-18-(6)

3)	19-(25)

4)	19-20-21-22-23-24-(25)

5)	19-20-22-23-24-(25)

Path 1:

This Count-By result object value is longer than the longest value.

Expected Results: checks if this Count-By result object value is longer than the longest value; saves the length of the Count-By result object value as the new longest value; sets Node_in_Progress to ìtrueî; proceeds to Segment I (step 6).

Path 2:

This Count-By result object value is not longer than the longest value.

Expected Results: checks if this Count-By result object value is longer than the longest value; sets Node_in_Progress to ìtrueî; proceeds to Segment I (step 6).

Path 3:

Node is not in progress.

Expected Results: checks if Node is in progress; proceeds to Segment III (step 25).

Path 4:

Node is in progress; this Count-By results objectís frequency is greater than the highest frequency.

Expected Results: checks if Node is in progress; checks if this Count-By results objectís frequency is greater than the highest frequency; saves Count-By result objectís frequency as the new highest frequency; adds Count-By result object to Count-By result list; increments total number of results by 1; sets Node_in_Progress to ìfalseî; proceeds to Segment III (step 25).

Path 5:

Node is in progress; this Count-By results objectís frequency is not greater than the highest frequency.

Expected Results: checks if Node is in progress; checks if this Count-By results objectís frequency is greater than the highest frequency; adds Count-By result object to Count-By result list; increments total number of results by 1; sets Node_in_Progress to ìfalseî; proceeds to Segment III (step 25).

Figure 2.3-42 Count-By (Part 1 of 2)

Segment III:

Paths:

1)	25-(6)

2)	25-26-27-28-29-30-31-32-33-6 (loop)

3)	25-26-27-28-29-30-31-33-6 (loop)

Path 1:

This Count-By bucket object is hidden.

Expected Results: checks if this Count-By bucket object is hidden; proceeds to Segment I (step 6).

Path 2:

This Count-By bucket object is not hidden; this Count-By result objectís value is longer than the longest value.

Expected Results: checks if this Count-By bucket object is hidden; creates new Count-By result object; sets Count-By result object frequency to 1; sets Count-By result object value to Count-By bucket object value; sets Count-By result object sequence number to Seq_num and increments Seq_num; adds Count-By bucket object to Count-By result objectís Count-By bucket object list; checks if this Count-By result objectís value is longer than the longest value; saves length of Count-By result object value as the new longest value; sets Node_in_Progress to ìtrueî; proceeds to Segment I (step 6).

Path 3:

This Count-By bucket object is not hidden; this Count-By result objectís value is not longer than the longest value.

Expected Results: checks if this Count-By bucket object is hidden; creates new Count-By result object; sets Count-By result object frequency to 1; sets Count-By result object value to Count-By bucket object value; sets Count-By result object sequence number to Seq_num and increments Seq_num; adds Count-By bucket object to Count-By result objectís Count-By bucket object list; checks if this Count-By result objectís value is longer than the longest value; sets Node_in_Progress to ìtrueî; proceeds to Segment I (step 6).

Figure 2.3-43 Count-By (Part 2 of 2)

Segment IV:

Paths:

1)	34-35-36-37-38-39-40-41 (End)

2)	34-35-37-38-39-40-41 (End)

3)	34-39-40-41 (End)

Path 1:

This node is in progress; this Count-By result objectís frequency is greater than the highest frequency.

Expected Results: checks if this Node is in progress; checks if this Count-By result object frequency is greater than the highest frequency; saves the Count-By result objectís frequency as the new highest frequency; adds the Count-By result object to the Count-By result object list; increments the total number of results by 1; clears Node_in_Progress; returns Count-By result list; Ends.

Path 2:

This node is in progress; this Count-By result objectís frequency is not greater than the highest frequency.

Expected Results: checks if this Node is in progress; checks if this Count-By result object frequency is greater than the highest frequency; adds the Count-By result object to the Count-By result object list; increments the total number of results by 1; clears Node_in_Progress; returns Count-By result list; Ends.

Path 3:

This node is not in progress.

Expected Results: checks if this Node is in progress; clears Node_in_Progress; returns Count-By result list; Ends.

Figure 2.3-44 Print All Triads

Paths:

1)	1-2-3-4-2 (loop)

2)	1-2-3-5 (End)

Path 1:

End of Count-By triad list has not been reached.

Expected Results: fills entire drawing area with background color; reads Count-By triad from Count-By triad list; checks if end of list has been reached; prints triad (Fig. 2.3-54); loops back to (2) for next triad.

Path 2:

End of Count-By triad list has been reached.

Expected Results: fills entire drawing area with background color; reads Count-By triad from Count-By triad list; checks if end of list has been reached; Ends.

Figure 2.3-45 Create Count-By Result Drawing Area

Paths:

1)	1-2-3-4-5-6-7-8-9-10 (End)

2)	1-2-11-12-13-14-8-9-10 (End)

Path 1:

Attempt to get fixed width font succeeds.

Expected Results: successfully gets fixed width font; calculates window character width (Fig. 2.3-46); calculates number of columns (Fig. 2.3-49); calculates number of visible rows (Fig. 2.3-47); sets row Y size = (vertical size of area)/(number of visible rows); sets column X size = (horizontal size of area)/(number of columns); creates normal graphic context with background Gray; creates Hooked graphic context with background Black; Ends.

Path 2:

Attempt to get fixed width font fails.

Expected Results: unsuccessfully gets fixed width font; sets number of columns = 0; sets number of visible rows = 0; sets row height = 0; sets column width = 0; creates normal graphic context with background Gray; creates Hooked graphic context with background Black; Ends.

Figure 2.3-46 Calculate Window Character Width

Paths:

1)	1-2-4-5 (End)

2)	1-2-3-5 (End)

Path 1:

Attempt to call X Load Query Font succeeds.

Expected Results: successfully calls X load query font; sets window character width = (X dimension)/(Font->Max Bounds width); Ends.

Path 2:

Attempt to call X Load Query Font fails.

Expected Results: unsuccessfully calls X load query font; sets window character width = 0; Ends.

Figure 2.3-47 Calculate Number of Visible Rows

Paths:

1)	1-2-4-5 (End)

2)	1-2-3-5 (End)

Path 1:

Attempt to call X Load Query Font succeeds.

Expected Results: successfully calls X load query font; sets Number of Visible Rows = (Y dimension)/(Font->Max_bounds.ascent + Font->Max_bounds.descent); Ends.

Path 2:

Attempt to call X Load Query Font fails.

Expected Results: unsuccessfully calls X load query font; sets Number of Visible Rows = 0; Ends.

Figure 2.3-48 Calculate Triad Size

Paths:

1)	1-2-3-4 (End)

Path 1:

< No preconditions nor user activity. >

Expected Results: sets Longest_Count = Character Length of total number of results; sets longest frequency = character length of highest frequency; sets triad size = Longest_Value + Longest_Count + Longest_Frequency + (2 * Intra_Triad_Gap) +2; Ends.

Figure 2.3-49 Calculate Number of Columns

Paths:

1)	1-2-3-4 (End)

Path 1:

< No preconditions nor user activity. >

Expected Results: sets each column = Triad Size + Inter_Triad_Gap; sets total width = Horizontal_Spaces + Inter_Triad_Gap; sets Number of Columns = integer results of (Total Width)/(Each Column); Ends.

Figure 2.3-50 Calculate Number of Visible Results

Paths:

1)	1-2 (End)

Path 1:

< No preconditions nor user activity. >

Expected Results: sets Number of Visible Results = (Number of Visible Rows) * (Number of Columns); Ends.

Figure 2.3-51 Calculate Starting Point for Displaying Count-By Results

Paths:

1)	1-2-3-4-7 (End)

2)	1-2-3-4-6-7 (End)

3)	1-2-3-5-7 (End)

Path 1:

Start index is not less than 0; start index + number of visible results is not greater than the total number of results - 1.

Expected Results: sets Center_Point = (Total Number of Results * (Percentage Offset into List/100)) / ((Number of Visible Results / 2) + 1); sets start index = (Center_Point - (Number of Visible Results / 2)); checks if start index is < 0; checks if start index + number of visible results is greater than the total number of results - 1; Ends.

Path 2:

Start index is not less than 0; start index + number of visible results is greater than the total number of results - 1.

Expected Results: sets Center_Point = (Total Number of Results * (Percentage Offset into List/100)) / ((Number of Visible Results / 2) + 1); sets start index = (Center_Point - (Number of Visible Results / 2)); checks if start index is < 0; checks if start index + number of visible results is greater than the total number of results - 1; sets start index = (Total Number of Visible Results - Number of Visible Results - 1); Ends.

Path 3:

Start index is less than 0.

Expected Results: sets Center_Point = (Total Number of Results * (Percentage Offset into List/100)) / ((Number of Visible Results / 2) + 1); sets start index = (Center_Point - (Number of Visible Results / 2)); checks if start index is < 0; sets start index = 0; Ends.

Figure 2.3-52 Produce Count-By Result Area Display

Paths:

1)	1-2-3-4-5-6-7-8-9 (Fatal Error)

2)	1-2-3-4-5-6-7-8-10-11-12-13 (Fatal Error)

3)	1-2-3-4-5-6-7-8-10-11-12-14-15-16-17-18 (End)

4)	1-2-3-4-5-6-7-8-10-11-12-14-15-16-17-11 (loop)

5)	1-2-3-4-5-6-10-11-12-13 (Fatal Error)

6)	1-2-3-4-5-6-10-11-12-14-15-16-17-18 (End)

7)	1-2-3-4-5-6-10-11-12-14-15-16-17-11 (loop)

Path 1:

There is not a triad list; creation of a triad list fails.

Expected Results: calculates triad size (Fig. 2.3-48); creates Count-By result drawing area (Fig. 2.3-45); gets percentage offset into list from scrollbar; calculates starting point for displaying Count-By results (Fig. 2.3-51); reads & discards Count-By result objects from Count-By result list up to start index; checks if there is a triad list; unsuccessfully attempts to create a triad list; Fatal Error condition results.

Path 2:

There is not a triad list; creation of a triad list succeeds; attempt to create new Count-By triad fails.

Expected Results: calculates triad size (Fig. 2.3-48); creates Count-By result drawing area (Fig. 2.3-45); gets percentage offset into list from scrollbar; calculates starting point for displaying Count-By results (Fig. 2.3-51); reads & discards Count-By result objects from Count-By result list up to start index; checks if there is a triad list; successfully creates a triad list; sets count = 0; unsuccessfully attempts to create a new Count-By triad (Fig. 2.3-53); Fatal Error condition results.

Path 3:

There is not a triad list; creation of a triad list succeeds; attempt to create new Count-By triad succeeds; Count does = Number of Visible Results.

Expected Results: calculates triad size (Fig. 2.3-48); creates Count-By result drawing area (Fig. 2.3-45); gets percentage offset into list from scrollbar; calculates starting point for displaying Count-By results (Fig. 2.3-51); reads & discards Count-By result objects from Count-By result list up to start index; checks if there is a triad list; successfully creates a triad list; sets count = 0; successfully creates a new Count-By triad (Fig. 2.3-53); adds Count-By triad to Count-By triad list; reads next Count-By result object from the Count-By result object list; increments Count-By 1; checks if Count = Number of Visible Results; prints all triads (Fig. 2.3-44); Ends.

Path 4:

There is not a triad list; creation of a triad list succeeds; attempt to create new Count-By triad succeeds; Count does not = Number of Visible Results.

Expected Results: calculates triad size (Fig. 2.3-48); creates Count-By result drawing area (Fig. 2.3-45); gets percentage offset into list from scrollbar; calculates starting point for displaying Count-By results (Fig. 2.3-51); reads & discards Count-By result objects from Count-By result list up to start index; checks if there is a triad list; successfully creates a triad list; sets count = 0; successfully creates a new Count-By triad (Fig. 2.3-53); adds Count-By triad to Count-By triad list; reads next Count-By result object from the Count-By result object list; increments Count-By 1; checks if Count = Number of Visible Results; loops back to (11).

Path 5:

There is a triad list; attempt to create new Count-By triad fails.

Expected Results: calculates triad size (Fig. 2.3-48); creates Count-By result drawing area (Fig. 2.3-45); gets percentage offset into list from scrollbar; calculates starting point for displaying Count-By results (Fig. 2.3-51); reads & discards Count-By result objects from Count-By result list up to start index; checks if there is a triad list; sets count = 0; unsuccessfully attempts to create a new Count-By triad (Fig. 2.3-53); Fatal Error condition results.

Path 6:

There is a triad list; attempt to create new Count-By triad succeeds; Count does = Number of Visible Results.

Expected Results: calculates triad size (Fig. 2.3-48); creates Count-By result drawing area (Fig. 2.3-45); gets percentage offset into list from scrollbar; calculates starting point for displaying Count-By results (Fig. 2.3-51); reads & discards Count-By result objects from Count-By result list up to start index; checks if there is a triad list; sets count = 0; successfully creates a new Count-By triad (Fig. 2.3-53); adds Count-By triad to Count-By triad list; reads next Count-By result object from the Count-By result object list; increments Count-By 1; checks if Count = Number of Visible Results; prints all triads (Fig. 2.3-44); Ends.

Path 7:

There is a triad list; attempt to create new Count-By triad succeeds; Count does not = Number of Visible Results.

Expected Results: calculates triad size (Fig. 2.3-48); creates Count-By result drawing area (Fig. 2.3-45); gets percentage offset into list from scrollbar; calculates starting point for displaying Count-By results (Fig. 2.3-51); reads & discards Count-By result objects from Count-By result list up to start index; checks if there is a triad list; sets count = 0; successfully creates a new Count-By triad (Fig. 2.3-53); adds Count-By triad to Count-By triad list; reads next Count-By result object from the Count-By result object list; increments Count-By 1; checks if Count = Number of Visible Results; loops back to (11).

Figure 2.3-53 Create New Count-By Triad List

Paths:

1)	1-2-3-4-5-6-7-10-11-12-13-14-15 (End)

2)	1-8-9-4-5-6-7-10-11-12-13-14-15 (End)

Path 1:

The Display by Preference is Row Major.

Expected Results: checks if the Display by Preference is Row Major; sets column = (Count % Number of columns in drawing area); sets row = (Count / Number of columns in drawing area); sets result list index = (Count + start index); sets offset = Length of Highest Count in Drawing area - Length of result list count; prints result list count at text buffer [offset]; increments offset by length of result list count + Intra_Triad_Gap; prints result object value buffer [offset]; increments offset by length of longest result in drawing area + Intra_Triad_Gap; increments offset by length of highest frequency in drawing area - length of result object frequency; prints ë(ë Result Object Frequency + ë)í at buffer [offset]; sets Hooked to result object Hooked state; Ends.

Path 2:

The Display by Preference is not Row Major.

Expected Results: checks if the Display by Preference is Row Major; sets row = (Count % Number of visible rows in drawing area); sets column = (Count / Number of visible rows in drawing area); sets result list index = (Count + start index); sets offset = Length of Highest Count in Drawing area - Length of result list count; prints result list count at text buffer [offset]; increments offset by length of result list count + Intra_Triad_Gap; prints result object value buffer [offset]; increments offset by length of longest result in drawing area + Intra_Triad_Gap; increments offset by length of highest frequency in drawing area - length of result object frequency; prints ë(ë Result Object Frequency + ë)í at buffer [offset]; sets Hooked to result object Hooked state; Ends.

Figure 2.3-54 Print Triad

Paths:

1)	1-2-3-4-6 (End)

2)	1-2-3-5-6 (End)

Path 1:

The triad is not hooked.

Expected Results: sets X location = triad column * column width; sets Y location to triad row * row height; checks if triad is hooked; draws triad string at X, Y with normal context; Ends.

Path 2:

The triad is hooked.

Expected Results: sets X location = triad column * column width; sets Y location to triad row * row height; checks if triad is hooked; draws triad string at X, Y with hooked context; Ends.

Figure 2.3-55 Identify Triad from X, Y Display Location

Paths:

1)	1-2-3-4-5-6-7-8-9 (End)

2)	1-2-3-4-5-6-4 (loop)

3)	1-2-3-4-5-6-7-4 (loop)

4)	1-2-3-4-5-9 (End)

Path 1:

The end of the Count-By triad list has not been reached; the triad row does match; the triad column does match.

Expected Results: sets index = -1; sets row to Y location / row height; sets column = X location / column width; reads a Count-By triad from the Count-By triad list; checks if end of list has been reached; checks if the triad row matches; checks if the triad column matches; sets index = triad result list count; Ends.

Path 2:

The end of the Count-By triad list has not been reached; the triad row does not match.

Expected Results: sets index = -1; sets row to Y location / row height; sets column = X location / column width; reads a Count-By triad from the Count-By triad list; checks if end of list has been reached; checks if the triad row matches; loops back to (4) for next triad.

Path 3:

The end of the Count-By triad list has not been reached; the triad row does match; the triad column does not match.

Expected Results: sets index = -1; sets row to Y location / row height; sets column = X location / column width; reads a Count-By triad from the Count-By triad list; checks if end of list has been reached; checks if the triad row matches; checks if the triad column matches; loops back to (4) for next triad.

Path 4:

The end of the Count-By triad list has been reached.

Expected Results: sets index = -1; sets row to Y location / row height; sets column = X location / column width; reads a Count-By triad from the Count-By triad list; checks if end of list has been reached; Ends.

Figure 2.3-56 Redraw Count-By Result Object in Count-By Result Area Display

Paths:

1)	1-2-7 (End)

2)	1-2-3-1 (loop)

3)	1-2-3-4-7 (End)

4)	1-2-3-4-5-6-7 (End)

Path 1:

The end of the Count-By triad list has been reached.

Expected Results: reads a Count-By triad from the Count-By triad list; checks if the end of the list has been reached; Ends.

Path 2:

The end of the Count-By triad list has not been reached; the triad result list count does not match the Count-By result objectís sequence number.

Expected Results: reads a Count-By triad from the Count-By triad list; checks if the end of the list has been reached; checks if the triad result list count matches the Count-By result objectís sequence number; loops back to (1) for next triad.

Path 3:

The end of the Count-By triad list has not been reached; the triad result list count does match the Count-By result objectís sequence number; the triadís Hook state does match the Count-By result objectís Hook state.

Expected Results: reads a Count-By triad from the Count-By triad list; checks if the end of the list has been reached; checks if the triad result list count matches the Count-By result objectís sequence number; checks if the triadís Hook state matches the Count-By result objectís Hook state; Ends.

Path 4:

The end of the Count-By triad list has not been reached; the triad result list count does match the Count-By result objectís sequence number; the triadís Hook state does not match the Count-By result objectís Hook state.

Expected Results: reads a Count-By triad from the Count-By triad list; checks if the end of the list has been reached; checks if the triad result list count matches the Count-By result objectís sequence number; checks if the triadís Hook state matches the Count-By result objectís Hook state; sets the triadís Hook state to the Count-By result objectís Hook state; prints the triad (Fig. 2.3-54); Ends.

Figure 2.3-57 Count-By Window Resize Event

Paths:

1)	1-2 (End)

Path 1:

< No preconditions nor user activity. >

Expected Results: produces Count-By result area display (Fig. 2.3-52); Ends.

Figure 2.3-58 Count-By Result Area Expose Event

Paths:

1)	1-2 (End)

Path 1:

< No preconditions nor user activity. >

Expected Results: prints all triads (Fig. 2.3-44); Ends.

Figure 2.3-59 Count-By Result Scrollbar Handler

Paths:

1)	1-2-5-6-7-8-9 (End)

2)	1-3-4-5-6-7-8-9 (End)

3)	1-3-5-6-7-8-9 (End)

Path 1:

Action Up Arrow condition is true.

Expected Results: checks if Action Up Arrow; calculates new location for slider; gets position of slider; sets Offset_Into_List; repositions and resizes slider; produces Count-By result area display (Fig. 2.3-52); Ends.

Path 2:

Action Up Arrow condition is false; Action Down Arrow condition is true.

Expected Results: checks if Action Up Arrow; checks if Action Down Arrow; calculates new location for slider; gets position of slider; sets Offset_Into_List; repositions and resizes slider; produces Count-By result area display (Fig. 2.3-52); Ends.

Path 3:

Action Up Arrow condition is false; Action Down Arrow condition is false.

Expected Results: checks if Action Up Arrow; checks if Action Down Arrow; gets position of slider; sets Offset_Into_List; repositions and resizes slider; produces Count-By result area display (Fig. 2.3-52); Ends.

Figure 2.3-60 Count-By Print

Paths:

1)	1-2-3 (End)

2)	1-2-4-5-6-7-8-9-1 (loop)

3)	1-2-4-5-9-1 (loop)

Path 1:

End of Count-By result list has been reached.

Expected Results: reads Count-By result list; checks if end of list has been reached; Ends.

Path 2:

End of Count-By result list has not been reached; page overflow condition occurs.

Expected Results: reads Count-By result list; checks if end of list has been reached; formats Count-By result object data for printing; checks if page overflow condition; forces page feed; increments page number; prints header; prints formatted Count-By result object data; loops back to (1) for next result.

Path 3:

End of Count-By result list has not been reached; page overflow condition has not occurred.

Expected Results: reads Count-By result list; checks if end of list has been reached; formats Count-By result object data for printing; checks if page overflow condition; prints formatted Count-By result object data; loops back to (1) for next result.

Figure 2.3-61 Hide Button Handler

Paths:

1)	1-2 (End)

Path 1:

< No preconditions nor user activity. >

Expected Results: processes locally generated hide action (Fig. 2.3-21); Ends.

Figure 2.3-62 Hide Except Button Handler

Paths:

1)	1-2 (End)

Path 1:

< No preconditions nor user activity. >

Expected Results: processes locally generated hide except action (Fig. 2.3-22); Ends.

Figure 2.3-63 Show All Button Handler

Paths:

1)	1-2 (End)

Path 1:

< No preconditions nor user activity. >

Expected Results: processes locally generated show action (Fig. 2.3-23); Ends.

Figure 2.3-64 Hook Handler

Paths:

1)	1-2 (End)

Path 1:

< No preconditions nor user activity. >

Expected Results: processes locally generated hook action (Fig. 2.3-17); Ends.

Figure 2.3-65 Create Count-By Bucket Object List

Paths:

1)	1-2-3 (Fatal Error)

2)	1-2-4-5-7-8 (End)

3)	1-2-4-5-6-4 (loop)

Path 1:

Attempt to create a Count-By bucket object list fails.

Expected Results: attempts unsuccessfully to create a Count-By bucket object list; Fatal Error condition results.

Path 2:

Attempt to create a Count-By bucket object list succeeds; reaches end of Count-By bucket object map.

Expected Results: creates a Count-By bucket object list; reads a Count-By bucket object from the Count-By bucket object map; checks if end of map has been reached; calls ult_lst_sort with comparison function name ìCount-By Sort Objectsî; Ends.

Path 3:

Attempt to create a Count-By bucket object list succeeds; has not reached end of Count-By bucket object map.

Expected Results: creates a Count-By bucket object list; reads a Count-By bucket object from the Count-By bucket object map; checks if end of map has been reached; adds Count-By bucket object to Count-By bucket object list; loops back to (4) for next bucket object.

Issues and Risks

None

metrics

Updated SLOC from original FA

Item #	Description							New 	Mods

Implement internal Data Schema.					200

Implement Count By value algorithm.				250

Implement data bucket Hook List update algorithm		300

and data structures.

Implement column or row list scrollbar logic.			250

Implement multi-column widget functionality			1000

with window resize input.

Implement sort algorithm, sort by alphabetical,			250

ascending, or descending item frequency count.

Implement multiple Count By window connectivity		50

and operation precedence.

Implement multiple Count By window data structures.		100

Implement control panel button functions: hide			1500

hide except, reset/show all, decouple, recouple,

save defaults, delete defaults, control panel hide menu

option.

Implement keyboard accelerators (hotkeys).			50

Implement X Window cut and pase using			200

XA_PRIMARY atom.

Implement interface to data bucket using layer and		200	50

bucket Core APIs.

Implement additional core APIs to implement Count		200

By functions.

Total New:		4,550

Total Modified:	50

�administrative

pdr action items

software lines of code estimates

Table 3.2-1. Software Lines of Code Estimates

Item #�Rational�Est �New�Est �Mod�Est �Scripts�Actual �New�Actual �Mod�Actual Scripts��1�Internal data Scheme�200�0�0�341�0�0��2�Count By Algorithm�250�0�0�197�0�0��3�Data Bucket Hook List Update�300�0�0�277�0�0��4�Column or Row List Scrollbar�250�0�0�192�0�0��5�Multi-Column Widget with Window Resize�1000�0�0�386�0�0��6�Sort Algorithms�250�0�0�44�0�0��7�Multiple Count-By Window Connectivity/Precedence�50�0�0�94�0�0��8�Count-By Window Structures�100�0�0�144�0�0��9�Control Button Functions�1500�0�0�1452�0�0��10�Keyboard Accelerators�50�0�0�73�0�0��11�Copy/Paste�200�0�0�144�0�0��12�Layer/Bucket Core API Interface�200�50�0�196�90�0��13�Additional Core APIs to Implement Count-By�200�0�0�138�0�0��TOTAL��� =SUM(ABOVE) �4550��� =SUM(above) �50��� =SUM(above) �0��� =SUM(above) �3678��� =SUM(above) �90��� =SUM(above) �0���Schedule

	TABLE OF CONTENTS

� PAGE �14�

� PAGE �203�

		� PAGE �i�

		� PAGE �1�

�PAGE \# "'Page: '#'�'" ��

�PAGE \# "'Page: '#'�'" ��

