TAMPS 6.2
Design Notebook

for

SOR 96�52M
TAMMAC PC-Card Interface

October , 1997

Developed by:

Alan Trzcinko
Russel Austin
Glen Quilantang
Anesthesia Gray
Lockheed Martin Technical Operations
Camarillo, CA
�Table of Contents
� TOC \o "1-3" �1. HIGH�LEVEL DESIGN	� GOTOBUTTON _Toc402152852 � PAGEREF _Toc402152852 �1��
1.1 CONOPS PREPARATION	� GOTOBUTTON _Toc402152853 � PAGEREF _Toc402152853 �1��
1.1.1 Scope	� GOTOBUTTON _Toc402152854 � PAGEREF _Toc402152854 �1��
1.1.2 Applicable Documents	� GOTOBUTTON _Toc402152855 � PAGEREF _Toc402152855 �1��
1.1.3 Impact Analysis	� GOTOBUTTON _Toc402152856 � PAGEREF _Toc402152856 �2��
1.1.4 Performance and Sizing	� GOTOBUTTON _Toc402152857 � PAGEREF _Toc402152857 �2��
1.1.5 System Hardware	� GOTOBUTTON _Toc402152858 � PAGEREF _Toc402152858 �3��
1.1.6 System Architecture	� GOTOBUTTON _Toc402152859 � PAGEREF _Toc402152859 �4��
1.1.7 Description of Processing	� GOTOBUTTON _Toc402152860 � PAGEREF _Toc402152860 �4��
1.2 STATEMENTS OF FUNCTIONALITY (SOF)	� GOTOBUTTON _Toc402152861 � PAGEREF _Toc402152861 �6��
1.2.1 Overview	� GOTOBUTTON _Toc402152862 � PAGEREF _Toc402152862 �6��
1.3 REQUIREMENTS TRACE	� GOTOBUTTON _Toc402152863 � PAGEREF _Toc402152863 �7��
1.3.1 RTDB	� GOTOBUTTON _Toc402152864 � PAGEREF _Toc402152864 �7��
1.4 DRAFT USER INTERFACE	� GOTOBUTTON _Toc402152865 � PAGEREF _Toc402152865 �8��
1.4.1 Administrative Trace	� GOTOBUTTON _Toc402152866 � PAGEREF _Toc402152866 �11��
1.4.2 Allocation Trace	� GOTOBUTTON _Toc402152867 � PAGEREF _Toc402152867 �11��
1.4.3 Assumptions	� GOTOBUTTON _Toc402152868 � PAGEREF _Toc402152868 �12��
1.5 DATA FLOW DIAGRAM	� GOTOBUTTON _Toc402152869 � PAGEREF _Toc402152869 �13��
1.5.1 Data Access Functions (P1.1)	� GOTOBUTTON _Toc402152870 � PAGEREF _Toc402152870 �14��
1.5.2 The UNIX Operating System module (P1.2)	� GOTOBUTTON _Toc402152871 � PAGEREF _Toc402152871 �14��
1.5.3 The PC-Card Device Driver (P1.3)	� GOTOBUTTON _Toc402152872 � PAGEREF _Toc402152872 �14��
1.5.4 The SCSI Host Bus Adapter Driver (P1.4)	� GOTOBUTTON _Toc402152873 � PAGEREF _Toc402152873 �14��
1.5.5 Device Access Functions CSC	� GOTOBUTTON _Toc402152874 � PAGEREF _Toc402152874 �15��
1.6 CONTROL FLOW DIAGRAM	� GOTOBUTTON _Toc402152875 � PAGEREF _Toc402152875 �18��
1.7 PRELIMINARY IDD INFORMATION	� GOTOBUTTON _Toc402152876 � PAGEREF _Toc402152876 �32��
1.7.1 TAMMAC PC�Card Interface	� GOTOBUTTON _Toc402152877 � PAGEREF _Toc402152877 �32��
2. DETAILED DESIGN	� GOTOBUTTON _Toc402152878 � PAGEREF _Toc402152878 �44��
2.1 HIGH�LEVEL DESIGN UPDATES	� GOTOBUTTON _Toc402152879 � PAGEREF _Toc402152879 �44��
2.2 DATABASE SCHEMA	� GOTOBUTTON _Toc402152880 � PAGEREF _Toc402152880 �44��
2.3 CONTROL FLOWS	� GOTOBUTTON _Toc402152881 � PAGEREF _Toc402152881 �45��
2.4 ALGORITHMS	� GOTOBUTTON _Toc402152882 � PAGEREF _Toc402152882 �71��
2.4.1 Declassification, triple-pseudo-random-write	� GOTOBUTTON _Toc402152883 � PAGEREF _Toc402152883 �71��
2.5 DESIGN DESCRIPTION	� GOTOBUTTON _Toc402152884 � PAGEREF _Toc402152884 �71��
2.5.1 PC�Card Initialization � Formatting	� GOTOBUTTON _Toc402152885 � PAGEREF _Toc402152885 �71��
2.5.2 Preliminary Design Language	� GOTOBUTTON _Toc402152886 � PAGEREF _Toc402152886 �74��
2.5.3 Private Functions	� GOTOBUTTON _Toc402152887 � PAGEREF _Toc402152887 �84��
2.5.4 PDL for TAMMAC PC-Card Interface Device Driver	� GOTOBUTTON _Toc402152888 � PAGEREF _Toc402152888 �91��
2.6 INTERFACE DESCRIPTION	� GOTOBUTTON _Toc402152889 � PAGEREF _Toc402152889 �94��
2.6.1 TAMMAC PC�Card Interface	� GOTOBUTTON _Toc402152890 � PAGEREF _Toc402152890 �94��
2.7 UNIT TEST PLANS AND PROCEDURES	� GOTOBUTTON _Toc402152891 � PAGEREF _Toc402152891 �106��
2.7.1 Public Functions	� GOTOBUTTON _Toc402152892 � PAGEREF _Toc402152892 �106��
2.7.2 Private Functions	� GOTOBUTTON _Toc402152893 � PAGEREF _Toc402152893 �125��
2.8 TAMMAC PC- CARD INTERFACE FUNCTIONAL TESTS	� GOTOBUTTON _Toc402152894 � PAGEREF _Toc402152894 �140��
2.8.1 Create MS-DOS (version 6.x) file system on Type I PCMCIA	� GOTOBUTTON _Toc402152895 � PAGEREF _Toc402152895 �140��
2.8.2 Create MS-DOS (version 6.x) file system on Type II PCMCIA	� GOTOBUTTON _Toc402152896 � PAGEREF _Toc402152896 �140��
2.8.3 Create MS-DOS (version 6.x) file system on Type III PCMCIA	� GOTOBUTTON _Toc402152897 � PAGEREF _Toc402152897 �140��
2.8.4 Return list of the root directory of an MS-DOS (version 6.x) file system on a Type I PCMCIA memory card.	� GOTOBUTTON _Toc402152898 � PAGEREF _Toc402152898 �141��
2.8.5 Return list of the root directory of an MS-DOS (version 6.x) file system on a Type II PCMCIA memory card.	� GOTOBUTTON _Toc402152899 � PAGEREF _Toc402152899 �141��
2.8.6 Return list of the root directory of an MS-DOS (version 6.x) file system on a Type III PCMCIA memory card.	� GOTOBUTTON _Toc402152900 � PAGEREF _Toc402152900 �142��
2.8.7 Read an MS-DOS (version 6.x) file from Type I PCMCIA memory card.	� GOTOBUTTON _Toc402152901 � PAGEREF _Toc402152901 �142��
2.8.8 Read an MS-DOS (version 6.x) file from Type II PCMCIA memory card.	� GOTOBUTTON _Toc402152902 � PAGEREF _Toc402152902 �143��
2.8.9 Read an MS-DOS (version 6.x) file from Type III PCMCIA memory card.	� GOTOBUTTON _Toc402152903 � PAGEREF _Toc402152903 �143��
2.8.10 Write an MS-DOS (version 6.x) file to a Type I PCMCIA memory card.	� GOTOBUTTON _Toc402152904 � PAGEREF _Toc402152904 �144��
2.8.11 Write an MS-DOS (version 6.x) file to a Type II PCMCIA memory card.	� GOTOBUTTON _Toc402152905 � PAGEREF _Toc402152905 �144��
2.8.12 Write an MS-DOS (version 6.x) file to a Type III PCMCIA memory card.	� GOTOBUTTON _Toc402152906 � PAGEREF _Toc402152906 �144��
2.8.13 Erase/Declassify MS-DOS (version 6.x) files from Type I PCMCIA memory card.	� GOTOBUTTON _Toc402152907 � PAGEREF _Toc402152907 �145��
2.8.14 Erase/Declassify MS-DOS (version 6.x) files from Type II PCMCIA memory card.	� GOTOBUTTON _Toc402152908 � PAGEREF _Toc402152908 �145��
2.8.15 Erase/Declassify MS-DOS (version 6.x) files from Type III PCMCIA memory card.	� GOTOBUTTON _Toc402152909 � PAGEREF _Toc402152909 �145��
2.8.16 Interrogate an MS-DOS (version 6.x) file system on a Type I PCMCIA memory card.	� GOTOBUTTON _Toc402152910 � PAGEREF _Toc402152910 �146��
2.8.17 Interrogate an MS-DOS (version 6.x) file system on a Type II PCMCIA memory card.	� GOTOBUTTON _Toc402152911 � PAGEREF _Toc402152911 �146��
2.8.18 Interrogate an MS-DOS (version 6.x) file system on a Type III PCMCIA memory card.	� GOTOBUTTON _Toc402152912 � PAGEREF _Toc402152912 �146��
2.8.19 Determine integrity of a Type I PCMCIA memory card.	� GOTOBUTTON _Toc402152913 � PAGEREF _Toc402152913 �147��
2.8.20 Determine integrity of a Type II PCMCIA memory card.	� GOTOBUTTON _Toc402152914 � PAGEREF _Toc402152914 �147��
2.8.21 Determine integrity of a Type III PCMCIA memory card.	� GOTOBUTTON _Toc402152915 � PAGEREF _Toc402152915 �147��
2.8.22 Go/NoGo Initial HMI	� GOTOBUTTON _Toc402152916 � PAGEREF _Toc402152916 �148��
2.8.23 TAMMAC Test Initiation: Single Card Selection (Successful Test Conditions)	� GOTOBUTTON _Toc402152917 � PAGEREF _Toc402152917 �148��
2.8.24 TAMMAC Test Initiation: Single Card Selection (Failure Test Conditions)	� GOTOBUTTON _Toc402152918 � PAGEREF _Toc402152918 �148��
2.8.25 TAMMAC Test Initiation: Sequential Card Selection (Successful Test Conditions)	� GOTOBUTTON _Toc402152919 � PAGEREF _Toc402152919 �149��
2.8.26 TAMMAC Test Initiation: Sequential Card Selection (Failure Test Conditions)	� GOTOBUTTON _Toc402152920 � PAGEREF _Toc402152920 �149��
2.8.27 TAMMAC Test Completion	� GOTOBUTTON _Toc402152921 � PAGEREF _Toc402152921 �150��
2.9 RISKS AND ISSUES	� GOTOBUTTON _Toc402152922 � PAGEREF _Toc402152922 �150��
3. ADMINISTRATIVE	� GOTOBUTTON _Toc402152923 � PAGEREF _Toc402152923 �151��
3.1 PDR ACTION ITEMS	� GOTOBUTTON _Toc402152924 � PAGEREF _Toc402152924 �151��
3.2 SOFTWARE LINES OF CODE ESTIMATES	� GOTOBUTTON _Toc402152925 � PAGEREF _Toc402152925 �151��
3.3 SCHEDULE	� GOTOBUTTON _Toc402152926 � PAGEREF _Toc402152926 �152��
��List of Figures and Tables
� TOC \t "Caption,Figure" \c "Figure" �Figure 1.4�1. Go/NoGo device selection panel.	� GOTOBUTTON _Toc402152929 � PAGEREF _Toc402152929 �8��
Figure 1.4�2. Media preparation display.	� GOTOBUTTON _Toc402152930 � PAGEREF _Toc402152930 �9��
Figure 1.4�3. Go/NoGo diagnostic status with ìGoî status.	� GOTOBUTTON _Toc402152931 � PAGEREF _Toc402152931 �9��
Figure 1.4�4. Go/NoGo diagnostic status with ìNo Goî status.	� GOTOBUTTON _Toc402152932 � PAGEREF _Toc402152932 �10��
Figure 1.5�1. Context Diagram, Data Flow	� GOTOBUTTON _Toc402152933 � PAGEREF _Toc402152933 �13��
Figure 1.5.4�1. Level 0 Diagram, Data Access	� GOTOBUTTON _Toc402152934 � PAGEREF _Toc402152934 �15��
Figure 1.5.5.4�1. Level 1 Diagram, Device Access CSC	� GOTOBUTTON _Toc402152935 � PAGEREF _Toc402152935 �16��
Figure 1.5.5.7�1. Level 1 Diagram, Device Driver CSC	� GOTOBUTTON _Toc402152936 � PAGEREF _Toc402152936 �17��
Figure 1.6�1. Device Driver Open()	� GOTOBUTTON _Toc402152937 � PAGEREF _Toc402152937 �18��
Figure 1.6�2. Device Driver Write()/Read()	� GOTOBUTTON _Toc402152938 � PAGEREF _Toc402152938 �19��
Figure 1.6�3. Device Driver Close()	� GOTOBUTTON _Toc402152939 � PAGEREF _Toc402152939 �20��
Figure 1.6�4. Upl_Open()	� GOTOBUTTON _Toc402152940 � PAGEREF _Toc402152940 �21��
Figure 1.6�5. Upl_Close()	� GOTOBUTTON _Toc402152941 � PAGEREF _Toc402152941 �22��
Figure 1.6�6. Upl_Seek()	� GOTOBUTTON _Toc402152942 � PAGEREF _Toc402152942 �23��
Figure 1.6�7. Upl_Read()	� GOTOBUTTON _Toc402152943 � PAGEREF _Toc402152943 �24��
Figure 1.6�8. Upl_Write()	� GOTOBUTTON _Toc402152944 � PAGEREF _Toc402152944 �25��
Figure 1.6�9. Upl_ListFiles()	� GOTOBUTTON _Toc402152945 � PAGEREF _Toc402152945 �26��
Figure 1.6�10. Upl_ListFree()	� GOTOBUTTON _Toc402152946 � PAGEREF _Toc402152946 �27��
Figure 1.6�11. Upl_Remove()	� GOTOBUTTON _Toc402152947 � PAGEREF _Toc402152947 �28��
Figure 1.6�12. Upl_CardInfo()	� GOTOBUTTON _Toc402152948 � PAGEREF _Toc402152948 �29��
Figure 1.6�13. Upl_Format	� GOTOBUTTON _Toc402152949 � PAGEREF _Toc402152949 �30��
Figure 1.6�14. Upl_ScrubCard	� GOTOBUTTON _Toc402152950 � PAGEREF _Toc402152950 �31��
Figure 2.3-1.	� GOTOBUTTON _Toc402152951 � PAGEREF _Toc402152951 �45��
Figure 2.3-2. upl_CardInfo()	� GOTOBUTTON _Toc402152952 � PAGEREF _Toc402152952 �46��
Figure 2.3-3.	� GOTOBUTTON _Toc402152953 � PAGEREF _Toc402152953 �47��
Figure 2.3-4. upl_Close()	� GOTOBUTTON _Toc402152954 � PAGEREF _Toc402152954 �48��
Figure 2.3-5.	� GOTOBUTTON _Toc402152955 � PAGEREF _Toc402152955 �49��
Figure 2.3-6.	� GOTOBUTTON _Toc402152956 � PAGEREF _Toc402152956 �50��
Figure 2.3-7. upl_Format()	� GOTOBUTTON _Toc402152957 � PAGEREF _Toc402152957 �51��
Figure 2.3-8.	� GOTOBUTTON _Toc402152958 � PAGEREF _Toc402152958 �52��
Figure 2.3-9.	� GOTOBUTTON _Toc402152959 � PAGEREF _Toc402152959 �53��
Figure 2.3-10. upl_ListFiles()	� GOTOBUTTON _Toc402152960 � PAGEREF _Toc402152960 �54��
Figure 2.3-11. upl_ListFree()	� GOTOBUTTON _Toc402152961 � PAGEREF _Toc402152961 �55��
Figure 2.3-12.	� GOTOBUTTON _Toc402152962 � PAGEREF _Toc402152962 �56��
Figure 2.3-13.	� GOTOBUTTON _Toc402152963 � PAGEREF _Toc402152963 �57��
Figure 2.3-14. upl_Open()	� GOTOBUTTON _Toc402152964 � PAGEREF _Toc402152964 �58��
Figure 2.3-15.	� GOTOBUTTON _Toc402152965 � PAGEREF _Toc402152965 �59��
Figure 2.3-16. upl_Read()	� GOTOBUTTON _Toc402152966 � PAGEREF _Toc402152966 �60��
Figure 2.3-17.	� GOTOBUTTON _Toc402152967 � PAGEREF _Toc402152967 �61��
Figure 2.3-18.	� GOTOBUTTON _Toc402152968 � PAGEREF _Toc402152968 �62��
Figure 2.3-19.	� GOTOBUTTON _Toc402152969 � PAGEREF _Toc402152969 �63��
Figure 2.3-20. upl_Remove()	� GOTOBUTTON _Toc402152970 � PAGEREF _Toc402152970 �64��
Figure 2.3-21.	� GOTOBUTTON _Toc402152971 � PAGEREF _Toc402152971 �65��
Figure 2.3-22.	� GOTOBUTTON _Toc402152972 � PAGEREF _Toc402152972 �66��
Figure 2.3-23. upl_ScrubCard()	� GOTOBUTTON _Toc402152973 � PAGEREF _Toc402152973 �67��
Figure 2.3-24. upl_Seek()	� GOTOBUTTON _Toc402152974 � PAGEREF _Toc402152974 �68��
Figure 2.3-25.	� GOTOBUTTON _Toc402152975 � PAGEREF _Toc402152975 �69��
Figure 2.3-26. upl_Write()	� GOTOBUTTON _Toc402152976 � PAGEREF _Toc402152976 �70��
Figure 2.5.1�1.	� GOTOBUTTON _Toc402152977 � PAGEREF _Toc402152977 �71��
�� TOC \t "Table Title" \c �
Table 1.1.4�1. Adtron SDDS	� GOTOBUTTON _Toc402152978 � PAGEREF _Toc402152978 �2��
Table 1.1.4�2. Intermart	� GOTOBUTTON _Toc402152979 � PAGEREF _Toc402152979 �3��
Table 2.5.1-1. Master Boot Record	� GOTOBUTTON _Toc402152980 � PAGEREF _Toc402152980 �72��
Table 2.5.1-2. Partition Record	� GOTOBUTTON _Toc402152981 � PAGEREF _Toc402152981 �72��
Table 2.5.1-3. Boot Record	� GOTOBUTTON _Toc402152982 � PAGEREF _Toc402152982 �73��
Table 3.2-1. Software Lines of Code Estimates	� GOTOBUTTON _Toc402152983 � PAGEREF _Toc402152983 �151��
�
�HIGH�LEVEL DESIGN
CONOPS preparation
Scope
Device driver and public API to provide the ability to format a PCMCIA memory card with an MS�DOS (version 6.x) compatible file system. The API will also allow a caller to read, write, list and delete/declassify files from an MS�DOS file system. For security purposes a whole-media declassification function will be provided for cards with corrupted file systems. Memory card integrity may be tested via a procedure which will be incorporated into the existing Go/NoGo utility. Media Integrity tests will simulate typical device/file-system operations. All MS-DOS file system manipulation may be executed on Type I, II or III PCMCIA ATA memory cards if supported by configured hardware.
Applicable Documents
Government Documents
None identified.
Specifications
None identified
Standards
ANSASC X3T9.2, SCSI 2
Other Publications
None identified.
Non�Government Documents
Microsoft MS-DOS Programmers Reference, 1993
PC-Card receptacle ICD.
All relevant memory card documentation.
Impact Analysis
Users
User impact will primarily be limited to interactions with the physical media and PC-Card receptacle.
Mission Planners
Mission Planners will be required to install memory cards in the correct machine, device and slot prior to use.
System Administrators
System Administrators will be required to connect the PC-Card receptacle to the system SCSI bus prior to system generation. Media insertion not required for successful device driver loading. No card required. Proper operation should be verified through the TAMPS Go/NoGo utility.
Database Administrators
None
Performance and Sizing
Accurate empirical data cannot be obtained prior to procurement of actual hardware and development of API and MPM. Based upon preliminary hardware testing with the Adtron SDDS and Intermart card drives, raw data transfer rates for solid state and rotating media are tabularized below:
Table 1.1.4�1. Adtron SDDS
Adtron���Solid State�Rotating���Write
KB/s�Read
KB/s�Write
KB/s�Read
KB/s��4096 Bytes/block�83.9�301.2�256.0�341.3��8192 Bytes/block�83.9�341.3�426.7�365.7��
�Table 1.1.4�2. Intermart
Intermart���Solid State�Rotating���Write
KB/s�Read
KB/s�Write
KB/s�Read
KB/s��4096 Bytes/block�74.2�243.8�138.4�222.6��8192 Bytes/block�78.8�320.0�176.6�301.2��An estimated 10�25% throughput burden could be imposed by the API for file system manipulation, additional overhead may be imposed by other SCSI bus activity and/or an API subscriber. These numbers are for comparison only, actual performance may vary depending upon selected PC-Card receptacle performance. TEMP impact cannot be accurately determined without actual empirical timing metrics.
Created binary modules, libraries, utilities and data files should consume less than four megabytes of secondary storage. Memory demand will conform with executable image size plus nominal stack allocation, very large data transfers (greater the 5 MB) may consume most free kernel buffers. PC-Card device will coexist with all other devices on the SCSI bus, no additional bandwidth requirements are anticipated.
Operating Locations
Special requirements for PC-Card operation cannot be determined until device selection has been completed and a device specification has been provided. Typical PC-Card reader/writer is anticipated to be a COTS SCSI device which will be installed wherever memory card access capability is required, no location specific requirements have been identified.
Hardware and Software Configuration
The target platform of operation will be the Sun/Solaris based SPARC Ultra (to conform with known TAMPS 6.2 target hardware).
System Hardware
Fielded TAMPS target systems.
SCSI PC-Card drive w/ cables.
PCMCIA memory cards for each supported configuration.
Operating System
To conform with the operating system used on the TAMPS 6.2 target platform. Solaris 2.5.1.
Commercial�Off�The�Shelf (COTS) Application Software
None
Installation
Based upon presence of the PC�Card device on the target system, system generation procedures must be executed to load the device driver and install any device configuration/data files.
System Architecture
Software Architecture
An additional public core library will be added which will provide PC�Card access. Function API will be added to the TAMPS IDD. The new library shall reside in the ìutilsî subdirectory and have the trigraph ìuplî.
Hardware Architecture
Hardware diagram will reflect the addition of the SCSI PC-Card receptacle to the SPARC � Ultra configuration. Physical configuration and SCSI target number shall be determined by NRAD Phil.
Description of Processing
The PC�Card file manipulation API will facilitate access to MS�DOS formatted PCMCIA memory cards of varying capacities. Each card slot will be identified by a unique alpha designator similar to that of MS�DOS.
Memory card formatting will impose a single partition upon the entire media, sector defect detection will be conducted during formatting.
Wild carded file specifications, comparable to those in MS�DOS will be supported by the API for listing and removing existing files.
Memory card contents may be obtained by passing a drive designator or file name to the directory listing function. File name, extension, size (in bytes) and creation date will be returned for each conforming entry.
Total capacity and unallocated space (in bytes) will be obtainable from the partition on the memory card.
File removal will be accomplished by specifying a complete file path and optional switch for declassification.
Exclusive file manipulation (upl_Read, upl_Write, upl_Seek) will be allowed on valid file descriptors which have been returned from a successful call to upl_Open(). The ìupl_Openî call must specify whether the intended access will be for read, write or append operations. File descriptors must be closed after completion of I/O operations via the ìupl_Closeî function.
Rudimentary test suites will be incorporated to test memory card integrity and PC-Card device availability.
�Statements of Functionality (SOF)
Overview
Level�Links to RTDB�Description��1.�CS�0615.0010�The TAMPS core shall provide functions to format Type I, II and III PCMCIA memory cards with an MS�DOS (version 6.x) file system.��1.1��A SCSI device driver shall support block mode I/O for Type I, II and III PCMCIA memory cards.��1.2��Shall provide a TAMPS public core API function to create a single MS�DOS (version 6.x) file system on Type I, II and III PCMCIA memory cards.��2.�CS�0615.0020�The TAMPS core shall provide a function to list the root directory contents of an MS�DOS (version 6.x) file system. ��2.1��The TAMPS core function shall return MS-DOS (version 6.x) file name, extension, creation date and size (in bytes) from Type I, II and III PCMCIA memory cards.��3.�CS�0615.0030�The TAMPS core shall provide functions to read files in MS�DOS (version 6.x) format from Type I, II and III PCMCIA memory cards.��3.1��Shall provide a TAMPS public core API function to read the contents of a file stored in MS�DOS (version 6.x) format on Type I, II and III PCMCIA memory cards.��4.�CS�0615.0040 �The TAMPS core shall provide functions to write files in MS�DOS (version 6.x) format to Type I, II and III PCMCIA memory cards.��4.1��Shall provide a TAMPS public core API function to write data to an MS�DOS (version 6.x) file on a Type I, II and III PCMCIA memory cards.��5.�CS�0615.0050�The TAMPS core shall provide a function to erase and declassify MS�DOS (version 6.x) formatted files stored on Type I, II and III PCMCIA memory cards.��5.1��Shall provide a TAMPS public core API function to erase and declassify an MS�DOS (version 6.x) file on Type I, II and III PCMCIA memory cards.��6.�CS�0615.0060�The TAMPS core shall provide functions to interrogate MS�DOS (version 6.x) partitions on Type I, II and III PCMCIA memory cards. ��6.1��Shall provide a TAMPS public core API function to determine free and used space of the MS�DOS (version 6.x) partition on Type I, II and III PCMCIA memory cards.��7.�CS�0615.0070�Develop software that shall be utilized by the TAMPS core to check the integrity of PCMCIA memory card.��7.1��Shall develop a testing function to ascertain usability of a Type I, II and III PCMCIA memory cards.��8.�CS�0615.0080�Equipment tested via the Go/No Go utility shall include Type I, II and III PCMCIA memory cards.��8.1��Shall modify Go/No Go utility to test accessibility of Type I, II and III PCMCIA memory cards.��Requirements Trace
RTDB
Number�Spec Ref�Description��CS�0615.0010��The TAMPS core shall provide functions to format Type I, II and III PCMCIA memory cards with an MS�DOS (version 6.x) file system.��CS�0615.0020 ��The TAMPS core shall provide functions to list the root directory contents of an MS�DOS (version 6.x) file system. It shall return file name, extension, size (in bytes) and creation date from a Type I, II and III PCMCIA memory cards.��CS�0615.0030 ��The TAMPS core shall provide functions to read MS�DOS (version 6.x) files from Type I, II and III PCMCIA memory cards.��CS�0615.0040��The TAMPS core shall provide functions to write files in MS�DOS (version 6.x) format to a Type I, II and III PCMCIA memory cards.��CS�0615.0050��The TAMPS core shall provide functions to erase MS�DOS (version 6.x) formatted files stored on a Type I, II and III PCMCIA memory cards.��CS�0615.0060��The TAMPS core shall provide functions to interrogate MS�DOS (version 6.x) partitions on a Type I, II and III PCMCIA memory cards.��CS�0615.0070��Develop software that shall be integrated into the TAMPS core to verify integrity of PCMCIA memory cards.��CS�0615.0080��Equipment testing during the Go/No Go utility shall include Type I, II and III PCMCIA memory cards.���Draft User Interface
In order to verify that the PC�Card interface is functioning properly, a user may initiate non�destructive testing through the Go/NoGo utility. PC�Card validation may be conducted on one or both slots sequentially by selecting the toggle button associated with each respective slot (See Figure 1.4�1). After device selection is complete, the card(s) may be tested by selecting ìStartî from the ìTestingî pull�down menu.
�
Figure 1.4�1. Go/NoGo device selection panel.
Upon selection of the desired PC�Card device slot, the ìPC-Card Preparationsî reminder display (See Figure 1.4�2) will appear. This window may be dismissed prior to initiation of device testing.
�EMBED Unknown���
Figure 1.4�2. Media preparation display.
As the card is analyzed for data integrity, diagnostic results will be written to the ìDiagnostics Status Windowî. Figure 1.4�3 shows the results of a positive device/card/file system diagnostic test. Device/card/file system evaluation shall consist of creating, write/verifying and removing a two Allocation Unit (AU) MS�DOS file from the designated memory card.
�EMBED Unknown���
Figure 1.4�3. Go/NoGo diagnostic status with ìGoî status.
Memory card integrity will also be evaluated by scanning the file system to determine the percentage of failed AUís. If the ratio of defective to competent AUís is greater than one percent the ìTest Result Recommendationî will show a ìNo Goî condition (See Figure 1.4�4). Upon detection of any device/card malfunction or potential failure, a warning section with explanatory text of the fault will be displayed in the status window. The text shown is approximate and may change as new validation requirements emerge.
�EMBED Unknown���
Figure 1.4�4. Go/NoGo diagnostic status with ìNo Goî status.
�Administrative Trace
The following system spec statement should be modified with change bars and strikeout.
Spec Paragraph�RTDB�Action��CS�0615.0010����CS�0615.0020
CS�0615.0030
CS�0615.0040
CS�0615.0050
CS�0615.0060
CS�0615.0070
CS�0615.0080����Allocation Trace
Specification Sentence�RTDB�SOF Paragraph and Sentence Number(s)�User Interface�Software File/Function Name���CS�0615.0010�1�N/A�Upl_Format
Upl_DisectFilePath
Upl_CreateFS
Upl_GetFSInfo���CS�0615.0020�2�N/A�Upl_ListFiles
Upl_MapCache
Upl_FileExists���CS�0615.0030�3�N/A�Upl_Open
Upl_Seek
Upl_Read
Upl_Close���CS�0615.0040�4�N/A�Upl_Open
Upl_Seek
Upl_Write
Upl_Close���CS�0615.0050�5�N/A�Upl_Remove���CS�0615.0060�6�N/A�Upl_CardInfo���CS�0615.0070�7�N/A�Go/NoGo���CS�0615.0080�8�1.4-1, 1.4-2, 1.4-3, 1.4-4�Go/NoGo���Assumptions
Spec Paragraph�RTDB�Assumption���CS�0615.0010����CS�0615.0020
CS�0615.0030
CS�0615.0040
CS�0615.0050
CS�0615.0060
CS�0615.0070
CS�0615.0080����Data Flow Diagram
�
Figure 1.5�1. Context Diagram, Data Flow
User applications (MPM or Core Extensions) will have access to the PC-Card slots C and D utilizing device access function calls contained in the PC-Card I/O CSC. These globally available function calls will transfer data between the user application and the user�specified slot and additionally provide the user application status of each function execution.�Data flow between the user application and the PC-Card slots passes through four unique modules.
Data Access Functions (P1.1)
These functions provide a straight�forward user interface for storing and retrieving data in an emulated MS�DOS file system format. These functions maintain the individual PC-Card slots as DOS volumes and provide all data and command translations necessary for communicating with the PC-Card hardware.
The UNIX Operating System module (P1.2)
The UNIX file I/O commands and protocol are required for data transfer to and from user address space and the custom device driver loaded in the UNIX kernel (operating system).
The PC-Card Device Driver (P1.3)
This will be a custom SCSI device driver that provides low�level data transfer functionality between user data space and the PC-Card slot specified. This module will translate access requests into the appropriate SCSI commands for PC-Card receptacle communications, interrogate command execution status, and provide low�level I/O error checking.
The SCSI Host Bus Adapter Driver (P1.4)
This is a Sun Solaris COTS module for providing a SCSI bus interface and protocol with standard SCSI devices. SCSI standard commands are passed to this module from the custom device driver. This module will process all I/O requests between the custom device driver and the PC-Card receptacle and provide communication error checking and status.
�
Figure 1.5.4�1. Level 0 Diagram, Data Access
Device Access Functions CSC
This diagram shows the relationship for device access functions available to the user application.
File Access Component (P1.1.1)
These functions will allow the user to create, modify, read or remove data from the PC-Card slot as a DOS File.
Partition Access Component (P1.1.2)
These functions allow the user to retrieve a directory listing from the simulated DOS volume.
Slot Access Component (P1.1.3)
These functions allow the user to re�format and declassify the media.
MS�DOS Manager Component (P1.1.4)
All user access functions will call the MS�DOS Manager component which maintains the simulated DOS volume and translates commands into suitable UNIX file system I/O protocol for communication with the custom device driver.
The device driver is organized into three basic functional CSCs that perform all data transfer processing and management of communications with the device.
�
Figure 1.5.5.4�1. Level 1 Diagram, Device Access CSC
Device Driver Read/Write CSC (P1.3.5)
This CSC contains all of the I/O entry functions for device data transfer that are called from the MS�DOS Overlay Manager (P1.1.4) via the UNIX standard device access commands. These functions transfer between user/application data memory and kernel memory for segmentation of data to device specifications and DMA access.
Device Driver Utilities CSC (P1.3.6)
This CSC provides the functionality for opening and closing the device, attaching the device driver to the kernel, retrieving device status, and performing device � specific utility functions (ioctls).
Device Driver SCSI I/O CSC (P1.3.7)
This CSC contains all functions required to format the SCSI commands for the device and handle command processing through the SCSI host adapter. This CSC contains all logic for communications error processing and status reporting.
�
Figure 1.5.5.7�1. Level 1 Diagram, Device Driver CSC
�Control Flow Diagram
�
Figure 1.6�1. Device Driver Open()
�EMBED Unknown���
Figure 1.6�2. Device Driver Write()/Read()
�
Figure 1.6�3. Device Driver Close()
�
Figure 1.6�4. Upl_Open()
�EMBED Unknown���
Figure 1.6�5. Upl_Close()
�EMBED Unknown���
Figure 1.6�6. Upl_Seek()
�EMBED Unknown���
Figure 1.6�7. Upl_Read()
�
Figure 1.6�8. Upl_Write()
�
Figure 1.6�9. Upl_ListFiles()
�
Figure 1.6�10. Upl_ListFree()
�
Figure 1.6�11. Upl_Remove()
�EMBED Unknown���
Figure 1.6�12. Upl_CardInfo()
�EMBED Unknown���
Figure 1.6�13. Upl_Format
�
Figure 1.6�14. Upl_ScrubCard
Preliminary IDD Information
TAMMAC PC�Card Interface
File Creation Function � upl_Open()
Purpose
This function will provide Mission Planning Modules (MPMs) and Core Extensions (CEs) with a method of opening an MS�DOS file on an ATA Memory Card.
Description
This function will:
Verify that the filename passed contains a valid disk drive designator.
Verify that the PC�Card Slot associated with the disk drive designator is valid.
Verify that the access flags specified are valid for the designated file and PC�Card Slot.
Open the PC�Card the file is on or will be created on.
Read the directory and FAT tables from the device.
Check to see if the file exists.
If the file does not exist, a new file control structure will be created, depending upon the type of access specified.
If the file does exist, the file control structure will be created describing the file.
A pointer to the file control structure is returned to the caller indicating success or NULL will be returned indicating failure.
Example Calling Sequence
upl_File_t FileId = upl_Open(pcFileName, pAccess, iAllocation, pStatus);
Calling Parameters
pcFileName � This argument must be of type char * and contain a NULL terminated string of characters that specify a complete file specification. A file specification consists of a single letter, colon and backslash disk drive designator (i.e. c:\, C:\, d:\ or D:\), a filename of one to eight characters, an optional period and an optional extension with a maximum of three characters. If the extension is supplied, it must be preceded with a period. File path parsing shall be case insensitive. A valid example is ìc:\FileName.Extî.
pAccess � This argument must be of type const char * and contains a NULL terminated string of characters that specify the type of access desired on the file. The allowable access characters are: ìrî for read-only, ìwî for write and ìaî for append. The ìwî and ìaî access designators imply ìrî as well. Upon successful file open with the ìwî designation, the file position will be set to ìBeginning of Fileî, whereas a designation of ìaî will set the file position to the ìEnd of Fileî. All file access will be binary, meaning, no translation of escape sequences will be supported.
iAllocation � This argument must be of type int and is used to indicate the number of bytes to be allocated for a new file. The number of bytes will then be used to determine the number of clusters to be pre-allocated. This argument is optional. When this argument is not included in the calling sequence, a default cluster allocation of 1 will be used for a new file. This argument will generate an error for existing files if specified as non-zero.
pStatus � This argument will be a pointer to a status variable for returning function execution status to the calling application.
Limitations
This function opens PC�Card based files on MS�DOS file systems only.
This function opens the file for access without translation of escape sequences (i.e. CR/LF to LF).
PC�Card slot access is single threaded only.
File Completion Function �upl_Close()
Purpose
This function provides MPMs and CEs with a method of closing an MS�DOS file on an ATA Memory Card.
Description
This function will:
Verify that the contents of the file control structure passed are valid.
Update the memory images of the FAT and directory structures.
Copies of the FAT and directory structures will be written to the PC�Card Device.
If the write fails, a status flag is set to fail, otherwise the status flag is set to success.
Any allocated memory buffers held by the file control structure will be freed.
The members of the file control structure will be set to NULL.
The value of the status flag will be returned.
Example Calling Sequence
Int iStatus = upl_Close(FileId)
Calling Parameters
FileId � This argument must be an address of type upl_File_t and contain a pointer to an actively open file control structure.
Limitations
This function works only with valid file control structures returned from the upl_Open() function.
File Positioning Function � upl_Seek()
Purpose
This function will provide MPMs and CEs with a method of positioning to a byte location within an MS�DOS file on an ATA Memory Card.
Description
This function will:
Verify that the contents of the file control structure passed are valid. If an invalid control structure is passed, an error status is returned
Verify that the offset passed is valid for the file being accessed. If an invalid offset is passed, an error status is returned.
Update the logical file pointer for the file.
Return status to the user upon successful completion of the function.
Example Calling Sequence
Int iStatus = upl_Seek(FileId, iOffset);
Calling Parameters
FileId � This argument must be of type upl_File_t and contain a pointer to an active file control structure.
iOffset � This argument must be of type u_int and contains the byte, relative to the beginning of the file, that the function is to position the logical file pointer to.
Limitations
This function works only with valid file control structures returned from the upl_Open() function.
This function cannot seek to a location past the end of file (EOF).
This function does not support offsets of negative values.
File I/O Function � upl_Read()
Purpose
This function will provide MPMs and CEs with a method of transferring data from an MS�DOS file on an ATA Memory Card to the callers buffer area in memory.
Description
This function will:
Verify that the contents of the file control structure passed are valid. If an invalid control structure is passed an error status is returned.
Verify that the number of bytes to be read is valid for the file being accessed. If an invalid value is stated for the number of bytes, an error status is returned.
Compute the number of blocks to be read.
Compute the starting block address of where data is to be read from using the current file logical pointer position and the FAT.
Transfer data from the file on the PC�Card into an internal buffer area. If data cannot be transferred, an error status is returned.
Update the file logical pointer to point at the next byte following the last byte transferred.
Copy data from the internal buffer area to the user buffer area.
Return status to the user upon successful completion of the function.
Example Calling Sequence
Int iStatus = upl_Read(FileId, pBuffer, iBytes);
Calling Parameters
FileId � This argument must be of type upl_File_t and contain a pointer to a file control structure.
pBuffer � This argument must be of type u_char * and contains the address of a buffer within the bounds of the user program where the data that is read from the file will be placed.
iBytes � This argument must be of type u_int and contain the number of bytes to transfer from the file on the PC�Card device to the pBuffer area specified. The value held in this argument cannot be a negative value.
Limitations
This function works only with valid file control structures returned from the upl_Open() function.
This function cannot read past the EOF.
This function does not support negative values for the iBytes argument.
File I/O Function � upl_Write()
Purpose
This function will provide MPMs and CEs with a method of transferring data to an MS�DOS file on an ATA Memory Card from a buffer area in memory.
Description
This function will:
Verify that the contents of the file control structure passed are valid. If an invalid control structure is passed an error status is returned.
Determine if the file has been opened for write or append access.
Verify that the number of bytes to be written is valid. If an invalid value is stated for the number of bytes, an error status is returned.
Compute the starting block address of where data is to be written to using the current file logical pointer position and the FAT.
Compute the number of clusters needed to hold the data that is to be written and allocate those clusters.
Copy the user data that was passed into an internal buffer.
Copy data from the internal buffer area to the PC�Card device.
Update the file logical pointer to point to the next byte following the last byte written.
Return status to the user upon successful completion of the function.
Example Calling Sequence
Int iStatus = upl_Write(FileId, pBuffer, iBytes)
Calling Parameters
FileId � This argument must be of type upl_File_t and contain a pointer to a file control structure.
pBuffer � This argument must be of type u_char * and contains the address of a buffer within the bounds of the user program where a copy of the data will be taken from and transferred to the PC�Card Device.
iBytes � This argument must be of type u_int and contain the number of bytes to transfer to the file on the PC�Card device from the pBuffer area specified. The value held in this argument cannot be a negative value.
Limitations
This function works only with valid file control structures returned from the upl_Open() function.
This function cannot write past the capacity of the PC�Card Device.
This function does not support negative values for the iBytes argument.
Directory Listing Function � upl_ListFiles()
Purpose
This function will provide MPMs and CEs with a method of obtaining a list of files on an MS�DOS file structured ATA Memory Card.
Description
This function will:
Verify that the PC�Card Drive specified is valid and can be opened. If an invalid PC�Card Drive is specified or cannot be opened, then an error code is returned.
Read directory blocks from the PC�Card device. If a read cannot be performed, then an error will be returned.
Build a list of directory entries. Each entry will contain the file name, extension, date of creation (or last modification) and size.
Return the pointer to be beginning of the directory list.
Return a good status to the user upon successful completion of the function.
Example Calling Sequence
Int iStatus = upl_ListFiles(pDirectory, ppListAddr)
Calling Parameters
pDirectory � This argument must be of type char * and contain a pointer to a valid drive and directory name. Valid characters are any that conform to the MS�DOS file spec for directory names and file system names. The use of wildcards will also be permitted in accordance with MS�DOS standards.
ppListAddr � This argument must be of type upl_DirList_t **. This argument will be initialized by the function to hold the beginning address of a linked-list of directory entries.
Limitations
This function works only with valid PC�Cards.
This function sets an address of dynamically allocated memory into a passed argument. It is the users responsibility to call the upl_ListFree() function to free the allocated memory and avoid memory leaks.
Directory Listing Function � upl_ListFree()
Purpose
This function will provide MPMs and CEs with a method of freeing the allocated memory used to obtain a listing of those files held on an ATA Memory Card.
Description
This function will:
Verify that the address passed is not a NULL address.
Free any allocated space held in the list of directory entries.
Determine if any errors were encountered during the deallocation of space. If an error did occur, then an error status is returned to the user.
Return a good status to the user upon successful completion of the function.
Example Calling Sequence
Int iStatus = upl_ListFree(pListAddr);
Calling Parameters
pListAddr � This argument must be of type upl_DirList_t *. This argument contains the address of the beginning of a list of directory entries.
Limitations
This function works only with a list created by the upl_ListFiles() function.
File Removal Function � upl_Remove()
Purpose
This function will provide MPMs and CEs with a method of removing a file from the root directory of an MS�DOS formatted ATA Memory Card. Callers can optionally direct all clusters occupied to be declassified.
Description
This function will:
Verify that the filename passed contains a valid disk drive designator.
Verify that the PC�Card associated with the disk drive designator is valid and open that PC�Card Device. If an error occurs, then return an error status.
Read the directory and FAT Table from the PC�Card device. If unable to read, an error status will be returned.
Search the directory table for the file specified. If the file is not found, then an error status will be returned.
Modify the directory and FAT to remove the file.
Write the directory and FAT to the PC�Card device. If unable to write, an error status will be returned.
Close the PC�Card device.
Return a good status to the user upon successful completion of the function.
Example Calling Sequence
Int iStatus = upl_Remove(pFileName, int iFlag);
Calling Parameters
pFileName � This argument must be of type char * and contain a NULL terminated string of characters that specify a complete file specification. A file specification consists of a single letter disk drive designator, a filename of eight characters or less, an optional period and an optional three character extension. If the extension is stated, so must the period. An example would be, ìc:\filename.extî. This function will also support wild cards in accordance with the MS�DOS file specification. Valid characters for file systems, file names and file extensions are in accordance with MS�DOS file system specifications.
iFlag ñ Optional processing indicator. Current design supports declassification only.
Limitations
This function works only with a valid PC�Card device.
A valid drive designator must be specified that maps to a PC�Card Drive.
This function will remove files from the selected mediaís root directory only.
Card Information Function � upl_CardInfo()
Purpose
This function will provide MPMs and CEs with a method of determining an MS�DOS partitionís total formatted capacity and amount of free space available on an ATA Memory Card.
Description
This function will:
Verify that the disk drive designator specified maps to a valid PC�Card device. If an invalid disk drive designation is passed an error status is returned.
Open the designated valid PC�Card Device. If an error occurs, then return an error status.
Read the FAT Table from the PC�Card device. If unable to read, an error status will be returned.
Calculate the amount of space free and the amount of space used on the PC�Card device.
Place the values into a structure passed by the user of the function.
Close the PC�Card device.
Return status to the user upon successful completion of the function.
Example Calling Sequence
Int iStatus = upl_CardInfo(pDrive, pCardInfo);
Calling Parameters
pDrive � This argument must be of type char * and contain a NULL terminated string of characters that specify a disk drive designation. The drive specified must be mapped to a valid PC�Card device. This argument will accept the drive designator character with or without the ë:í (colon) separator.
pCardInfo � This argument must be of type upl_CardInfo_t *. This argument contains the address of a structure holding identifiers for total capacity and available space on the PC�Card device.
Limitations
This function works only with a valid PC�Card device.
A valid drive designator must be specified that maps to a PC�Card Slot.
Card Formatting Function � upl_Format()
Purpose
This function will provide MPMs and CEs with a method of formatting a ATA Memory Card to hold an MS�DOS file system.
Description
This function will:
Verify that the disk drive designator specified maps to a valid PC�Card device. If an invalid disk drive designation is passed an error status is returned.
Verify that the sectors per cluster argument passed is valid for the PC�Card device. If an invalid value is passed an error status is returned.
Open the designated valid PC�Card Device. If an error occurs, then return an error status.
Initialize the cluster pointer and FAT table for the PC�Card Device.
Write a fixed pattern to the clusters.
Read the clusters and compare with the pattern previously written. If the pattern is not the same, then mark the cluster as bad.
Write a new boot sector to the PC�Card device.
Write a root directory to the device.
Write the FAT tables to the device.
Close the PC�Card device.
Return a good status to the user upon successful completion of the function.
Example Calling Sequence
Int iStatus = upl_Format(pDrive, iSectPerCluster, iDirEntries);
Calling Parameters
pDrive � This argument must be of type char * and contain a NULL terminated string of characters that specify a disk drive designation. The drive specified must be mapped to a valid PC�Card device.
iSectPerCluster � This argument must be of type int. This argument contains the number of sectors per cluster that is to be used in the format.
iDirEntries � This argument must be of type int. This argument contains the number of directory entries to create in the format.
Limitations
This function works only with a valid PC�Card device.
A valid drive designator must be specified that maps to a PC�Card Drive.
The number of sectors per cluster must be a legal value for the capacity of the card being used in accordance with MS�DOS file system specifications. It must a power of 2, between 2 and 128.
The number of directory entries must be between 100 and 65535.
Card Declassification Function � upl_ScrubCard()
Purpose
This function will provide MPMs and CEs with a method of declassifying an ATA Memory Card.
Description
This function will:
Verify that the disk drive designator specified maps to a valid PC�Card device. If an invalid disk drive designation is passed an error status is returned.
Open the designated valid PC�Card Device. If an error occurs, then return an error status.
Write pseudo�random pattern to all blocks on media.
Read and verify the pattern exists in all blocks. If the pattern does not match that written, the device is closed and an error status is returned to the user.
Write the complemented pseudo�random pattern to all blocks on media.
Read and verify the pattern exists in all blocks. If the pattern does not match that written, the device is closed and an error status is returned to the user.
Write the pseudo�random pattern to all blocks on media again.
Read and verify the pattern exists in all blocks. If the pattern does not match that written, the device is closed and an error status is returned to the user.
Close the PC�Card device.
Return status to the user upon completion of the function.
Example Calling Sequence
Int iStatus = upl_ScrubCard(pcDrive);
Calling Parameters
pDrive � This argument must be of type char * and contain a NULL terminated string of characters that specify a disk drive designation. The drive specified must be mapped to a valid PC�Card device.
Limitations
This function works only with a valid PC�Card device.
A valid drive designator must be specified that maps to a PC�Card Drive.
True declassification will potentially fail if card invokes wear-leveling or sector remapping logic.
�DETAILED DESIGN
High�Level Design Updates
Section�Summary of Updates��CONOP�Added Type I
Modified to reflect SPARC Ultra only.
Added MS-DOS Programmers Reference.
Added SCSI-2 Specification.
Clarified which version of MS-DOS (6.x).
Added trigraphs to function names.��SOF�Added Type I��RTDB�Added Type I��Allocation Trace �Added SOF Numbers and Function Names��Data Flow�Adjusted position in section��Preliminary IDD�Clarified upl_Open() and corrected typos��Database Schema
No database schema modifications are required for implementation of this SOR.

Control FlowS
�EMBED Unknown���
Figure 2.3-1.
�EMBED Unknown���

Figure 2.3-2. upl_CardInfo()
��
Figure 2.3-3.
��EMBED Unknown���
Figure 2.3-4. upl_Close()
��EMBED Unknown���
Figure 2.3-5.
��EMBED Unknown���
Figure 2.3-6.
��EMBED Unknown���
Figure 2.3-7. upl_Format()
�EMBED Unknown���
Figure 2.3-8.
�EMBED Unknown���
Figure 2.3-9.
�EMBED Unknown���
Figure 2.3-10. upl_ListFiles()
�EMBED Unknown���
Figure 2.3-11. upl_ListFree()
�EMBED Unknown���
Figure 2.3-12.
�EMBED Unknown���
Figure 2.3-13.
�EMBED Unknown���
Figure 2.3-14. upl_Open()
�
Figure 2.3-15.
�
Figure 2.3-16. upl_Read()
�EMBED Unknown���
Figure 2.3-17.
�EMBED Unknown���
Figure 2.3-18.
�EMBED Unknown���
Figure 2.3-19.
�EMBED Unknown���
Figure 2.3-20. upl_Remove()
�EMBED Unknown���
Figure 2.3-21.
�EMBED Unknown���
Figure 2.3-22.
�EMBED Unknown���
Figure 2.3-23. upl_ScrubCard()
�EMBED Unknown���
Figure 2.3-24. upl_Seek()
�EMBED Unknown���
Figure 2.3-25.
�EMBED Unknown���
Figure 2.3-26. upl_Write()
Algorithms
Declassification, triple-pseudo-random-write
Design Description
File manipulation in the MS�DOS framework must strictly conform to the file system specification in order to assure compatibility. File system creation and access shall be developed to agree with MS�DOS version 6.x in accordance with Microsoft MS-DOS Programmers Reference.
PC�Card Initialization � Formatting
PC�Cards shall be formatted according to procedures defined for fixed disks with 16�bit FATs and single partitions. The formatting process shall impose a well defined structure on the media, as depicted in figure 2.5.1-1.
�
Figure 2.5.1�1.
The Master Boot Record (MBR) always occupies the first physical sector of the media. The MBR contains the Partition Table and a Boot Signature (see Table 2.5.1�1). If the first sector of the media is found to be defective, the entire media is rendered unusable.
Table 2.5.1-1. Master Boot Record
Offset (Bytes)�Size (Bytes)�Content�Comment��0x0000�446�Unused�Reserved, per Microsoft��0x01be�16�Partition Detail #1�Required��0x01ce�16�Partition Detail #2�Optional��0x01de�16�Partition Detail #3�Optional��0x01ee�16�Partition Detail #4�Optional��0x01fe�2�Boot Signature�MS�DOS = 0xaa55��The Partition Table is composed of four contiguous 16 byte Partition Records (table 2.5.1�2). A fixed disk may contain up to four partitions, however, the TAMPS core formatting function shall always create one logical disk which shall span the entire PC�Card.
Table 2.5.1-2. Partition Record
Offset (Bytes)�Size (bytes)�Content�Comment��0x00�1�Boot Flag�0 = Data only.��0x01�1�Start Head���0x02�6�bits�Start Cylinder�Low 6�bits.��0x03�10�bits�Start Sector�Relative. Previous 2�bits high.��0x04�1�System Flag�06=16�bit FAT, Media > 32 MB��0x05�1�End Head���0x06�6�bits�End Cylinder�Low 6�bits.��0x07�10�bits�End Sector�Relative. Previous 2�bits high.��0x08�4�First Sector�Absolute from start of media.��0x0c�4�Total Sectors�Number of sectors in partition.��The address of logical sector zero (partition one) can be located with information derived from the first Partition Record. The Boot Record (table 2.5.1�3) for partition one may be read from this address.
Table 2.5.1-3. Boot Record
Offset (Bytes)�Size (bytes)�Content�Comment��0x00�3�JMP Instruction�0xe9xxxx or 0xebxx90��0x03�8�OEM Name/Version�To be TAMPS6.2��0x0b�2�Bytes / Sector�0x200��0x0d�1�Sectors / Cluster�Variable��0x0e�2�Reserved Sectors�Usually 1��0x10�1�Number of FATs�To be 2��0x11�2�Root Entries�Variable��0x13�2�Total Sectors�Variable��0x15�1�Media Descriptor�To be 0xf8��0x15�2�Sectors / FAT�Variable��0x18�2�Sectors / Track�Variable��0x1a�2�Number of Heads�Variable��0x1c�4�Hidden Sectors�Variable��0x20�4�Total Sectors (II)�Variable��0x24�1�Drive Number�For boot disks��0x25�1�Reserved���0x26�1�Extended Boot Sign�0x29 indicates extended��0x27�4�Volume Serial�Time of format��0x2b�11�Volume Label�Variable ?��0x36�8�File System Type�ìFAT12î or ìFAT16î���Preliminary Design Language
Public Functions
upl_CardInfo(pcDrive, paInfo)��	Application enters upl_CardInfo() w/ Drive and CardInfo-pointer parameter
	Set Status<-Error
	Set Status<-upl_DisectFilePath(cDrive...)
	If Status = Success then
		Set Status<- upl_MapCache(paCardState)
		If Status = Success then
			If CardState.Free = True then
				Set FileId<-open(SpecialFile)
				If FileId > 0 then
					Set Status<- upl_GetFSInfo(paCardState)
					Close(FileId)
				Endif
			Endif
			Set ìpaInfoî Formatted-Card Capacity
			Calculate and Set ìpaInfoî Free Bytes
			Calculate and Set ìpaInfoî Ratio of Failed/Usable Clusters
			Set Status<- upl_UnMapCache(paCardState)
		Endif
	Endif
	Return Status

�upl_Close(paFileState)��	Application enters upl_Close() w/ FileDescriptor-pointer parameter
	Set Status<-Error
	If FileDescriptor valid then
		Set Status<- upl_GetFSInfo(paCardState)
		If Status = Success then
			If Cache Matches Card then
				Set Status<-upl_FlushCache(FileId, paCardState)
			Endif
		Endif
		Close(FileId)
		Free(paFileId)
		Set CardState... to ìFreeî
		upl_UnMapCache(paCardState)
	Endif
	Return Status

upl_Format(pcDrive, iClusterFactor, iRootFiles)��	Application enters upl_Format() w/ Drive, ClusterFactor and RootFiles parameters
	Set Status<- upl_DisectFilePath(cDrive...)
	If SpecialFile <> NULL then
		If ClusterFactor = Power of 2 between 2 and 128
			If RootFiles > 100 and < 65535
				Set Status<- upl_MapCache(paCardState)
				If Status = Success and CardState.Free = True then
					Set CardState.Free<-False
					Set FileId<-open(SpecialFile)
				Endif
				If FileId > 0 then
					Set Status<- upl_GetFSInfo(paCardState)
				Endif
				If Status = Success then
					Set Status<-ioctl(ReadGeometry)
				Endif
				If Status = Success then
					Status = WriteVerify(n, end)
				Endif
				If Status = Success then
					If FATs Congruent then
						ìOrî Old and New FATs together
					Endif
					Set Status<- upl_CreateFS(pcCardState)
				Endif
			Else
				Set Status<-Error
			Endif
		Else
			Set Status<-Error
		Endif
	Else
		Set Status<-Error
	Endif
	Close(FileId)
	Set CardState.Free<-True
	Return Status

upl_ListFiles(cFilePath, paFileList)��	Application enters upl_ListFiles() w/ FilePath and FileList pointer parameters
	Set Status<- upl_DisectFilePath(cDrive...)
	If Status = Success then
		Set Status<- upl_MapCache(paCardState)
	Endif
	If Status = Success and CardState.Free = True then
		Set FileId<-open(SpecialFile)
		If FileId > 0 then
			Set Status<- upl_GetFSInfo(paCardState)
		Endif
	Endif
	If Status = Success then
		Set pcReturnName<-NULL
		Set pcFileList<-NULL
		Repeat until Status = NoMo
			Status = upl_FileExists(pcFileName, pcReturnName)
			If Status = True then
				If SlotFree = 0 then
					Set pcFileList<-Malloc()
					Mark pcFileList as ìFree Safeî
				Endif
				Set FileList.pNext Pointer
				Set FileList<-DirInfo
				Decrement SlotFree counter
			Endif
		EndRepeat
		If paFileList <> NULL then
			Set Status<-Success
		Endif
	Endif
	Return Status

upl_ListFree(paFileList)��	Application enters upl_ListFree() w/ File Path parameter
	Set pNext<-paFileList
	Repeat until pNext = NULL
		If pNext.Heap = ìFree Safeî then
			Free(pNext)
		Endif
		Set pNext<-pNext.Next
	EndRepeat

upl_Open(pcFilePath, pcAccess, iAllocation)��	Application enters upl_Open() w/ File Path, Access and Allocation parameters
	Set Status<-Error
	If AccessFlag = ìrî, ìwî or ìaî then
		Set Status<- upl_DisectFilePath(cDrive...)
	Endif
	If Status = Success and CardState.Free = True then
		Set CardState.Free<-False
		Set FileId<-open(SpecialFile)
	Endif
	If FileId > 0 then
		Set Status<- upl_GetFSInfo(paCardState)
	Endif
	If Status = Success then
		If AccessFlag = ìrî then
			If upl_FileExists(pcFileName, pcFileFound) = True then
				If False or Allocation > 0 then
					Set Status<-Error
				Endif
			Endif
		Else If AccessFlag = ìwî or ìaî then
			If upl_FileExists(pcFileName, pcFileFound) = True then
				If Allocation > 0 then
					Set Status<-Error
				Endif
			Else
				Set Status<-upl_CreateFile(paCardState, pcFileName, iAllocation)
			Endif
		Endif
		If Status = Success then
			If Allocate Memory for FileState = Success then
				Set CardState fields
				Set FileState fields
			Endif
		Endif
	Endif
	Return Status

upl_Read(paCardState, pcData, iBytes)��	Application enters upl_Read() w/ FileDescriptor-pointer, data and size parameters
	Set Status<-Error
	If FileDescriptor valid and iBytes > 0 then
		Set Status<- upl_GetFSInfo(paCardState)
		If Status = Success then
			If Cache Matches Card then
				If Data not in Cache then
					Set Status<-read(FileId, Cluster, iBytes)
				Endif
				If Status=Success then
					Copy data to user buffer
					Increment Position
				Endif
			Else
				Set Status<-Error
			Endif
		Endif
	Endif
	Return Status

upl_Remove(pcFilePath, iFlag)��	Application enters upl_Remove() w/ FilePath and flag parameters
	Set Status<- upl_DisectFilePath(cDrive...)
	If Status = Success then
		Set Status<- upl_MapCache(paCardState)
	Endif
	If Status = Success and CardState.Free = True then
		Set CardState.Free<-False
	Endif
	If SpecialFile <> NULL then
		Set FileId<-open(SpecialFile)
	Endif
	If FileId > 0 then
		Set Status<- upl_GetFSInfo(paCardState)
	Endif
	If Status = Success then
		Set pcReturnName<-NULL
		Repeat until SearchStatus = NoMo
			SearchStatus = upl_FileExists(pcFileName, pcReturnName)
			If SearchStatus = Success then
				If iFlag = DECLASS then
					Status = WriteVerify(FileStart, FileEnd)
					If Status = Success then
						Status = WriteVerify(FileStart, FileEnd)
					Endif
					If Status = Success then
						Status = WriteVerify(FileStart, FileEnd)
					Endif
				Endif
				Mark File Deleted in CardState
			Endif
		EndRepeat
		If Status = Success and CardState=Dirty then
			Set Status<-upl_FlushCache(FileId, paCardState)
		Endif
	Else
		Set Status<-Error
	Endif
	Set CardState.Free<-True
	upl_UnMapCache(paCardState)
	Return Status

upl_ScrubCard(pcDrive)��	Application enters upl_ScrubCard() w/ Drive parameter.
	Set Status<- upl_DisectFilePath(cDrive...)
	If Status = Success and SpecialFile <> NULL then
		Set Status<- upl_MapCache(paCardState)
		If Status = Success then
			If CardState.Free = True then
				Set CardState.Free<-False
				Set FileId<-Open(SpecialFile)
			Endif
			If Status = Success then
				Set Status<-ioctl(ReadGeometry)
			Endif
			If Status = Success then
				Status = WriteVerify(0, n)
			Endif
			If Status = Success then
				Status = WriteVerify(0, n)
			Endif
			If Status = Success then
				Status = WriteVerify(0, n)
			Endif
		Else
			Set Status<-Error
		Endif
	Else
		Set Status<-Error
	Endif
	Set CardState.Free<-True
	Return Status

upl_Seek(paFileId, iByteOff)��	Application enters upl_Seek() w/ FileDescriptor-pointer, and ByteOff parameters
	If FileDescriptor valid and iByteOff > 0 then
		If iByteOff < EOF then
			Set FileDescriptor.Position<-iByteOff
		Endif
	Else
		Set Status<-Error
	Endif
	Return Status

upl_Write(paCardState, pcData iBytes)��	Application enters upl_Write() w/ FileDescriptor-pointer, data and size parameters
	Set Status<-Error
	If FileDescriptor valid and iBytes > 0 then
		Set Status<- upl_GetFSInfo(paCardState)
		If Status = Success then
			If Cache Matches Card then
				If Cluster not in Cache then
					Set Status<-read(FileId, Cluster)
				Else
					Set Status<-Error
				Endif
				Copy User-Data to Cached-Cluster at Offset
				Seek to previously read() Cluster
				Set Status<-Write(FileId, Cluster)
				Increment Position
			Else
				Set Status<-Error
			Endif
		Endif
	Else
		Set Status<-Error
	Endif
	Return Status
�Private Functions
upl_CreateFile(paCardState, pcFileName, iAlloc)
Purpose:
Function will create a file entry in the root directory and mark enough clusters in the FATs to accommodate iAlloc. Completion status will be returned to calling function.��	Core enters upl_CreateFile() w/ CardSate, FileName and Allocation parameters
	Set Status<-Error
	If Allocation <= 0 then
		Set Allocation<-1
	Endif
	If DirEntryLeft > 0 then
		If Allocation < CardState.FreeSpace then
			Set CardState[Entry].FAT1<-FreeCluster(s)
			Set CardState[Entry].FAT2<-FreeCluster(s)
			Set CardState[Entry].DirEntry<-pcFileName, Size, Date
		Endif
	Endif
	Return Status

upl_CreateFS(paCardState)
Purpose:
Function will create an MS-DOS file system on a ìdiskî based upon the information found in the CardState data structure. Completion status will be returned to calling function.��	Core enters upl_CreateFS() w/ CardSate parameter
	If CardState valid then
		Set Status<-seek(Physical Sector 0)
		If Status = Success then
			Set Status<-WriteVerify(FileId, MBR)
		Endif
		If Status = Success then
			Set Status<-seek(Logical Sector 0)
			If Status = Success then
				Set Status<-WriteVerify(FileId, Boot Record)
			Endif
		Endif
		If Status = Success then
			Set Status<-seek(FAT 1)
			If Status = Success then
				Set Status<-WriteVerify(FATs 1&2)
			Endif
		Endif
		If Status = Success then
			Set Status<-seek(Root)
			If Status = Success then
				Set Status<-WriteVerify(Root Directory)
			Endif
		Endif
	Else
		Set Status<-Error
	Endif
	Return Status

upl_DisectFilePath(cFilePath, cDrive, cFile, cSpecial)
Purpose:
Function will parse cFilePath and decompose it into the output parameters; cDrive and cFile. If cDrive is successfully compared to data found in the /etc/upl.map configuration file, the corresponding special file name will be returned in cSpecial. Completion status will be returned to calling function.��	Core enters upl_DisectFilePath() w/ FilePath parameter
	Set Status<-Error
	If FilePath <> NULL then
		If cFilePath[0] valid then
			Set cDrive<-cFilePath[0]
			Set pcSpecial<-upl_GetSpecial(cDrive)
			If pcSpecial <> NULL then
				If cFilePath[3] valid then
					Set cFile<-cFilePath[3]
				Else
					Set Status<-Error
				Endif
			Else
				Set Status<-Error
			Endif
		Else
			Set Status<-Error
	Endif

upl_FileExists(paCardState, pcFileName, pcFound)
Purpose:
Function will accept a actual or ìwild-cardedî file name and scan the directory referenced in the CardState structure. If a match is located, the complete file name will be returned in pcFound. Function may be called with a ìwild-cardedî file name iteratively in order to obtain all conforming file names. Upon exhaustion of the directory table, a 0 value will be returned, else a non-zero index into the table will be returned.��	Core enters upl_FileExists() w/ CardState and File pointer parameters
	Set FoundIndex<-0
	Set FileFound<-False
	If pcFound = NULL then
		Set DirIndex<-0
	Else
		Set DirIndex<-CardState.LastIndex
	Endif
	Repeat Until DirEntries = 0 or FileFound
		If pcFileName = DirEntry[DirIndex] then
			Set FoundIndex<-DirIndex
			Set FileFound<-True
		Endif
		Set DirIndex<-DirIndex+1
	EndRepeat
	Return FoundIndex

upl_FlushCache(FileId, paCardState)
Purpose:
Function will write all relevant file system data contained in the CardState structure to the ìdiskî indicated. Completion status will be returned to calling function.��	Core enters upl_FlushCache() w/ FileId and CardState parameters
	If CardState valid then
		Set Status<-seek(Physical Sector 0)
		If Status = Success then
			Set Status<-write(FileId, MBR)
		Endif
		If Status = Success then
			Set Status<-seek(Logical Sector 0)
			If Status = Success then
				Set Status<-write(FileId, Boot Record)
			Endif
		Endif
		If Status = Success then
			Set Status<-seek(FAT 1)
			If Status = Success then
				Set Status<-write(FileId, FATs 1&2)
			Endif
		Endif
		If Status = Success then
			Set Status<-seek(Root)
			If Status = Success then
				Set Status<-write(FileId, Root Directory)
			Endif
		Endif
	Else
		Set Status<-Error
	Endif
	Return Status

upl_GetFSInfo(paCardState)
Purpose:
Function will retrieve all relevant file system information from ìdiskî and store it into the CardState structure for future use. Completion status will be returned to calling function.��	Core enters upl_GetFSInfo() w/ CardState parameter
	If CardState valid then
		Set Status<-seek(Physical Sector 0)
		If Status = Success then
			Set Status<-read(FileId, MBR)
		Endif
		If Status = Success then
			Set Status<-seek(Logical Sector 0)
			If Status = Success then
				Set Status<-read(FileId, Boot Record)
			Endif
		Endif
		If Status = Success then
			Set Status<-seek(FAT 1)
			If Status = Success then
				Set Status<-read(FileId, FATs 1&2)
			Endif
		Endif
		If Status = Success then
			Set Status<-seek(Root)
			If Status = Success then
				Set Status<-read(FileId, Root Directory)
			Endif
		Endif
	Else
		Set Status<-Error
	Endif
	Return Status

upl_GetSpecial(cDrive)
Purpose:
Function will read the /etc/udl.map configuration file and search the first word of each line therein for a match with cDrive. If a conforming entry is found, a reference to the special file name will be returned, else a Null.��	Core enters upl_GetSpecial() w/ cDrive parameter
	Set pcSpecial<-NULL
	Set FD<-open(ì/etc/upl.mapî)
	If FD <> NULL then
		Repeat Until EOF
			Set Status<-read(FD, TransString)
			If TransString[0] = cDrive then
				Set pcSpecial<-TransString[4]
				Break
			Endif
		EndRepeat
		close(FD)
	Endif
	Return pcSpecial

upl_MapCache(paCardState)
Purpose:
Function will attempt to map the upl shared memory region for the ìdiskî specified. Upon successful completion, a reference to the file system data structure will be returned in the CardState structure. Completion status will be returned to calling function.��	Core enters upl_MapCache() w/ CardState parameter
	Set Status<-shmget()
	If Status = Success then
		Set Status<-shmat()
		Set CacheMagic<-0xDEAFBEEF
		Set CacheOwnerPID<-getpid()
	Endif
	Return Status

upl_UnMapCache(paCardState)
Purpose:
Function will delete itís reference to the previously mapped shared memory region. Completion status will be returned to calling function.��	Core enters upl_UnMapCache() w/ CardState parameter
	Set Status<-shmdt()
	If Status = Success then
		Set CacheMagic<-0
		Set CacheOwnerPID<-0
	Endif
	Return Status

�PDL for TAMMAC PC-Card Interface Device Driver
Application functionality to be provided by device driver
Device allocation for exclusive use.
Device deallocation.
Data transfer to device.
Data transfer from device.
Device Allocation Description
Device allocation is requested through any of the Unix device open system calls to the device named /dev/psl/<n>. Upon successful open of the device a valid file descriptor will be returned to the requesting application for future use. If the device has been previously allocated, the subsequent allocation request will not be allowed and an error status shall be returned.
Device Driver Open()
	Core enters device open() routine
	Unix file system passes open request to device driver
	If device_flags inconsistent then
		return error
	endif
	If per-instance-data retrieval fails then
		return error
	endif
	If device-busy then
		return error
	endif
	Mark busy flag in per-instance-data
	If probe-device() fails then
		Unmark busy flag in per-instance-data
		return error
		UNIX file system returns status to application
	endif
	return success
	Unix file system returns status and file descriptor to application
Device Deallocation Description
Device deallocation is requested through any of the Unix device close system calls via the file descriptor obtained from a successful open call. Upon successful deallocation of the device, all device driver data structures will be reset for future use.
Device Driver Close()
	Core enters close system call
	Unix file system passes close request to device driver
	If per-instance-data retrieval fails then
		return error
	endif
	If busy flag not set then
		return error
	endif
	Unmark busy flag in per-instance-data
	return success
	Unix file system returns status to application
Device I/O
Device read and write operations follow virtually identical entry and logic paths, therefore, both will be detailed in the following. After an application has successfully allocated the device and received a file descriptor, it may request I/O operations. The device uses standard Group-0 and Group-1 SCSI commands along with some proprietary device specific OpCodes.
Device Driver I/O
	Core enters I/O routines
	Unix file system passes I/O request to device driver
	Device driver dispatches I/O request to strategy() routine
	If per-instance-data retrieval fails then
		return error
	endif
	while I/O-flag busy
		spin
	end
	Mark per-instance I/O-flag busy
	Construct SCSI I/O command block
	If command-transport fails then
		return error
	endif
	return 0
	
	WAIT FOR INTERRUPT SERVICE ROUTINE TO SIGNAL COMPLETION....
(Note: When the device completes processing the I/O command it will send a reply packet to the initiating host which will cause the device drivers interrupt service routine to be called.)
	Callback triggered from Host Adapter
	If per-instance-data retrieval fails then
		return error
	endif
	If command-incomplete then
		Retry command
		If command-transport fails then
			return error
		endif
	elseif auto-request-done
		handle-arq data
	elseif request-sense
		handle-sense
else
		mark command complete
	endif

	if command-complete then
		examine-return-status
		if return-errors then
			set error flags
		endif
		destroy SCSI packet
		interrupt caller with I/O status
	endif

	return
�Interface Description
TAMMAC PC�Card Interface
File Creation Function � upl_Open()
Purpose
This function will provide Mission Planning Modules (MPMs) and Core Extensions (CEs) with a method of opening an MS�DOS file on an ATA Memory Card.
Description
This function will:
Verify that the filename passed contains a valid disk drive designator.
Verify that the PC�Card Slot associated with the disk drive designator is valid.
Verify that the access flags specified are valid for the designated file and PC�Card Slot.
Open the PC�Card the file is on or will be created on.
Read the directory and FAT tables from the device.
Check to see if the file exists.
If the file does not exist, a new file control structure will be created, depending upon the type of access specified.
If the file does exist, the file control structure will be created describing the file.
A pointer to the file control structure is returned to the caller indicating success or NULL will be returned indicating failure.
Example Calling Sequence
upl_File_t FileId = upl_Open(pcFileName, pAccess, iAllocation, pStatus);
Calling Parameters
pcFileName � This argument must be of type char * and contain a NULL terminated string of characters that specify a complete file specification. A file specification consists of a single letter, colon and backslash disk drive designator (i.e. c:\, C:\, d:\ or D:\), a filename of one to eight characters, an optional period and an optional extension with a maximum of three characters. If the extension is supplied, it must be preceded with a period. File path parsing shall be case insensitive. A valid example is ìc:\FileName.Extî.
pAccess � This argument must be of type const char * and contains a NULL terminated string of characters that specify the type of access desired on the file. The allowable access characters are: ìrî for read-only, ìwî for write and ìaî for append. The ìwî and ìaî access designators imply ìrî as well. Upon successful file open with the ìwî designation, the file position will be set to ìBeginning of Fileî, whereas a designation of ìaî will set the file position to the ìEnd of Fileî. All file access will be binary, meaning, no translation of escape sequences will be supported.
iAllocation � This argument must be of type int and is used to indicate the number of bytes to be allocated for a new file. The number of bytes will then be used to determine the number of clusters to be pre-allocated. This argument is optional. When this argument is not included in the calling sequence, a default cluster allocation of 1 will be used for a new file. This argument will generate an error for existing files if specified as non-zero.
pStatus � This argument will be a pointer to a status variable for returning function execution status to the calling application.
Limitations
This function opens PC�Card based files on MS�DOS file systems only.
This function opens the file for access without translation of escape sequences (i.e. CR/LF to LF).
PC�Card slot access is single threaded only.
File Completion Function �upl_Close()
Purpose
This function provides MPMs and CEs with a method of closing an MS�DOS file on an ATA Memory Card.
Description
This function will:
Verify that the contents of the file control structure passed are valid.
Update the memory images of the FAT and directory structures.
Copies of the FAT and directory structures will be written to the PC�Card Device.
If the write fails, a status flag is set to fail, otherwise the status flag is set to success.
Any allocated memory buffers held by the file control structure will be freed.
The members of the file control structure will be set to NULL.
The value of the status flag will be returned.
Example Calling Sequence
Int iStatus = upl_Close(FileId)
Calling Parameters
FileId � This argument must be an address of type upl_File_t and contain a pointer to an actively open file control structure.
Limitations
This function works only with valid file control structures returned from the upl_Open() function.
File Positioning Function � upl_Seek()
Purpose
This function will provide MPMs and CEs with a method of positioning to a byte location within an MS�DOS file on an ATA Memory Card.
Description
This function will:
Verify that the contents of the file control structure passed are valid. If an invalid control structure is passed, an error status is returned
Verify that the offset passed is valid for the file being accessed. If an invalid offset is passed, an error status is returned.
Update the logical file pointer for the file.
Return status to the user upon successful completion of the function.
Example Calling Sequence
Int iStatus = upl_Seek(FileId, iOffset);
Calling Parameters
FileId � This argument must be of type upl_File_t and contain a pointer to an active file control structure.
iOffset � This argument must be of type u_int and contains the byte, relative to the beginning of the file, that the function is to position the logical file pointer to.
Limitations
This function works only with valid file control structures returned from the upl_Open() function.
This function cannot seek to a location past the end of file (EOF).
This function does not support offsets of negative values.
File I/O Function � upl_Read()
Purpose
This function will provide MPMs and CEs with a method of transferring data from an MS�DOS file on an ATA Memory Card to the callers buffer area in memory.
Description
This function will:
Verify that the contents of the file control structure passed are valid. If an invalid control structure is passed an error status is returned.
Verify that the number of bytes to be read is valid for the file being accessed. If an invalid value is stated for the number of bytes, an error status is returned.
Compute the number of blocks to be read.
Compute the starting block address of where data is to be read from using the current file logical pointer position and the FAT.
Transfer data from the file on the PC�Card into an internal buffer area. If data cannot be transferred, an error status is returned.
Update the file logical pointer to point at the next byte following the last byte transferred.
Copy data from the internal buffer area to the user buffer area.
Return status to the user upon successful completion of the function.
Example Calling Sequence
Int iStatus = upl_Read(FileId, pBuffer, iBytes);
Calling Parameters
FileId � This argument must be of type upl_File_t and contain a pointer to a file control structure.
pBuffer � This argument must be of type u_char * and contains the address of a buffer within the bounds of the user program where the data that is read from the file will be placed.
iBytes � This argument must be of type u_int and contain the number of bytes to transfer from the file on the PC�Card device to the pBuffer area specified. The value held in this argument cannot be a negative value.
Limitations
This function works only with valid file control structures returned from the upl_Open() function.
This function cannot read past the EOF.
This function does not support negative values for the iBytes argument.
File I/O Function � upl_Write()
Purpose
This function will provide MPMs and CEs with a method of transferring data to an MS�DOS file on an ATA Memory Card from a buffer area in memory.
Description
This function will:
Verify that the contents of the file control structure passed are valid. If an invalid control structure is passed an error status is returned.
Determine if the file has been opened for write or append access.
Verify that the number of bytes to be written is valid. If an invalid value is stated for the number of bytes, an error status is returned.
Compute the starting block address of where data is to be written to using the current file logical pointer position and the FAT.
Compute the number of clusters needed to hold the data that is to be written and allocate those clusters.
Copy the user data that was passed into an internal buffer.
Copy data from the internal buffer area to the PC�Card device.
Update the file logical pointer to point to the next byte following the last byte written.
Return status to the user upon successful completion of the function.
Example Calling Sequence
Int iStatus = upl_Write(FileId, pBuffer, iBytes)
Calling Parameters
FileId � This argument must be of type upl_File_t and contain a pointer to a file control structure.
pBuffer � This argument must be of type u_char * and contains the address of a buffer within the bounds of the user program where a copy of the data will be taken from and transferred to the PC�Card Device.
iBytes � This argument must be of type u_int and contain the number of bytes to transfer to the file on the PC�Card device from the pBuffer area specified. The value held in this argument cannot be a negative value.
Limitations
This function works only with valid file control structures returned from the upl_Open() function.
This function cannot write past the capacity of the PC�Card Device.
This function does not support negative values for the iBytes argument.
Directory Listing Function � upl_ListFiles()
Purpose
This function will provide MPMs and CEs with a method of obtaining a list of files on an MS�DOS file structured ATA Memory Card.
Description
This function will:
Verify that the PC�Card Drive specified is valid and can be opened. If an invalid PC�Card Drive is specified or cannot be opened, then an error code is returned.
Read directory blocks from the PC�Card device. If a read cannot be performed, then an error will be returned.
Build a list of directory entries. Each entry will contain the file name, extension, date of creation (or last modification) and size.
Return the pointer to be beginning of the directory list.
Return a good status to the user upon successful completion of the function.
Example Calling Sequence
Int iStatus = upl_ListFiles(pDirectory, ppListAddr)
Calling Parameters
pDirectory � This argument must be of type char * and contain a pointer to a valid drive and directory name. Valid characters are any that conform to the MS�DOS file spec for directory names and file system names. The use of wildcards will also be permitted in accordance with MS�DOS standards.
ppListAddr � This argument must be of type upl_DirList_t **. This argument will be initialized by the function to hold the beginning address of a linked-list of directory entries.
Limitations
This function works only with valid PC�Cards.
This function sets an address of dynamically allocated memory into a passed argument. It is the users responsibility to call the upl_ListFree() function to free the allocated memory and avoid memory leaks.
Directory Listing Function � upl_ListFree()
Purpose
This function will provide MPMs and CEs with a method of freeing the allocated memory used to obtain a listing of those files held on an ATA Memory Card.
Description
This function will:
Verify that the address passed is not a NULL address.
Free any allocated space held in the list of directory entries.
Determine if any errors were encountered during the deallocation of space. If an error did occur, then an error status is returned to the user.
Return a good status to the user upon successful completion of the function.
Example Calling Sequence
Int iStatus = upl_ListFree(pListAddr);
Calling Parameters
pListAddr � This argument must be of type upl_DirList_t *. This argument contains the address of the beginning of a list of directory entries.
Limitations
This function works only with a list created by the upl_ListFiles() function.
File Removal Function � upl_Remove()
Purpose
This function will provide MPMs and CEs with a method of removing a file from the root directory of an MS�DOS formatted ATA Memory Card. Callers can optionally direct all clusters occupied to be declassified.
Description
This function will:
Verify that the filename passed contains a valid disk drive designator.
Verify that the PC�Card associated with the disk drive designator is valid and open that PC�Card Device. If an error occurs, then return an error status.
Read the directory and FAT Table from the PC�Card device. If unable to read, an error status will be returned.
Search the directory table for the file specified. If the file is not found, then an error status will be returned.
Modify the directory and FAT to remove the file.
Write the directory and FAT to the PC�Card device. If unable to write, an error status will be returned.
Close the PC�Card device.
Return a good status to the user upon successful completion of the function.
Example Calling Sequence
Int iStatus = upl_Remove(pFileName, int iFlag);
Calling Parameters
pFileName � This argument must be of type char * and contain a NULL terminated string of characters that specify a complete file specification. A file specification consists of a single letter disk drive designator, a filename of eight characters or less, an optional period and an optional three character extension. If the extension is stated, so must the period. An example would be, ìc:\filename.extî. This function will also support wild cards in accordance with the MS�DOS file specification. Valid characters for file systems, file names and file extensions are in accordance with MS�DOS file system specifications.
iFlag ñ Optional processing indicator. Current design supports declassification only.
Limitations
This function works only with a valid PC�Card device.
A valid drive designator must be specified that maps to a PC�Card Drive.
This function will remove files from the selected mediaís root directory only.
Card Information Function � upl_CardInfo()
Purpose
This function will provide MPMs and CEs with a method of determining an MS�DOS partitionís total formatted capacity and amount of free space available on an ATA Memory Card.
Description
This function will:
Verify that the disk drive designator specified maps to a valid PC�Card device. If an invalid disk drive designation is passed an error status is returned.
Open the designated valid PC�Card Device. If an error occurs, then return an error status.
Read the FAT Table from the PC�Card device. If unable to read, an error status will be returned.
Calculate the amount of space free and the amount of space used on the PC�Card device.
Place the values into a structure passed by the user of the function.
Close the PC�Card device.
Return status to the user upon successful completion of the function.
Example Calling Sequence
Int iStatus = upl_CardInfo(pDrive, pCardInfo);
Calling Parameters
pDrive � This argument must be of type char * and contain a NULL terminated string of characters that specify a disk drive designation. The drive specified must be mapped to a valid PC�Card device. This argument will accept the drive designator character with or without the ë:í (colon) separator.
pCardInfo � This argument must be of type upl_CardInfo_t *. This argument contains the address of a structure holding identifiers for total capacity and available space on the PC�Card device.
Limitations
This function works only with a valid PC�Card device.
A valid drive designator must be specified that maps to a PC�Card Slot.
Card Formatting Function � upl_Format()
Purpose
This function will provide MPMs and CEs with a method of formatting a ATA Memory Card to hold an MS�DOS file system.
Description
This function will:
Verify that the disk drive designator specified maps to a valid PC�Card device. If an invalid disk drive designation is passed an error status is returned.
Verify that the sectors per cluster argument passed is valid for the PC�Card device. If an invalid value is passed an error status is returned.
Open the designated valid PC�Card Device. If an error occurs, then return an error status.
Initialize the cluster pointer and FAT table for the PC�Card Device.
Write a fixed pattern to the clusters.
Read the clusters and compare with the pattern previously written. If the pattern is not the same, then mark the cluster as bad.
Write a new boot sector to the PC�Card device.
Write a root directory to the device.
Write the FAT tables to the device.
Close the PC�Card device.
Return a good status to the user upon successful completion of the function.
Example Calling Sequence
Int iStatus = upl_Format(pDrive, iSectPerCluster, iDirEntries);
Calling Parameters
pDrive � This argument must be of type char * and contain a NULL terminated string of characters that specify a disk drive designation. The drive specified must be mapped to a valid PC�Card device.
iSectPerCluster � This argument must be of type int. This argument contains the number of sectors per cluster that is to be used in the format.
iDirEntries � This argument must be of type int. This argument contains the number of directory entries to create in the format.
Limitations
This function works only with a valid PC�Card device.
A valid drive designator must be specified that maps to a PC�Card Drive.
The number of sectors per cluster must be a legal value for the capacity of the card being used in accordance with MS�DOS file system specifications. It must a power of 2, between 2 and 128.
The number of directory entries must be between 100 and 65535.
Card Declassification Function � upl_ScrubCard()
Purpose
This function will provide MPMs and CEs with a method of declassifying an ATA Memory Card.
Description
This function will:
Verify that the disk drive designator specified maps to a valid PC�Card device. If an invalid disk drive designation is passed an error status is returned.
Open the designated valid PC�Card Device. If an error occurs, then return an error status.
Write pseudo�random pattern to all blocks on media.
Read and verify the pattern exists in all blocks. If the pattern does not match that written, the device is closed and an error status is returned to the user.
Write the complemented pseudo�random pattern to all blocks on media.
Read and verify the pattern exists in all blocks. If the pattern does not match that written, the device is closed and an error status is returned to the user.
Write the pseudo�random pattern to all blocks on media again.
Read and verify the pattern exists in all blocks. If the pattern does not match that written, the device is closed and an error status is returned to the user.
Close the PC�Card device.
Return status to the user upon completion of the function.
Example Calling Sequence
Int iStatus = upl_ScrubCard(pcDrive);
Calling Parameters
pDrive � This argument must be of type char * and contain a NULL terminated string of characters that specify a disk drive designation. The drive specified must be mapped to a valid PC�Card device.
Limitations
This function works only with a valid PC�Card device.
A valid drive designator must be specified that maps to a PC�Card Drive.
True declassification will potentially fail if card invokes wear-leveling or sector remapping logic.
�Unit Test Plans and Procedures
Public Functions
upl_CardInfo()

Paths:

1)	1-2-3-4 (End)
2)	1-2-3-5-6-4 (End)
3)	1-2-3-5-6-7-12-13-14-15-16 (End)
4)	1-2-3-5-6-7-8-9-12-13-14-15-16 (End)
5)	1-2-3-5-6-7-8-9-10-11-12-13-14-15-16 (End)

Path 1:
upl_DisectFilePath() fails.
Expected Results: Sets status flag to Error state; invokes upl_DisectFilePath(); checks return status; Ends.

Path 2:
upl_DisectFilePath() succeeds; upl_MapCache() fails.
Expected Results: Sets status flag to Error state; invokes upl_DisectFilePath(); checks return status; calls upl_MapCache(); checks return status; Ends.

Path 3:
upl_DisectFilePath() succeeds; upl_MapCache()succeeds; CardState is not ìfreeî.
Expected Results: Sets status flag to Error state; invokes upl_DisectFilePath(); checks return status; calls upl_MapCache(); checks return status; checks CardState; sets ìpaInfoî Formatted-Card capacity; calculates & sets ìpaInfoî free bytes; calculates & sets ìpaInfoî ratio of failed/usable clusters; calls upl_UnMapCache(); Ends.

Path 4:
upl_DisectFilePath() succeeds; upl_MapCache()succeeds; CardState is ìfreeî; Special File open attempt fails.
Expected Results: Sets status flag to Error state; invokes upl_DisectFilePath(); checks return status; calls upl_MapCache(); checks return status; checks CardState; attempts to open Special File; checks return status; sets ìpaInfoî Formatted-Card capacity; calculates & sets ìpaInfoî free bytes; calculates & sets ìpaInfoî ratio of failed/usable clusters; calls upl_UnMapCache(); Ends.

Path 5:
upl_DisectFilePath() succeeds; upl_MapCache()succeeds; CardState is ìfreeî; Special File open attempt succeeds.
Expected Results: Sets status flag to Error state; invokes upl_DisectFilePath(); checks return status; calls upl_MapCache(); checks return status; checks CardState; attempts to open Special File; checks return status; calls GetFSINfo(); closes Special File; sets ìpaInfoî Formatted-Card capacity; calculates & sets ìpaInfoî free bytes; calculates & sets ìpaInfoî ratio of failed/usable clusters; calls upl_UnMapCache(); Ends.

upl_Close()

Paths:

1)	1-2-11 (Return)
2)	1-2-3-4-5-6-7-8-9-10-11 (Return)
3)	1-2-3-4-5-7-8-9-10-11 (Return)
4)	1-2-3-4-7-8-9-10-11 (Return)

Path 1:
File descriptor is invalid.
Expected Results: Sets status flag to Error state; checks file descriptor; returns status.

Path 2:
File descriptor is valid; upl_GetFSInfo() succeeds; cache matches card.
Expected Results: Sets status flag to Error state; checks file descriptor; calls upl_GetFSInfo(); checks return status; checks if cache matches card; calls upl_FlushCache(); closes file; frees paFId; sets CardState to ìFreeî; calls upl_UnMapCache(); returns status.

Path 3:
File descriptor is valid; upl_GetFSInfo() succeeds; cache does not match card.
Expected Results: Sets status flag to Error state; checks file descriptor; calls upl_GetFSInfo(); checks return status; checks if cache matches card; closes file; frees paFId; sets CardState to ìFreeî; calls upl_UnMapCache(); returns status.

Path 4:
File descriptor is valid; upl_GetFSInfo() fails.
Expected Results: Sets status flag to Error state; checks file descriptor; calls upl_GetFSInfo(); checks return status; closes file; frees paFId; sets CardState to ìFreeî; calls upl_UnMapCache(); returns status.

upl_Format() : Segment I

Paths:

1)	1-2-3-(22)
2)	1-2-4-5-(22)
3)	1-2-4-6-7-(22)
4)	1-2-4-6-8-9-(12)
4a)	(Variation due to two-part status check.)
5)	1-2-4-6-8-9-10-11-(12)

Path 1:
Special File does not exist.
Expected Results: calls upl_DisectFilePath(); checks if Special File exists; sets status to Error; proceeds to Segment II (step 22).

Path 2:
Special File does exist; ClusterFactor does not equal a power of 2 between 2 and 128.
Expected Results: calls upl_DisectFilePath(); checks if Special File exists; checks if ClusterFactor equals a power of 2 between 2 and 128; sets status to Error; proceeds to Segment II (step 22).

Path 3:
Special File does exist; ClusterFactor equals a power of 2 between 2 and 128; RootFiles is not between 100 and 65535.
Expected Results: calls upl_DisectFilePath(); checks if Special File exists; checks if ClusterFactor equals a power of 2 between 2 and 128; checks if RootFiles > 100 and < 65535; sets status to Error; proceeds to Segment II (step 22).

Path 4:
Special File does exist; ClusterFactor equals a power of 2 between 2 and 128; RootFiles is between 100 and 65535; call to upl_MapCache() is not successful.
Expected Results: calls upl_DisectFilePath(); checks if Special File exists; checks if ClusterFactor equals a power of 2 between 2 and 128; checks if RootFiles > 100 and < 65535; calls upl_MapCache(); checks if the call is successful and if CardState is ìFreeî; proceeds to Segment II (step 22).

Path 4a:
Special File does exist; ClusterFactor equals a power of 2 between 2 and 128; RootFiles is between 100 and 65535; CardState is not ìFreeî.
Expected Results: calls upl_DisectFilePath(); checks if Special File exists; checks if ClusterFactor equals a power of 2 between 2 and 128; checks if RootFiles > 100 and < 65535; calls upl_MapCache(); checks if the call is successful and if CardState is ìFreeî; proceeds to Segment II (step 22).

Path 5:
Special File does exist; ClusterFactor equals a power of 2 between 2 and 128; RootFiles is between 100 and 65535; call to upl_MapCache() is successful AND CardState is ìFreeî.
Expected Results: calls upl_DisectFilePath(); checks if Special File exists; checks if ClusterFactor equals a power of 2 between 2 and 128; checks if RootFiles > 100 and < 65535; calls upl_MapCache(); checks if the call is successful and if CardState is ìFreeî; sets CardState.Free to False; attempts to open Special File; proceeds to Segment II (step 22).

upl_Format() : Segment II

Paths:

1)	12-13-14-15-16-17-18-22-23-24 (Return)
2)	12-13-14-15-16-17-18-19-20-21-22-23-24 (Return)
3)	12-13-14-15-16-17-18-19-21-22-23-24 (Return)
4)	12-13-14-15-16-18-22-23-24 (Return)
5)	12-13-14-16-18-22-23-24 (Return)
6)	12-14-16-18-22-23-24 (Return)

Path 1:
FId is greater than 0; upl_GetFSInfo() call is successful; ioctl (ReadGeometry) is successful; WriteVerify() is not successful.
Expected Results: checks if FId >0; calls upl_GetFSInfo(); checks return status; calls ioctl(ReadGeometry); checks return status; calls WriteVerify(); checks return status; closes Special File; sets CardState to ìFreeî; returns status.

Path 2:
FId is greater than 0; upl_GetFSInfo() call is successful; ioctl (ReadGeometry) is successful; WriteVerify() is successful; FATs are congruent.
Expected Results: checks if FId >0; calls upl_GetFSInfo(); checks return status; calls ioctl(ReadGeometry); checks return status; calls WriteVerify(); checks return status; checks if FATs are congruent; ìORsî old & new FATs together; calls upl_CreateFS(); closes Special File; sets CardState to ìFreeî; returns status.

Path 3:
FId is greater than 0; upl_GetFSInfo() call is successful; ioctl (ReadGeometry) is successful; WriteVerify() is successful; FATs are not congruent.
Expected Results: checks if FId >0; calls upl_GetFSInfo(); checks return status; calls ioctl(ReadGeometry); checks return status; calls WriteVerify(); checks return status; checks if FATs are congruent; calls upl_CreateFS(); closes Special File; sets CardState to ìFreeî; returns status.

Path 4:
FId is greater than 0; upl_GetFSInfo() call is successful; ioctl (ReadGeometry) is not successful.
Expected Results: checks if FId >0; calls upl_GetFSInfo(); checks return status; calls ioctl(ReadGeometry); checks return status; checks return status; closes Special File; sets CardState to ìFreeî; returns status.

Path 5:
FId is greater than 0; upl_GetFSInfo() call is not successful.
Expected Results: checks if FId >0; calls upl_GetFSInfo(); checks return status; checks return status; checks return status; closes Special File; sets CardState to ìFreeî; returns status.

Path 6:
FId is not greater than 0.
Expected Results: checks if FId >0; checks return status; checks return status; checks return status; closes Special File; sets CardState to ìFreeî; returns status.

upl_ListFiles() : Segment I

Paths:

1)	1-2-3-4-5-6-7-(8)
2)	1-2-3-4-5-6-(8)
3)	1-2-3-4-(8)
3a)	(Variation based on two-part status check.)
4)	1-2-4-(8)

Path 1:
Call to upl_DisectFilePath() is successful; call to mapCache() is successful AND CardState is ìFreeî; call to open() succeeds in opening the Special File.
Expected Results: calls upl_DisectFilePath(); checks return status; calls upl_MapCache(); checks return status and value of CardState; attempts to open Special File; checks return status; calls upl_GetFSInfo(); proceeds to Segment II (step 8).

Path 2:
Call to upl_DisectFilePath() is successful; call to mapCache() is successful AND CardState is ìFreeî; call to open() fails in opening the Special File.
Expected Results: calls upl_DisectFilePath(); checks return status; calls upl_MapCache(); checks return status and value of CardState; attempts to open Special File; checks return status; proceeds to Segment II (step 8).

Path 3:
Call to upl_DisectFilePath() is successful; call to mapCache() is not successful .
Expected Results: calls upl_DisectFilePath(); checks return status; calls upl_MapCache(); checks return status and value of CardState; proceeds to Segment II (step 8).

Path 3a:
Call to upl_DisectFilePath() is successful; CardState is not ìFreeî.
Expected Results: calls upl_DisectFilePath(); checks return status; calls upl_MapCache(); checks return status and value of CardState; proceeds to Segment II (step 8).

Path 4:
Call to upl_DisectFilePath() is not successful.
Expected Results: calls upl_DisectFilePath(); checks return status; checks return status and value of CardState; proceeds to Segment II (step 8).

upl_ListFiles() : Segment II

Paths:

1)	8-(22)
2)	8-9-10-11-12-13-11 (loop)
3)	8-9-10-11-(20)
4)	8-9-10-11-12-13-14-(17)
5)	8-9-10-11-12-13-14-15-16-(17)

Path 1:
Status from previous segment indicates failure condition.
Expected Results: checks return status from Segment I; returns status.

Path 2:
Status from previous segment indicates success condition; file search loop in progress; file is not found.
Expected Results: checks return status from Segment I; sets pcReturnName = NULL; sets pcFileList = NULL; checks file search loop completion status; calls upl_FileExists(); checks if file found; loops back to (11).

Path 3:
Status from previous segment indicates success condition; file search loop complete.
Expected Results: checks return status from Segment I; sets pcReturnName = NULL; sets pcFileList = NULL; checks file search loop completion status; proceeds to Segment III (step 20).

Path 4:
Status from previous segment indicates success condition; file search loop completes; file is found; SlotFree does not equal 0.
Expected Results: checks return status from Segment I; sets pcReturnName = NULL; sets pcFileList = NULL; checks file search loop completion status; calls upl_FileExists(); checks if file found; checks value of SlotFree; proceeds to Segment III (step 17).

Path 5:
Status from previous segment indicates success condition; file search loop completes; file is found; SlotFree does equal 0.
Expected Results: checks return status from Segment I; sets pcReturnName = NULL; sets pcFileList = NULL; checks file search loop completion status; calls upl_FileExists(); checks if file found; checks value of SlotFree; calls malloc(); marks the return status (pcFileList) as ìFree Safeî; proceeds to Segment III (step 17).

upl_ListFiles() : Segment III

Paths:

1)	17-18-19-(11)
2)	20-21-22 (Return)
3)	20-22 (Return)

Path 1:
< No branch conditions. >
Expected Results: sets FileList.pNext pointer; sets FileList to point to DirInfo; decrements SlotFree counter; proceeds to Segment II (step 11).

Path 2:
paFileList does exist.
Expected Results: checks if paFileList exists; sets status to ìSuccessî; returns status.

Path 3:
paFileList does not exist.
Expected Results: checks if paFileList exists; returns status.

upl_ListFree()

Paths:

1)	1-2-3-4-5-2 (loop)
2)	1-2-3-5-2 (loop)
3)	1-2-6

Path 1:
Repeat loop is in progress; pNext.Heap is ìFree Safeî.
Expected Results: sets pNext pointer to start of paFileList; checks status of repeat loop; checks if pNext.Heap is ìFree Safeî; frees pNext pointer; increments pNext pointer to next node in list; loops back to (2).

Path 2:
Repeat loop is in progress; pNext.Heap is not ìFree Safeî.
Expected Results: sets pNext pointer to start of paFileList; checks status of repeat loop; checks if pNext.Heap is ìFree Safeî; increments pNext pointer to next node in list; loops back to (2).

Path 3:
Repeat loop is complete.
Expected Results: sets pNext pointer to start of paFileList; Ends repeat loop.

upl_Open() : Segment I

Paths:

1)	1-2-3-4-5-6-7-8-(9)
2)	1-2-3-4-5-6-(9)
2a)	(Variation based on two-part status test.)
3)	1-2-3-4-6-(9)
4)	1-2-4-6-(9)

Path 1:
Access flag is ìwî, ìrî, or ìaî; upl_DisectFilePath() succeeds; mapCache() succeeds; status equals ìSuccessî AND CardState equals ìFreeî.
Expected Results: sets status to ìErrorî; checks if AccessFlag is ìwî, ìrî, or ìaî; calls upl_DisectFilePath(); checks return status; calls upl_MapCache(); checks if return status equals ìSuccessî AND CardState equals ìFreeî; sets CardState.Free to ìFalseî; attempts to open Special File; proceeds to Segment II (step 9).

Path 2:
Access flag is ìwî, ìrî, or ìaî; upl_DisectFilePath() succeeds; mapCache() return status does not equal ìSuccessî.
Expected Results: sets status to ìErrorî; checks if AccessFlag is ìwî, ìrî, or ìaî; calls upl_DisectFilePath(); checks return status; calls upl_MapCache(); checks if return status equals ìSuccessî AND CardState equals ìFreeî; proceeds to Segment II (step 9).

Path 2a:
Access flag is ìwî, ìrî, or ìaî; upl_DisectFilePath() succeeds; mapCache() succeeds; CardState does not equal ìFreeî.
Expected Results: sets status to ìErrorî; checks if AccessFlag is ìwî, ìrî, or ìaî; calls upl_DisectFilePath(); checks return status; calls upl_MapCache(); checks if return status equals ìSuccessî AND CardState equals ìFreeî; proceeds to Segment II (step 9).

Path 3:
Access flag is ìwî, ìrî, or ìaî; upl_DisectFilePath() fails.
Expected Results: sets status to ìErrorî; checks if AccessFlag is ìwî, ìrî, or ìaî; calls upl_DisectFilePath(); checks return status; checks if return status equals ìSuccessî AND CardState equals ìFreeî; proceeds to Segment II (step 9).

Path 4:
Access flag is not ìwî, ìrî, or ìaî.
Expected Results: sets status to ìErrorî; checks if AccessFlag is ìwî, ìrî, or ìaî; checks return status; checks if return status equals ìSuccessî AND CardState equals ìFreeî; proceeds to Segment II (step 9).

upl_Open() : Segment II

Paths:

1)	9-10-11-(25)
1a)	9-11-(25)
2)	9-10-11-12-13-14-15-(21)
2a)	(Variation based on two-part status condition.)
3)	9-10-11-12-13-14-(21)
4)	9-10-11-12-13-(21)
5)	9-10-11-12-16-(21)
6)	9-10-11-12-16-17-20-(21)
7)	9-10-11-12-16-17-18-19-(21)
8)	9-10-11-12-16-17-18-(21)

Path 1:
Fid is >0; upl_GetFSInfo() fails.
Expected Results: checks if Fid >0; calls upl_GetFSInfo(); checks return status; proceeds to Segment III (step 25).

Path 1a:
Fid is not >0.
Expected Results: checks if Fid >0; checks return status; proceeds to Segment III (step 25).

Path 2:
Fid is >0; upl_GetFSInfo() succeeds; AccessFlag is ìrî; file does exist; condition false exists.
Expected Results: checks if Fid >0; calls upl_GetFSInfo(); checks return status; checks if AccessFlag is ìrî; checks if file exists; checks if False condition exists or if Allocation > 0; sets status to ìErrorî; proceeds to Segment III (step 25).

Path 2a:
Fid is >0; upl_GetFSInfo() succeeds; AccessFlag is ìrî; file does exist; Allocation is >0.
Expected Results: checks if Fid >0; calls upl_GetFSInfo(); checks return status; checks if AccessFlag is ìrî; checks if file exists; checks if False condition exists or if Allocation > 0; sets status to ìErrorî; proceeds to Segment III (step 25).

Path 3:
Fid is >0; upl_GetFSInfo() succeeds; AccessFlag is ìrî; file does exist; condition false does not exist AND Allocation is not >0.
Expected Results: checks if Fid >0; calls upl_GetFSInfo(); checks return status; checks if AccessFlag is ìrî; checks if file exists; checks if False condition exists or if Allocation > 0; proceeds to Segment III (step 25).

Path 4:
Fid is >0; upl_GetFSInfo() succeeds; AccessFlag is ìrî; file does not exist.
Expected Results: checks if Fid >0; calls upl_GetFSInfo(); checks return status; checks if AccessFlag is ìrî; checks if file exists; proceeds to Segment III (step 25).

Path 5:
Fid is >0; upl_GetFSInfo() succeeds; AccessFlag is not ìrî, nor is it ìwî or ìaî.
Expected Results: checks if Fid >0; calls upl_GetFSInfo(); checks return status; checks if AccessFlag is ìrî; checks if AccessFlag is ìwî or ìaî; proceeds to Segment III (step 21).

Path 6:
Fid is >0; upl_GetFSInfo() succeeds; AccessFlag is not ìrî, but it is ìwî or ìaî; file does not exist.
Expected Results: checks if Fid >0; calls upl_GetFSInfo(); checks return status; checks if AccessFlag is ìrî; checks if AccessFlag is ìwî or ìaî; checks if file exists; calls upl_CreateFile() to create the file; proceeds to Segment III (step 21).

Path 7:
Fid is >0; upl_GetFSInfo() succeeds; AccessFlag is not ìrî, but it is ìwî or ìaî; file does exist; Allocation is >0.
Expected Results: checks if Fid >0; calls upl_GetFSInfo(); checks return status; checks if AccessFlag is ìrî; checks if AccessFlag is ìwî or ìaî; checks if file exists; checks if Allocation >0; sets status to ìErrorî; proceeds to Segment III (step 21).

Path 8:
Fid is >0; upl_GetFSInfo() succeeds; AccessFlag is not ìrî, but it is ìwî or ìaî; file does exist; Allocation is not >0.
Expected Results: checks if Fid >0; calls upl_GetFSInfo(); checks return status; checks if AccessFlag is ìrî; checks if AccessFlag is ìwî or ìaî; checks if file exists; checks if Allocation >0; proceeds to Segment III (step 21).

upl_Open() : Segment III

Paths:

1)	21-25 (Return)
2)	21-22-25 (Return)
3)	21-22-23-24-25 (Return)

Path 1:
Return status from Segment II is not success.
Expected Results: checks return status from Segment II; returns status.

Path 2:
Return status from Segment II is success; Allocation of memory for FileState is not successful.
Expected Results: checks return status from Segment II; checks if Allocation of memory for FileState is successful; returns status.

Path 3:
Return status from Segment II is success; Allocation of memory for FileState is successful.
Expected Results: checks return status from Segment II; checks if Allocation of memory for FileState is successful; sets CardState fields; sets FileState fields; returns status.

upl_Read() : Segment I

Paths:

1)	1-2-(14)
1a)	(Variation due to two-part condition.)
2)	1-2-4-5-(14)
3)	1-2-4-5-6-7-(14)
4)	1-2-4-5-6-(8)

Path 1:
File descriptor is invalid.
Expected Results: sets status to ìErrorî; checks if File descriptor is valid and if iBytes > 0; proceeds to Segment II (step 14).

Path 1a:
iBytes is not > 0.
Expected Results: sets status to ìErrorî; checks if File descriptor is valid and if iBytes > 0; proceeds to Segment II (step 14).

Path 2:
File descriptor is valid AND iBytes is >0; upl_GetFSInfo() fails.
Expected Results: sets status to ìErrorî; checks if File descriptor is valid and if iBytes > 0; calls ìupl_GetFSInfo()î; checks return status; proceeds to Segment II (step 14).

Path 3:
File descriptor is valid AND iBytes is >0; upl_GetFSInfo() succeeds; Cache does not = media (i.e., card).
Expected Results: sets status to ìErrorî; checks if File descriptor is valid and if iBytes > 0; calls ìupl_GetFSInfo()î; checks return status; checks if Cache = media (i.e., card); sets status to ìErrorî; proceeds to Segment II (step 14).

Path 4:
File descriptor is valid AND iBytes is >0; upl_GetFSInfo() succeeds; Cache does = media (i.e., card).
Expected Results: sets status to ìErrorî; checks if File descriptor is valid and if iBytes > 0; calls ìupl_GetFSInfo()î; checks return status; checks if Cache = media (i.e., card); proceeds to Segment II (step 8).

upl_Read() : Segment II

Paths:

1)	8-9-10-14 (Return)
2)	8-9-10-11-12-14 (Return)
3)	8-10-14 (Return)
4)	8-10-11-12-14 (Return)

Path 1:
Data is not in Cache; ìread()î from media fails.
Expected Results: checks if data is in Cache; performs ìread()î from media; checks return status; Returns status.

Path 2:
Data is not in Cache; ìread()î from media succeeds.
Expected Results: checks if data is in Cache; performs ìread()î from media; checks return status; copies data to User Buffer; adjusts file position; Returns status.

Path 3:
Data is in Cache; status does not = success.
Expected Results: checks if data is in Cache; checks value of return status; Returns status.

Path 4:
Data is in Cache; status does = success.
Expected Results: checks if data is in Cache; checks value of return status; copies data to User Buffer; adjusts file position; Returns status.

upl_Remove() : Segment I

Paths:

1)	1-2-3-4-5-6-7-8-9-(10)
2)	1-2-3-4-5-6-7-8-(10)
3)	1-2-3-4-5-6-8-(10)
4)	1-2-3-4-6-8-(10)
4a)	(Variation due to two-part status check.)
5)	1-2-4-6-8-(10)

Path 1:
upl_DisectFilePath() succeeds; upl_MapCache() succeeds AND CardState does equal ìFreeî; the Special File does exist; the Special File is successfully opened.
Expected Results: calls upl_DisectFilePath(); checks return status; calls upl_MapCache(); checks return status and if CardState is ìFreeî; sets CardState.Free to ìFalseî; checks to see if Special File exists; attempts to open Special File; checks return status; calls upl_GetFSInfo(); proceeds to Segment II (step 10).

Path 2:
upl_DisectFilePath() succeeds; upl_MapCache() succeeds AND CardState does equal ìFreeî; the Special File does exist; the Special File could not be opened.
Expected Results: calls upl_DisectFilePath(); checks return status; calls upl_MapCache(); checks return status and if CardState is ìFreeî; sets CardState.Free to ìFalseî; checks to see if Special File exists; attempts to open Special File; checks return status; proceeds to Segment II (step 10).

Path 3:
upl_DisectFilePath() succeeds; upl_MapCache() succeeds AND CardState does equal ìFreeî; the Special File does not exist.
Expected Results: calls upl_DisectFilePath(); checks return status; calls upl_MapCache(); checks return status and if CardState is ìFreeî; sets CardState.Free to ìFalseî; checks to see if Special File exists; checks return status; proceeds to Segment II (step 10).

Path 4:
upl_DisectFilePath() succeeds; upl_MapCache() fails.
Expected Results: calls upl_DisectFilePath(); checks return status; calls upl_MapCache(); checks return status and if CardState is ìFreeî; checks to see if Special File exists; checks if FId >0; proceeds to Segment II (step 10).

Path 4a:
upl_DisectFilePath() succeeds; CardState does not equal ìFreeî.
Expected Results: calls upl_DisectFilePath(); checks return status; calls upl_MapCache(); checks return status and if CardState is ìFreeî; checks to see if Special File exists; checks if FId >0; proceeds to Segment II (step 10).

Path 5:
upl_DisectFilePath() fails.
Expected Results: calls upl_DisectFilePath(); checks return status; checks return status and if CardState is ìFreeî; checks to see if Special File exists; checks if FId >0; proceeds to Segment II (step 10).

upl_Remove() : Segment II

Paths:

1)	10-11-(25)
2)	10-12-13-(23)
3)	10-12-13-14-15-13 (loop)
4)	10-12-13-14-15-16-(22)
5)	10-12-13-14-15-16-17-18-19-(20)
6)	10-12-13-14-15-16-17-18-(20)

Path 1:
Success status from Segment I is failed.
Expected Results: checks success status from Segment I; sets status to ìErrorî; proceeds to Segment III (step 25).

Path 2:
Success status from Segment I is succeeded; repeat loop has completed.
Expected Results: checks success status from Segment I; checks completion status of repeat loop; proceeds to Segment III (step 23).

Path 3:
Success status from Segment I is succeeded; repeat loop is in progress; file was not found.
Expected Results: checks success status from Segment I; checks completion status of repeat loop; calls upl_FileExists(); checks status of file search; loops back to (13).

Path 4:
Success status from Segment I is succeeded; repeat loop is in progress; file was found; iFile does not equal ìDECLASSî.
Expected Results: checks success status from Segment I; checks completion status of repeat loop; calls upl_FileExists(); checks status of file search; checks if iFlag equals ìDECLASSî; proceeds to Segment III (step 22).

Path 5:
Success status from Segment I is succeeded; repeat loop is in progress; file was found; iFile does equal ìDECLASSî; WriteVerify() succeeds.
Expected Results: checks success status from Segment I; checks completion status of repeat loop; calls upl_FileExists(); checks status of file search; checks if iFlag equals ìDECLASSî; calls WriteVerify(); checks return status; calls WriteVerify() again; proceeds to Segment III (step 20).

Path 6:
Success status from Segment I is succeeded; repeat loop is in progress; file was found; iFile does equal ìDECLASSî; WriteVerify() fails.
Expected Results: checks success status from Segment I; checks completion status of repeat loop; calls upl_FileExists(); checks status of file search; checks if iFlag equals ìDECLASSî; calls WriteVerify(); checks return status; proceeds to Segment III (step 20).

upl_Remove() : Segment III

Paths:

1)	20-21-22-(13)
2)	20-22-(13)
3)	23-24-25-26-27 (Return)
4)	23-25-26-27 (Return)
4a) 	(Variation due to two-part status check.)

Path 1:
Success status from Segment II is success.
Expected Results: checks success status from Segment II; calls WriteVerify(); marks File Deleted in CardState; proceeds to Segment II (step 13).

Path 2:
Success status from Segment II is failed.
Expected Results: checks success status from Segment II; marks File Deleted in CardState; proceeds to Segment II (step 13).

Path 3:
Status from Segment II is success AND CardState is ìdirtyî.
Expected Results: checks success status from Segment II AND if CardState is ìdirtyî; calls upl_FlushCache(); sets CardState to ìFreeî; calls upl_UnMapCache(); returns status.

Path 4:
Status from Segment II is failed.
Expected Results: checks success status from Segment II AND if CardState is ìdirtyî; sets CardState to ìFreeî; calls upl_UnMapCache(); returns status.

Path 4a:
CardState is not ìdirtyî.
Expected Results: checks success status from Segment II AND if CardState is ìdirtyî; sets CardState to ìFreeî; calls upl_UnMapCache(); returns status.

upl_ScrubCard()

Paths:

1)	1-2-3-18-19 (Return)
1a)	(Variation due to two-part status check.)
2)	1-2-4-5-6-18-19 (Return)
3)	1-2-4-5-7-8-9-10-11-12-13-14-15-16-17-18-19 (Return)
4)	1-2-4-5-7-8-9-10-11-12-13-14-15-16-18-19 (Return)
5)	1-2-4-5-7-8-9-10-11-12-13-14-16-18-19 (Return)
6)	1-2-4-5-7-8-9-10-11-12-14-16-18-19 (Return)
7)	1-2-4-5-7-8-9-10-12-14-16-18-19 (Return)
8)	1-2-4-5-7-10-12-14-16-18-19 (Return)

Path 1:
upl_DisectFilePath() fails.
Expected Results: calls upl_DisectFilePath(); checks return status AND if Special File exists; sets status to ìErrorî; sets CardState.Free to ìTrueî; returns status.

Path 1a:
Special File does not exist.
Expected Results: calls upl_DisectFilePath(); checks return status AND if Special File exists; sets status to ìErrorî; sets CardState.Free to ìTrueî; returns status.

Path 2:
upl_DisectFilePath() fails AND Special File does exist; upl_MapCache() fails.
Expected Results: calls upl_DisectFilePath(); checks return status AND if Special File exists; calls upl_MapCache(); checks return status; sets status to ìErrorî; sets CardState.Free to ìTrueî; returns status.

Path 3:
upl_DisectFilePath() succeeds AND Special File does exist; upl_MapCache() succeeds; CardState equals ìFreeî; Special File open attempt succeeds; ioctl(ReadGeometry) succeeds; 1st WriteVerify() succeeds; 2nd WriteVerify() succeeds.
Expected Results: calls upl_DisectFilePath(); checks return status AND if Special File exists; calls upl_MapCache(); checks return status; checks if CardState is ìfreeî; attempts to open the Special File; checks return status; calls ioctl(ReadGeometry); checks return status; calls WriteVerify(); checks return status; calls WriteVerify() again; checks return status; calls WriteVerify() a 3rd time; sets CardState.Free to ìTrueî; returns status.

Path 4:
upl_DisectFilePath() succeeds AND Special File does exist; upl_MapCache() succeeds; CardState equals ìFreeî; Special File open attempt succeeds; ioctl(ReadGeometry) succeeds; 1st WriteVerify() succeeds; 2nd WriteVerify() fails.
Expected Results: calls upl_DisectFilePath(); checks return status AND if Special File exists; calls upl_MapCache(); checks return status; checks if CardState is ìfreeî; attempts to open the Special File; checks return status; calls ioctl(ReadGeometry); checks return status; calls WriteVerify(); checks return status; calls WriteVerify() again; checks return status; sets CardState.Free to ìTrueî; returns status.

Path 5:
upl_DisectFilePath() succeeds AND Special File does exist; upl_MapCache() succeeds; CardState equals ìFreeî; Special File open attempt succeeds; ioctl(ReadGeometry) succeeds; 1st WriteVerify() fails.
Expected Results: calls upl_DisectFilePath(); checks return status AND if Special File exists; calls upl_MapCache(); checks return status; checks if CardState is ìfreeî; attempts to open the Special File; checks return status; calls ioctl(ReadGeometry); checks return status; calls WriteVerify();checks return status; checks return status; sets CardState.Free to ìTrueî; returns status.

Path 6:
upl_DisectFilePath() succeeds AND Special File does exist; upl_MapCache() succeeds; CardState equals ìFreeî; Special File open attempt succeeds; ioctl(ReadGeometry) fails.
Expected Results: calls upl_DisectFilePath(); checks return status AND if Special File exists; calls upl_MapCache(); checks return status; checks if CardState is ìfreeî; attempts to open the Special File; checks return status; calls ioctl(ReadGeometry); checks return status; checks return status; checks return status; sets CardState.Free to ìTrueî; returns status.

Path 7:
upl_DisectFilePath() succeeds AND Special File does exist; upl_MapCache() succeeds; CardState equals ìFreeî; Special File open attempt fails.
Expected Results: calls upl_DisectFilePath(); checks return status AND if Special File exists; calls upl_MapCache(); checks return status; checks if CardState is ìfreeî; attempts to open the Special File; checks return status; checks return status; checks return status; checks return status; sets CardState.Free to ìTrueî; returns status.

Path 8:
upl_DisectFilePath() succeeds AND Special File does exist; upl_MapCache() succeeds; CardState does not equal ìFreeî.
Expected Results: calls upl_DisectFilePath(); checks return status AND if Special File exists; calls upl_MapCache(); checks return status; checks if CardState is ìfree; checks return status; checks return status; checks return status; checks return status; sets CardState.Free to ìTrueî; returns status.

upl_Seek()

Paths:

1)	1-2-5 (Return)
1a)	(Variation due to two-part status check.)
2)	1-3-5 (Return)
3)	1-3-4-5 (Return)

Path 1:
File Descriptor is invalid.
Expected Results: checks if File Descriptor is valid AND if iByteOff > 0; sets status to ìErrorî; returns status.

Path 1a:
iByteOff is not >0.
Expected Results: checks if File Descriptor is valid AND if iByteOff > 0; sets status to ìErrorî; returns status.

Path 2:
File Descriptor is valid AND iByteOff >0; iByteOff is not < EOF.
Expected Results: checks if File Descriptor is valid AND if iByteOff > 0; checks if iByteOff < EOF; returns status.

Path 3:
File Descriptor is valid AND iByteOff >0; iByteOff is < EOF.
Expected Results: checks if File Descriptor is valid AND if iByteOff > 0; checks if iByteOff < EOF; sets FileDescriptor.Position = iByteOff; returns status.

upl_Write()

Paths:

1)	1-2-3-15 (Return)
1a)	(variation due to two-part status check.)
2)	1-2-4-5-15 (Return)
3)	1-2-4-5-6-7-15 (Return)
4)	1-2-4-5-8-9-11-12-13-14-15 (Return)
5)	1-2-4-5-8-10-11-12-13-14-15 (Return)

Path 1:
File Descriptor is invalid.
Expected Results: checks if File Descriptor is valid AND if iBytes > 0; sets status to ìErrorî; returns status.

Path 1a:
iBytes is not > 0.
Expected Results: checks if File Descriptor is valid AND if iBytes > 0; sets status to ìErrorî; returns status.

Path 2:
File Descriptor is valid AND iBytes is >0; upl_GetFSInfo () fails.
Expected Results: checks if File Descriptor is valid AND if iBytes > 0; calls upl_GetFSInfo(); checks return status; returns status.

Path 3:
File Descriptor is valid AND iBytes is >0; upl_GetFSInfo () succeeds; cache does not match card.
Expected Results: checks if File Descriptor is valid AND if iBytes > 0; calls upl_GetFSInfo(); checks return status; checks if cache matches card; sets status = ìError; returns status.

Path 4:
File Descriptor is valid AND iBytes is >0; upl_GetFSInfo () succeeds; cache does match card; cluster is in cache.
Expected Results: checks if File Descriptor is valid AND if iBytes > 0; calls upl_GetFSInfo(); checks return status; checks if cache matches card; checks if cluster is in cache; sets status = ìError; copies user data to cached-cluster at offset; seeks to previously read() cluster; writes cluster; increments position; returns status.

Path 5:
File Descriptor is valid AND iBytes is >0; upl_GetFSInfo () succeeds; cache does match card; cluster is not in cache.
Expected Results: checks if File Descriptor is valid AND if iBytes > 0; calls upl_GetFSInfo(); checks return status; checks if cache matches card; checks if cluster is in cache; read()ís cluster; copies user data to cached-cluster at offset; seeks to previously read() cluster; writes cluster; increments position; returns status.
�Private Functions

upl_CreateFile()

Paths:

1)	1-2-3-4-5-6-7-8-9 (Return)
2)	1-2-3-4-5-9 (Return)
3)	1-2-3-4-9 (Return)
4)	1-2-4-5-6-7-8-9 (Return)
5)	1-2-4-5-9 (Return)
6)	1-2-4-9 (Return)

Path 1:
Allocation is <= 0; DirEntryLeft is > 0; Allocation is < CardState.FreeSpace.
Expected Results: sets status = Error; checks if Allocation <= 0; sets Allocation = 1; checks if DirEntryLeft > 0; checks if Allocation < CardState.FreeSpace; sets CardState[Entry].FAT1 = FreeCluster(s); sets CardState[Entry].FAT2 = FreeCluster(s); sets CardState[Entry].DirEntry = pcFileName, Size, Date; Returns status.

Path 2
Allocation is <= 0; DirEntryLeft is > 0; Allocation is not < CardState.FreeSpace.
Expected Results: sets status = Error; checks if Allocation <= 0; sets Allocation = 1; checks if DirEntryLeft > 0; checks if Allocation < CardState.FreeSpace; Returns status.

Path 3
Allocation is <= 0; DirEntryLeft is not > 0.
Expected Results: sets status = Error; checks if Allocation <= 0; sets Allocation = 1; checks if DirEntryLeft > 0; Returns status.

Path 4:
Allocation is not <= 0; DirEntryLeft is > 0; Allocation is < CardState.FreeSpace.
Expected Results: sets status = Error; checks if Allocation <= 0; checks if DirEntryLeft > 0; checks if Allocation < CardState.FreeSpace; sets CardState[Entry].FAT1 = FreeCluster(s); sets CardState[Entry].FAT2 = FreeCluster(s); sets CardState[Entry].DirEntry = pcFileName, Size, Date; Returns status.

Path 5
Allocation is not <= 0; DirEntryLeft is > 0; Allocation is not < CardState.FreeSpace.
Expected Results: sets status = Error; checks if Allocation <= 0; checks if DirEntryLeft > 0; checks if Allocation < CardState.FreeSpace; Returns status.

Path 6
Allocation is not <= 0; DirEntryLeft is not > 0.
Expected Results: sets status = Error; checks if Allocation <= 0; checks if DirEntryLeft > 0; Returns status.

upl_CreateFS()

Paths:

1)	1-2-18 (Return)
2)	1-3-4-5-6-7-8-9-10-11-12-13-14-15-16-17-18 (Return)
3)	1-3-4-5-6-7-8-9-10-11-12-13-14-15-16-18 (Return)
4)	1-3-4-5-6-7-8-9-10-11-12-13-14-18 (Return)
5)	1-3-4-5-6-7-8-9-10-11-12-14-18 (Return)
6)	1-3-4-5-6-7-8-9-10-12-14-18 (Return)
7)	1-3-4-5-6-7-8-10-12-14-18 (Return)
8)	1-3-4-5-6-10-12-14-18 (Return)
9)	1-3-4-6-10-12-14-18 (Return)

Path 1:
CardState is not valid.
Expected Results: checks if CardState is valid; sets status to ìErrorî; returns status.

Path 2:
CardState is valid; seek(Physical Sector 0) is successful; WriteVerify(MBR) is successful; seek(Logical Sector 0) is successful; WriteVerify(Boot Record) is successful; seek(FAT 1) is successful; WriteVerify(FATS 1 & 2) is successful; seek(Root) is successful.
Expected Results: checks if CardState is valid; performs seek(Physical Sector 0); checks return status; performs WriteVerify(MBR); checks return status; performs seek(Logical Sector 0); checks return status; does a WriteVerify(Boot Record); checks return status; does a seek(FAT 1); checks return status; performs a WriteVerify(FATs 1 & 2); checks return status; does a seek(Root); checks return status; performs a WriteVerify(Root Directory); returns status.

Path 3:
CardState is valid; seek(Physical Sector 0) is successful; WriteVerify(MBR) is successful; seek(Logical Sector 0) is successful; WriteVerify(Boot Record) is successful; seek(FAT 1) is successful; WriteVerify(FATS 1 & 2) is successful; seek(Root) is not successful.
Expected Results: checks if CardState is valid; performs seek(Physical Sector 0); checks return status; performs WriteVerify(MBR); checks return status; performs seek(Logical Sector 0); checks return status; does a WriteVerify(Boot Record); checks return status; does a seek(FAT 1); checks return status; performs a WriteVerify(FATs 1 & 2); checks return status; does a seek(Root); checks return status; returns status.

Path 4:
CardState is valid; seek(Physical Sector 0) is successful; WriteVerify(MBR) is successful; seek(Logical Sector 0) is successful; WriteVerify(Boot Record) is successful; seek(FAT 1) is successful; WriteVerify(FATS 1 & 2) is not successful.
Expected Results: checks if CardState is valid; performs seek(Physical Sector 0); checks return status; performs WriteVerify(MBR); checks return status; performs seek(Logical Sector 0); checks return status; does a WriteVerify(Boot Record); checks return status; does a seek(FAT 1); checks return status; performs a WriteVerify(FATs 1 & 2); checks return status; checks return status; returns status.

Path 5:
CardState is valid; seek(Physical Sector 0) is successful; WriteVerify(MBR) is successful; seek(Logical Sector 0) is successful; WriteVerify(Boot Record) is successful; seek(FAT 1) is not successful.
Expected Results: checks if CardState is valid; performs seek(Physical Sector 0); checks return status; performs WriteVerify(MBR); checks return status; performs seek(Logical Sector 0); checks return status; does a WriteVerify(Boot Record); checks return status; does a seek(FAT 1); checks return status; checks return status; returns status.

Path 6:
CardState is valid; seek(Physical Sector 0) is successful; WriteVerify(MBR) is successful; seek(Logical Sector 0) is successful; WriteVerify(Boot Record) is not successful.
Expected Results: checks if CardState is valid; performs seek(Physical Sector 0); checks return status; performs WriteVerify(MBR); checks return status; performs seek(Logical Sector 0); checks return status; does a WriteVerify(Boot Record); checks return status; checks return status; checks return status; returns status.

Path 7:
CardState is valid; seek(Physical Sector 0) is successful; WriteVerify(MBR) is successful; seek(Logical Sector 0) is not successful.
Expected Results: checks if CardState is valid; performs seek(Physical Sector 0); checks return status; performs WriteVerify(MBR); checks return status; performs seek(Logical Sector 0); checks return status; checks return status; checks return status; checks return status; returns status.

Path 8:
CardState is valid; seek(Physical Sector 0) is successful; WriteVerify(MBR) is not successful.
Expected Results: checks if CardState is valid; performs seek(Physical Sector 0); checks return status; performs WriteVerify(MBR); checks return status; checks return status; checks return status; checks return status; returns status.

Path 9:
CardState is valid; seek(Physical Sector 0) is not successful.
Expected Results: checks if CardState is valid; performs seek(Physical Sector 0); checks return status; checks return status; checks return status; checks return status; checks return status; returns status.

upl_DisectFilePath()

Paths:

1)	1-2-12 (End)
2)	1-2-3-4-12 (End)
3)	1-2-3-5-6-7-8-12 (End)
4)	1-2-3-5-6-7-9-10-12 (End)
5)	1-2-3-5-6-7-9-11-12 (End)

Path 1:
File Path does not exist.
Expected Results: sets status to ìErrorî; checks if File Path exists; Ends.

Path 2:
File Path does exist; cFilePath[0] is not valid.
Expected Results: sets status to ìErrorî; checks if File Path exists; checks if cFilePath[0] is valid; sets status to ìErrorî; Ends.

Path 3:
File Path does exist; cFilePath[0] is valid; pcSpecial does not exist.
Expected Results: sets status to ìErrorî; checks if File Path exists; checks if cFilePath[0] is valid; sets cDrive = cFilePath[0]; sets pcSpecial = upl_GetSpecial(cDrive); checks if cSpecial exists; sets status to ìErrorî; Ends.

Path 4
File Path does exist; cFilePath[0] is valid; pcSpecial does exist; cFilePath[3] is not valid.
Expected Results: sets status to ìErrorî; checks if File Path exists; checks if cFilePath[0] is valid; sets cDrive = cFilePath[0]; sets pcSpecial = upl_GetSpecial(cDrive); checks if cSpecial exists; checks if cFilePath[3] is valid; sets status to ìErrorî; Ends.

Path 5
File Path does exist; cFilePath[0] is valid; pcSpecial does exist; cFilePath[3] is valid.
Expected Results: sets status to ìErrorî; checks if File Path exists; checks if cFilePath[0] is valid; sets cDrive = cFilePath[0]; sets pcSpecial = upl_GetSpecial(cDrive); checks if cSpecial exists; checks if cFilePath[3] is valid; sets cFile = cFilePath[3]; Ends.

upl_FileExists()

Paths:

1)	1-2-3-4-6-10 (Return)
2)	1-2-3-4-6-7-6 (loop)
3)	1-2-3-4-6-7-8-9-6 (loop)
4)	1-2-3-5-6-10 (Return)
5)	1-2-3-5-6-7-6 (loop)
6)	1-2-3-5-6-7-8-9-6 (loop)

Path 1:
pcFound does not equal NULL; repeat loop has completed.
Expected Results: sets FoundIndex = 0; sets FileFound = False; checks if pcFound = NULL; sets DirIndex = CardState.LastIndex; checks if repeat loop has completed; returns DirEntryIndex.

Path 2:
pcFound does not equal NULL; repeat loop has not completed; pcFileName does not equal DirEntry(DirIndex).
Expected Results: sets FoundIndex = 0; sets FileFound = False; checks if pcFound = NULL; sets DirIndex = CardState.LastIndex; checks if repeat loop has completed; checks if pcFileName = DirEntry(DirIndex); loops back to (6).

Path 3:
pcFound does not equal NULL; repeat loop has not completed; pcFileName does equal DirEntry(DirIndex).
Expected Results: sets FoundIndex = 0; sets FileFound = False; checks if pcFound = NULL; sets DirIndex = CardState.LastIndex; checks if repeat loop has completed; checks if pcFileName = DirEntry(DirIndex); sets FoundIndex = DirIndex; sets FileFound = True; loops back to (6).

Path 4:
pcFound does equal NULL; repeat loop has completed.
Expected Results: sets FoundIndex = 0; sets FileFound = False; checks if pcFound = NULL; sets DirIndex = 0; checks if repeat loop has completed; returns DirEntryIndex.

Path 5:
pcFound does equal NULL; repeat loop has not completed; pcFileName does not equal DirEntry(DirIndex).
Expected Results: sets FoundIndex = 0; sets FileFound = False; checks if pcFound = NULL; sets DirIndex = 0; checks if repeat loop has completed; checks if pcFileName = DirEntry(DirIndex); loops back to (6).

Path 6:
pcFound does equal NULL; repeat loop has not completed; pcFileName does equal DirEntry(DirIndex).
Expected Results: sets FoundIndex = 0; sets FileFound = False; checks if pcFound = NULL; sets DirIndex = 0; checks if repeat loop has completed; checks if pcFileName = DirEntry(DirIndex); sets FoundIndex = DirIndex; sets FileFound = True; loops back to (6).

upl_FlushCache()

Paths:

1)	1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-16-18 (Return)
2)	1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-18 (Return)
3)	1-2-3-4-5-6-7-8-9-10-11-12-13-18 (Return)
4)	1-2-3-4-5-6-7-8-9-10-11-13-18 (Return)
5)	1-2-3-4-5-6-7-8-9-13-18 (Return)
6)	1-2-3-4-5-6-7-9-13-18 (Return)
7)	1-2-3-4-5-9-13-18 (Return)
8)	1-2-3-5-9-13-18 (Return)
9)	1-17-18 (Return)

Path 1:
CardState is valid; seek (Physical Sector 0) status is successful; write (FileId, MBR) status is successful; seek (Logical Sector 0) status is successful; write (FileId, Boot Record) status is successful; seek (FAT 1) status is successful; write (FileId, FATs 1 & 2) status is successful; seek (Root) status is successful.
Expected Results: checks if CardState is valid; sets status = seek (Physical Sector 0); checks return status; sets status = write (FileId, MBR); checks return status; sets status = seek (Logical Sector 0); checks return status; sets status = write (FileId, Boot Record); checks return status; sets status = seek (FAT 1); checks return status; sets status = write (FileId, FATs 1 & 2); checks return status; sets status = seek (Root); checks return status; sets status = write (FileId, Root Directory); Returns status.

Path 2:
CardState is valid; seek (Physical Sector 0) status is successful; write (FileId, MBR) status is successful; seek (Logical Sector 0) status is successful; write (FileId, Boot Record) status is successful; seek (FAT 1) status is successful; write (FileId, FATs 1 & 2) status is successful; seek (Root) status is unsuccessful.
Expected Results: checks if CardState is valid; sets status = seek (Physical Sector 0); checks return status; sets status = write (FileId, MBR); checks return status; sets status = seek (Logical Sector 0); checks return status; sets status = write (FileId, Boot Record); checks return status; sets status = seek (FAT 1); checks return status; sets status = write (FileId, FATs 1 & 2); checks return status; sets status = seek (Root); checks return status; Returns status.

Path 3:
CardState is valid; seek (Physical Sector 0) status is successful; write (FileId, MBR) status is successful; seek (Logical Sector 0) status is successful; write (FileId, Boot Record) status is successful; seek (FAT 1) status is successful; write (FileId, FATs 1 & 2) status is unsuccessful.
Expected Results: checks if CardState is valid; sets status = seek (Physical Sector 0); checks return status; sets status = write (FileId, MBR); checks return status; sets status = seek (Logical Sector 0); checks return status; sets status = write (FileId, Boot Record); checks return status; sets status = seek (FAT 1); checks return status; sets status = write (FileId, FATs 1 & 2); checks return status; Returns status.

Path 4:
CardState is valid; seek (Physical Sector 0) status is successful; write (FileId, MBR) status is successful; seek (Logical Sector 0) status is successful; write (FileId, Boot Record) status is successful; seek (FAT 1) status is unsuccessful.
Expected Results: checks if CardState is valid; sets status = seek (Physical Sector 0); checks return status; sets status = write (FileId, MBR); checks return status; sets status = seek (Logical Sector 0); checks return status; sets status = write (FileId, Boot Record); checks return status; sets status = seek (FAT 1); checks return status; Returns status.

Path 5:
CardState is valid; seek (Physical Sector 0) status is successful; write (FileId, MBR) status is successful; seek (Logical Sector 0) status is successful; write (FileId, Boot Record) status is unsuccessful.
Expected Results: checks if CardState is valid; sets status = seek (Physical Sector 0); checks return status; sets status = write (FileId, MBR); checks return status; sets status = seek (Logical Sector 0); checks return status; sets status = write (FileId, Boot Record); checks return status; Returns status.

Path 6:
CardState is valid; seek (Physical Sector 0) status is successful; write (FileId, MBR) status is successful; seek (Logical Sector 0) status is unsuccessful.
Expected Results: checks if CardState is valid; sets status = seek (Physical Sector 0); checks return status; sets status = write (FileId, MBR); checks return status; sets status = seek (Logical Sector 0); checks return status; Returns status.

Path 7:
CardState is valid; seek (Physical Sector 0) status is successful; write (FileId, MBR) status is unsuccessful.
Expected Results: checks if CardState is valid; sets status = seek (Physical Sector 0); checks return status; sets status = write (FileId, MBR); checks return status; Returns status.

Path 8:
CardState is valid; seek (Physical Sector 0) status is unsuccessful.
Expected Results: checks if CardState is valid; sets status = seek (Physical Sector 0); checks return status; Returns status.

Path 9:
CardState is invalid.
Expected Results: checks if CardState is valid; sets status = Error; Returns status.

upl_GetFSInfo()

Paths:

1)	1-2-18 (Return)
2)	1-3-4-5-6-7-8-9-10-11-12-13-14-15-16-17-18 (Return)
3)	1-3-4-5-6-7-8-9-10-11-12-13-14-15-16-18 (Return)
4)	1-3-4-5-6-7-8-9-10-11-12-13-14-18 (Return)
5)	1-3-4-5-6-7-8-9-10-11-12-14-18 (Return)
6)	1-3-4-5-6-7-8-9-10-14-18 (Return)
7)	1-3-4-5-6-7-8-10-14-18 (Return)
8)	1-3-4-5-6-10-14-18 (Return)
9)	1-3-4-6-10-14-18 (Return)

Path 1:
CardState is not valid.
Expected Results: checks if CardState is valid; sets status = ìErrorî; returns status.

Path 2:
CardState is valid; seek(Physical Sector 0) succeeds; read(MBR) succeeds; seek(Logical Sector 0) succeeds; read(Boot Record) succeeds; seek(FAT 1) succeeds; read(FATs 1 & 2) succeeds; seek(Root) succeeds.
Expected Results: checks if CardState is valid; does seek(Physical Sector 0); checks return status; does a read(MBR); checks return status; performs a seek(Logical Sector 0); checks return status; does a read(Boot Record); checks return status; does a seek(FAT 1); checks return status; performs a read(FATs 1 & 2); checks return status; does a seek(Root); checks return status; performs a read(Root Directory); returns status.

Path 3:
CardState is valid; seek(Physical Sector 0) succeeds; read(MBR) succeeds; seek(Logical Sector 0) succeeds; read(Boot Record) succeeds; seek(FAT 1) succeeds; read(FATs 1 & 2) succeeds; seek(Root) fails.
Expected Results: checks if CardState is valid; does seek(Physical Sector 0); checks return status; does a read(MBR); checks return status; performs a seek(Logical Sector 0); checks return status; does a read(Boot Record); checks return status; does a seek(FAT 1); checks return status; performs a read(FATs 1 & 2); checks return status; does a seek(Root); checks return status; returns status.

Path 4:
CardState is valid; seek(Physical Sector 0) succeeds; read(MBR) succeeds; seek(Logical Sector 0) succeeds; read(Boot Record) succeeds; seek(FAT 1) succeeds; read(FATs 1 & 2) fails.
Expected Results: checks if CardState is valid; does seek(Physical Sector 0); checks return status; does a read(MBR); checks return status; performs a seek(Logical Sector 0); checks return status; does a read(Boot Record); checks return status; does a seek(FAT 1); checks return status; performs a read(FATs 1 & 2); checks return status; returns status.

Path 5:
CardState is valid; seek(Physical Sector 0) succeeds; read(MBR) succeeds; seek(Logical Sector 0) succeeds; read(Boot Record) succeeds; seek(FAT 1) fails.
Expected Results: checks if CardState is valid; does seek(Physical Sector 0); checks return status; does a read(MBR); checks return status; performs a seek(Logical Sector 0); checks return status; does a read(Boot Record); checks return status; does a seek(FAT 1); checks return status; checks return status; returns status.

Path 6:
CardState is valid; seek(Physical Sector 0) succeeds; read(MBR) succeeds; seek(Logical Sector 0) succeeds; read(Boot Record) fails.
Expected Results: checks if CardState is valid; does seek(Physical Sector 0); checks return status; does a read(MBR); checks return status; performs a seek(Logical Sector 0); checks return status; does a read(Boot Record); checks return status; checks return status; returns status.

Path 7:
CardState is valid; seek(Physical Sector 0) succeeds; read(MBR) succeeds; seek(Logical Sector 0) fails.
Expected Results: checks if CardState is valid; does seek(Physical Sector 0); checks return status; does a read(MBR); checks return status; performs a seek(Logical Sector 0); checks return status; checks return status; checks return status; returns status.

Path 8:
CardState is valid; seek(Physical Sector 0) succeeds; read(MBR) fails.
Expected Results: checks if CardState is valid; does seek(Physical Sector 0); checks return status; does a read(MBR); checks return status; checks return status; checks return status; returns status.

Path 9:
CardState is valid; seek(Physical Sector 0) fails.
Expected Results: checks if CardState is valid; does seek(Physical Sector 0); checks return status; checks return status; checks return status; checks return status; returns status.

upl_GetSpecial()

Paths:

1)	1-2-3-4-5-6-7-8-9 (Return)
2)	1-2-3-4-5-6-4 (loop)
3)	1-2-3-4-8-9 (Return)
4)	1-2-3-9 (Return)

Path 1:
FD is <> NULL; EOF has not been reached; TransString[0] does = cDrive.
Expected Results: sets pcSpecial = NULL; sets FD = open (ì/etc/upl.mapî); checks if FD <> NULL; checks if EOF has been reached; sets status = read (FD, TransString); checks if TransString[0] = cDrive; sets pcSpecial = TransString[4]; does ìClose (FD)î; Returns pcSpecial.

Path 2:
FD is <> NULL; EOF has not been reached; TransString[0] does not = cDrive.
Expected Results: sets pcSpecial = NULL; sets FD = open (ì/etc/upl.mapî); checks if FD <> NULL; checks if EOF has been reached; sets status = read (FD, TransString); checks if TransString[0] = cDrive; loops back to (4).

Path 3:
FD is <> NULL; EOF has been reached.
Expected Results: sets pcSpecial = NULL; sets FD = open (ì/etc/upl.mapî); checks if FD <> NULL; checks if EOF has been reached; does ìClose (FD)î; Returns pcSpecial.

Path 3:
FD is not <> NULL.
Expected Results: sets pcSpecial = NULL; sets FD = open (ì/etc/upl.mapî); checks if FD <> NULL; Returns pcSpecial.

upl_MapCache()

Paths:

1)	1-2-6 (Return)
2)	1-2-3-4-5-6 (Return)

Path 1:
shmget() fails.
Expected Results: sets status = shmget(); checks return status; returns status.

Path 2:
shmget() succeeds.
Expected Results: sets status = shmget(); checks return status; sets status = shmat(); sets CacheMagic = 0xDEAFBEEF; sets CacheOwnerPID = getpid(); returns status.

upl_UnMapCache()

Paths:

1)	1-2-3 (Return)
2)	1-2-4-5-3 (Return)

Path 1:
shmdt() fails.
Expected Results: sets status = shmdt(); checks return status; returns status.

Path 2:
shmdt() succeeds.
Expected Results: sets status = shmdt(); checks return status; sets CacheMagic = 0; sets CacheOwnerPID = 0; returns status.

Device Driver Open()

Paths:

1)	1-2-3 (Return)
2)	1-2-4-5 (Return)
3)	1-2-4-6-7 (Return)
4)	1-2-4-6-8-9-10-11(Return)-12
5)	1-2-4-6-8-9-13(Return)-14

Path 1:
device_flags is inconsistent.
Expected Results: UNIX file system passes open request to device driver; checks if device_flags is consistent; returns error.

Path 2:
device_flags is not inconsistent; per-instance-data retrieval fails.
Expected Results: UNIX file system passes open request to device driver; checks if device_flags is consistent; checks if per-instance-data retrieval fails; returns error.

Path 3:
device_flags is not inconsistent; per-instance-data retrieval succeeds; device-busy condition exists.
Expected Results: UNIX file system passes open request to device driver; checks if device_flags is consistent; checks if per-instance-data retrieval fails; checks if device-busy condition exists; returns error.

Path 4:
device_flags is not inconsistent; per-instance-data retrieval succeeds; device-busy condition does not exist; probe-device failure condition exists.
Expected Results: UNIX file system passes open request to device driver; checks if device_flags is consistent; checks if per-instance-data retrieval fails; checks if device-busy condition exists; marks busy flag in per-instance-data; checks if probe-device failure condition exists; unmarks busy flag in per-instance-data; returns error; UNIX file system returns status to application.

Path 5:
device_flags is not inconsistent; per-instance-data retrieval succeeds; device-busy condition does not exist; probe-device failure condition does not exist.
Expected Results: UNIX file system passes open request to device driver; checks if device_flags is consistent; checks if per-instance-data retrieval fails; checks if device-busy condition exists; marks busy flag in per-instance-data; checks if probe-device failure condition exists; returns success; UNIX file system returns status and file descriptor to application.

Device Driver Close()

Paths:

1)	1-2-3 (Return)
2)	1-2-4-5 (Return)
3)	1-2-4-6-7(Return)-8

Path 1:
per-instance-data retrieval fails.
Expected Results: UNIX file system passes close request to device driver; checks if per-instance-data retrieval fails; returns error.

Path 2:
per-instance-data retrieval succeeds; busy flag is not set.
Expected Results: UNIX file system passes close request to device driver; checks if per-instance-data retrieval fails; checks if busy flag is set; returns error.

Path 3:
per-instance-data retrieval succeeds; busy flag is set.
Expected Results: UNIX file system passes close request to device driver; checks if per-instance-data retrieval fails; checks if busy flag is set; unmarks busy flag in per-instance-data; returns success; UNIX file system returns status to application.

Device Driver I/O : Segment I

Paths:

1)	1-2-3-4 (Return)
2)	1-2-3-5-6-5 (loop)
3)	1-2-3-5-7-8-9-10 (Return)
4)	1-2-3-5-7-8-9-11 (Return)

Path 1:
per-instance-data retrieval fails.
Expected Results: UNIX file system passes I/O request to device driver; device driver dispatches I/O request to strategy() routine; checks if per-instance-data retrieval fails; returns error.

Path 2:
per-instance-data retrieval succeeds; I/O flag is busy.
Expected Results: UNIX file system passes I/O request to device driver; device driver dispatches I/O request to strategy() routine; checks if per-instance-data retrieval fails; checks if I/O flag is busy; spins (loops back to (5).

Path 3:
per-instance-data retrieval succeeds; I/O flag is not busy; command-transport fails.
Expected Results: UNIX file system passes I/O request to device driver; device driver dispatches I/O request to strategy() routine; checks if per-instance-data retrieval fails; checks if I/O flag is busy; marks per-instance I/O flag as busy; constructs SCSI I/O command block; checks if command-transport fails; returns error.

Path 4:
per-instance-data retrieval succeeds; I/O flag is not busy; command-transport succeeds.
Expected Results: UNIX file system passes I/O request to device driver; device driver dispatches I/O request to strategy() routine; checks if per-instance-data retrieval fails; checks if I/O flag is busy; marks per-instance I/O flag as busy; constructs SCSI I/O command block; checks if command-transport fails; returns 0.

Device Driver I/O : Segment II

Paths:

1)	12-13-14 (Return)
2)	12-13-15-16-17-18 (Return)
3)	12-13-15-16-17-(24)
4)	12-13-15-19-20-(24)
5)	12-13-15-19-21-22-(24)
6)	12-13-15-19-21-23-(24)

[WAITS FOR INTERRUPT SERVICE ROUTINE TO SIGNAL COMPLETION.]

Path 1:
per-instance-data retrieval fails.
Expected Results: callback is invoked from Host Adapter; checks if per-instance-data retrieval fails; returns error.

Path 2:
per-instance-data retrieval succeeds; command is incomplete; command-transport fails.
Expected Results: callback is invoked from Host Adapter; checks if per-instance-data retrieval fails; checks if command is incomplete; retries command; checks if command-transport fails; returns error.

Path 3:
per-instance-data retrieval succeeds; command is incomplete; command-transport succeeds.
Expected Results: callback is invoked from Host Adapter; checks if per-instance-data retrieval fails; checks if command is incomplete; retries command; checks if command-transport fails; proceeds to Segment III (step 24).

Path 4:
per-instance-data retrieval succeeds; command is not incomplete; auto request is done.
Expected Results: callback is invoked from Host Adapter; checks if per-instance-data retrieval fails; checks if command is incomplete; checks if auto request is done; performs handle-arq data; proceeds to Segment III (step 24).

Path 5:
per-instance-data retrieval succeeds; command is not incomplete; auto request is not done; request-sense is true.
Expected Results: callback is invoked from Host Adapter; checks if per-instance-data retrieval fails; checks if command is incomplete; checks if auto request is done; checks for request-sense condition; performs handle-sense; proceeds to Segment III (step 24).

Path 6:
per-instance-data retrieval succeeds; command is not incomplete; auto request is not done; request-sense is false.
Expected Results: callback is invoked from Host Adapter; checks if per-instance-data retrieval fails; checks if command is incomplete; checks if auto request is done; checks for request-sense condition; marks command complete; proceeds to Segment III (step 24).

Device Driver I/O : Segment III

Paths:

1)	24-30 (Return)
2)	24-25-26-27-28-29-30 (Return)
3)	24-25-26-28-29-30 (Return)

Path 1:
command is not complete.
Expected Results: checks if command is complete; returns.

Path 2:
command is complete; there are return errors.
Expected Results: checks if command is complete; examines return status; checks for return errors; sets error flags; destroys SCSI packet; interrupts caller with I/O status; returns.

Path 3:
command is complete; there are no return errors.
Expected Results: checks if command is complete; examines return status; checks for return errors; destroys SCSI packet; interrupts caller with I/O status; returns.

�TAMMAC PC- Card Interface Functional Tests
Create MS-DOS (version 6.x) file system on Type I PCMCIA
Environment:
	Required Software: TAMPS 6.2 Build 2
	Personnel: Test Operator
	Hardware: Ultra 2, PCMCIA Device, Type I memory card.
Input:
	Execute pcformat API tester as follows:

		USAGE: pcformat [-dlqs?] <drive>

<drive>	= Drive designation (typically c: or d:), required.
d	= Directory entries to be created in file system, default 512.
l	= Volume Label, default " ".
q	= Do a "Quick" format, doesn't write verify the medium.
s	= Sectors per cluster, default 16.
?	= This help message.
Expected Results:
	
Create MS-DOS (version 6.x) file system on Type II PCMCIA
Environment:
	Required Software: TAMPS 6.2 Build 2
	Personnel: Test Operator
	Hardware: Ultra 2, PCMCIA Device, Type II memory card.
Input:
	Execute pcformat API tester as follows:

		USAGE: pcformat [-dlqs?] <drive>

<drive>	= Drive designation (typically c: or d:), required.
d	= Directory entries to be created in file system, default 512.
l	= Volume Label, default " ".
q	= Do a "Quick" format, doesn't write verify the medium.
s	= Sectors per cluster, default 16.
?	= This help message.
Expected Results:
	
Create MS-DOS (version 6.x) file system on Type III PCMCIA
Environment:
	Required Software: TAMPS 6.2 Build 2
	Personnel: Test Operator
	Hardware: Ultra 2, PCMCIA Device, Type III memory card.
Input:
	Execute pcformat API tester as follows:

		USAGE: pcformat [-dlqs?] <drive>

<drive>	= Drive designation (typically c: or d:), required.
d	= Directory entries to be created in file system, default 512.
l	= Volume Label, default " ".
q	= Do a "Quick" format, doesn't write verify the medium.
s	= Sectors per cluster, default 16.
?	= This help message.
Expected Results:
	
Return list of the root directory of an MS-DOS (version 6.x) file system on a Type I PCMCIA memory card.
Environment:
	Required Software: TAMPS 6.2 Build 2
	Personnel: Test Operator
	Hardware: Ultra 2, PCMCIA Device, Type I memory card.
Input:
	Execute pcls API tester as follows:

	USAGE: pcls [-dhls?] <filepath>

<filepath>	= Drive (typically c: or d:) and optional file name.
D	= Show directory entries.
H	= Show hidden files.
L	= Show Volume Label.
S	= Show System files.
?	= Show this help message.
Expected Results:
	
Return list of the root directory of an MS-DOS (version 6.x) file system on a Type II PCMCIA memory card.
Environment:
	Required Software: TAMPS 6.2 Build 2
	Personnel: Test Operator
	Hardware: Ultra 2, PCMCIA Device, Type II memory card.
Input:
	Execute pcls API tester as follows:

	USAGE: pcls [-dhls?] <filepath>

<filepath>	= Drive (typically c: or d:) and optional file name.
D	= Show directory entries.
H	= Show hidden files.
L	= Show Volume Label.
S	= Show System files.
?	= Show this help message.
Expected Results:
	

Return list of the root directory of an MS-DOS (version 6.x) file system on a Type III PCMCIA memory card.
Environment:
	Required Software: TAMPS 6.2 Build 2
	Personnel: Test Operator
	Hardware: Ultra 2, PCMCIA Device, Type III memory card.
Input:
	Execute pcls API tester as follows:

	USAGE: pcls [-dhls?] <filepath>

<filepath>	= Drive (typically c: or d:) and optional file name.
D	= Show directory entries.
H	= Show hidden files.
L	= Show Volume Label.
S	= Show System files.
?	= Show this help message.
Expected Results:
	

Read an MS-DOS (version 6.x) file from Type I PCMCIA memory card.
Environment:
	Required Software: TAMPS 6.2 Build 2
	Personnel: Test Operator
	Hardware: Ultra 2, PCMCIA Device, Type I memory card.
Input:
	Execute pccp API tester as follows:

	USAGE: pccp [-a?] <InFile> <OutFile>

<InFIle>	 = Input file to be copied (the from)
<OutFIle>	= Output file to be created or appended (the to)
a	= Causes InFile to be appended to OutFile.
?	= This help message.
Expected Results:
	

Read an MS-DOS (version 6.x) file from Type II PCMCIA memory card.
Environment:
	Required Software: TAMPS 6.2 Build 2
	Personnel: Test Operator
	Hardware: Ultra 2, PCMCIA Device, Type II memory card.
Input:
	Execute pccp API tester as follows:

	USAGE: pccp [-a?] <InFile> <OutFile>

<InFIle>	 = Input file to be copied (the from)
<OutFIle>	= Output file to be created or appended (the to)
a	= Causes InFile to be appended to OutFile.
?	= This help message.
Expected Results:
	

Read an MS-DOS (version 6.x) file from Type III PCMCIA memory card.
Environment:
	Required Software: TAMPS 6.2 Build 2
	Personnel: Test Operator
	Hardware: Ultra 2, PCMCIA Device, Type III memory card.
Input:
	Execute pccp API tester as follows:

	USAGE: pccp [-a?] <InFile> <OutFile>

<InFIle>	 = Input file to be copied (the from)
<OutFIle>	= Output file to be created or appended (the to)
a	= Causes InFile to be appended to OutFile.
?	= This help message.
Expected Results:
	

Write an MS-DOS (version 6.x) file to a Type I PCMCIA memory card.
Environment:
	Required Software: TAMPS 6.2 Build 2
	Personnel: Test Operator
	Hardware: Ultra 2, PCMCIA Device, Type I memory card.
Input:
	Execute pccp API tester as follows:

	USAGE: pccp [-a?] <InFile> <OutFile>

<InFIle>	 = Input file to be copied (the from)
<OutFIle>	= Output file to be created or appended (the to)
a	= Causes InFile to be appended to OutFile.
?	= This help message.
Expected Results:
	

Write an MS-DOS (version 6.x) file to a Type II PCMCIA memory card.
Environment:
	Required Software: TAMPS 6.2 Build 2
	Personnel: Test Operator
	Hardware: Ultra 2, PCMCIA Device, Type II memory card.
Input:
	Execute pccp API tester as follows:

	USAGE: pccp [-a?] <InFile> <OutFile>

<InFIle>	 = Input file to be copied (the from)
<OutFIle>	= Output file to be created or appended (the to)
a	= Causes InFile to be appended to OutFile.
?	= This help message.
Expected Results:
	

Write an MS-DOS (version 6.x) file to a Type III PCMCIA memory card.
Environment:
	Required Software: TAMPS 6.2 Build 2
	Personnel: Test Operator
	Hardware: Ultra 2, PCMCIA Device, Type III memory card.
Input:
	Execute pccp API tester as follows:

	USAGE: pccp [-a?] <InFile> <OutFile>

<InFIle>	 = Input file to be copied (the from)
<OutFIle>	= Output file to be created or appended (the to)
a	= Causes InFile to be appended to OutFile.
?	= This help message.
Expected Results:
	

Erase/Declassify MS-DOS (version 6.x) files from Type I PCMCIA memory card.
Environment:
	Required Software: TAMPS 6.2 Build 2
	Personnel: Test Operator
	Hardware: Ultra 2, PCMCIA Device, Type I memory card.
Input:
	Execute pcscrub API tester as follows:

USAGE: pcscrub <drive-letter>

Expected Results:
	

Erase/Declassify MS-DOS (version 6.x) files from Type II PCMCIA memory card.
Environment:
	Required Software: TAMPS 6.2 Build 2
	Personnel: Test Operator
	Hardware: Ultra 2, PCMCIA Device, Type II memory card.
Input:
	Execute pcscrub API tester as follows:

USAGE: pcscrub <drive-letter>

Expected Results:
	

Erase/Declassify MS-DOS (version 6.x) files from Type III PCMCIA memory card.
Environment:
	Required Software: TAMPS 6.2 Build 2
	Personnel: Test Operator
	Hardware: Ultra 2, PCMCIA Device, Type III memory card.
Input:
	Execute pcscrub API tester as follows:

USAGE: pcscrub <drive-letter>

Expected Results:
	

Interrogate an MS-DOS (version 6.x) file system on a Type I PCMCIA memory card.
Environment:
	Required Software: TAMPS 6.2 Build 2
	Personnel: Test Operator
	Hardware: Ultra 2, PCMCIA Device, Type I memory card.
Input:
	Execute pcseek API tester as follows:

USAGE: pcseek

Expected Results:
	

Interrogate an MS-DOS (version 6.x) file system on a Type II PCMCIA memory card.
Environment:
	Required Software: TAMPS 6.2 Build 2
	Personnel: Test Operator
	Hardware: Ultra 2, PCMCIA Device, Type II memory card.
Input:
	Execute pcseek API tester as follows:

USAGE: pcseek

Expected Results:
	

Interrogate an MS-DOS (version 6.x) file system on a Type III PCMCIA memory card.
Environment:
	Required Software: TAMPS 6.2 Build 2
	Personnel: Test Operator
	Hardware: Ultra 2, PCMCIA Device, Type III memory card.
Input:
	Execute pcseek API tester as follows:

USAGE: pcseek

Expected Results:
	

Determine integrity of a Type I PCMCIA memory card.
Environment:
	Required Software: TAMPS 6.2 Build 2
	Personnel: Test Operator
	Hardware: Ultra 2, PCMCIA Device, Type I memory card.
Input:
	Execute pcdf API tester as follows:

USAGE: pcdf <drive-letter>

Expected Results:
	

Determine integrity of a Type II PCMCIA memory card.
Environment:
	Required Software: TAMPS 6.2 Build 2
	Personnel: Test Operator
	Hardware: Ultra 2, PCMCIA Device, Type II memory card.
Input:
	Execute pcdf API tester as follows:

USAGE: pcdf <drive-letter>

Expected Results:
	

Determine integrity of a Type III PCMCIA memory card.
Environment:
	Required Software: TAMPS 6.2 Build 2
	Personnel: Test Operator
	Hardware: Ultra 2, PCMCIA Device, Type III memory card.
Input:
	Execute pcdf API tester as follows:

USAGE: pcdf <drive-letter>

Expected Results:
	

Go/NoGo Initial HMI
Environment:
	Required Software: Go/NoGo Diagnostics software configured with PC�Card options.
	Personnel: Test Operator
Input:
	User invokes Go/NoGo Diagnostics device selection panel HMI.
Expected Results:
	Go/NoGo Diagnostics device selection panel HMI appears, including entries for PC�Cards C: and D:.
TAMMAC Test Initiation: Single Card Selection (Successful Test Conditions)
Environment:
	Required Software: Go/NoGo Diagnostics software configured with PC�Card options.
	Personnel: Test Operator
Input:
	[User must set up conditions that will result in successful test.]
	User selects the toggle for PC�Card C: or D:.
	User selects ìTesting�>Startî from the pull�down menu.
	User must ensure that the PCMCIA Memory Card is loaded in the appropriate slot.
	User acknowledges the ìPC�Card Preparationsî display by pushing the ìOKî button.
Expected Results:
	The ìPC�Card Preparationsî display appears with the text, ìLoad PCMCIA Memory Card in Slot 1 (C:)î
	This display disappears upon entry of the ìOKî button by the user.
	Device testing commences, with the diagnostic results written to the ìDiagnostics Status Windowî.
	The diagnostics window will indicate successful completion with the ìGOî test result recommendation for the selected PC�Card slot.
TAMMAC Test Initiation: Single Card Selection (Failure Test Conditions)
Environment:
	Required Software: Go/NoGo Diagnostics software configured with PC�Card options.
	Personnel: Test Operator
Input:
	[User must set up conditions that will result in test failure, e.g. a ratio of defective to competent Allocation Units (AUs) must be greater than 1%.]
	User selects the toggle for PC�Card C or D:.
	User selects ìTesting�>Startî from the pull�down menu.
	User must ensure that the PCMCIA Memory Card is loaded in the appropriate slot.
	User acknowledges the ìPC�Card Preparationsî display by pushing the ìOKî button.
Expected Results:
	The ìPC�Card Preparationsî display appears with the text, ìLoad PCMCIA Memory Card in Slot 1 (C:)î or ìSlot 2 (D:)î
	This display disappears upon entry of the ìOKî button by the user.
	Device testing commences, with the diagnostic results written to the ìDiagnostics Status Windowî.
	The diagnostics window will indicate unsuccessful completion with the ìNO GOî test result recommendation and the appropriate error condition described for the selected PC slot (e.g., ìDefective Allocation Unit ratio greater than 1%î).
TAMMAC Test Initiation: Sequential Card Selection (Successful Test Conditions)
Environment:
	Required Software: Go/NoGo Diagnostics software configured with PC�Card options.
	Personnel: Test Operator
Input:
	[User must set up conditions that will result in successful test.]
	User selects the toggles for both PC�Card C: and PC�Card D:.
	User selects ìTesting�>Startî from the pull�down menu.
	User must ensure that the PCMCIA Memory Card is loaded in the appropriate slot.
	User acknowledges the ìPC�Card Preparationsî display by pushing the ìOKî button.
Expected Results:
	The ìPC�Card Preparationsî display appears with the text, ìLoad PCMCIA Memory Card in Slot 1 (C:)î (also for Slot 2 (D:)).
	This display disappears upon entry of the ìOKî button by the user.
	Device testing commences, with the diagnostic results written to the ìDiagnostics Status Windowî, first for PC�Card C: followed by PC�Card D:
	The diagnostics window will indicate successful completion with the ìGOî test result recommendation for both PC slots, in the sequence ìC:î then ìD:î.
TAMMAC Test Initiation: Sequential Card Selection (Failure Test Conditions)
Environment:
	Required Software: Go/NoGo Diagnostics software configured with PC�Card options.
	Personnel: Test Operator
Input:
	[User must set up conditions that will result in test failure, e.g. a ratio of defective to competent Allocation Units (AUs) must be greater than 1%.]
	User selects the toggles for both PC�Card C: and PC�Card D:.
	User selects ìTesting�>Startî from the pull�down menu.
	User must ensure that the PCMCIA Memory Card is loaded in the appropriate slot.
	User acknowledges the ìPC�Card Preparationsî display by pushing the ìOKî button.
Expected Results:
	The ìPC�Card Preparationsî display appears with the text, ìLoad PCMCIA Memory Card in Slot 1 (C:)î (also for Slot 2 (D:)).
	This display disappears upon entry of the ìOKî button by the user.
	Device testing commences, with the diagnostic results written to the ìDiagnostics Status Windowî, first for PC�Card C: followed by PC�Card D:
	The diagnostics window will indicate unsuccessful completion with the ìNO GOî test result recommendation and the appropriate error condition described (e.g., ìDefective Allocation Unit ratio greater than 1%î) for both PC slots, in the sequence ìC:î then ìD:î.
TAMMAC Test Completion
Environment:
	Required Software: Go/NoGo Diagnostics software configured with PC�Card options.
	Personnel: Test Operator
Input:
	User exits the Go/NoGo Diagnostics function via the ìFileî menu sub�option for exit
Expected Results:
	The Go/NoGo Diagnostics HMI and all associated windows disappear.
Risks and Issues
�administrative
pdr action items
software lines of code estimates
Table 3.2-1. Software Lines of Code Estimates
Item #�Rational�Est �New�Est �Mod�Est �Scripts�Actual �New�Actual �Mod�Actual Scripts��1�Develop device driver to incorporate new PC-card device into TAMPS core. �3500�0�0�5000�0�0��2�Develop functionality to retrieve MS-DOS partition information from PC-card.�300�0�0�0�0�0��3�Develop media partitioning utility and interface�1200�0�0�0�0�0��4�Develop partition formatting capability�600�0�0�0�0�0��5�Develop MS-DOS file deletion capability�500�0�0�0�0�0��6�Develop MS-DOS directory listing �450�0�0�0�0�0��7�Develop capability to open MS-DOS file on PC-card for I/O�200�0�0�0�0�0��8�Develop capability to close MS-DOS file on PC-card�150�0�0�0�0�0��9�Develop capability to write/read MS-DOS files on a PC-card�750�0�0�0�0�0��10�Develop functionality to set file access pointer.�100�0�0�0�0�0��11�Develop functionality to set MS-DOS file attributes.�200�0�0�0�0�0��12�Modify Go/NoGo and incorporate existing device readiness code from AMU.�1500�500�0�� =SUM(above) �0��0�0��13�Develop generic support functions for PC-card.�1500�0�10000�3000�0�500��TOTAL��� =SUM(ABOVE) �10950��� =SUM(above) �500��� =SUM(above) �0��� =SUM(above) �0��� =SUM(above) �0��� =SUM(above) �0���schedule

		

� PAGE �
11
�

		� PAGE �i�

		� PAGE �
1
�

