

TAMPS 6.2

Design Notebook

for

SOR 96-01a:

TAMPS 6.2/MIDB 2.0 Integration

Developed by:

Patrick Stevens, TRW

Gary Ansok, TRW

Lynne Botica, TRW

Mike Terepka, TRW

�

Table Of Contents

� TOC \o "1-4" �1. Scope	� GOTOBUTTON _Toc399729504 � PAGEREF _Toc399729504 �1��

1.1 Description	� GOTOBUTTON _Toc399729505 � PAGEREF _Toc399729505 �1��

1.2 Meaning of ìObject Hierarchyî	� GOTOBUTTON _Toc399729506 � PAGEREF _Toc399729506 �1��

1.3 MIDB Production, Query Processing and the TAMPS Object Hierarchy	� GOTOBUTTON _Toc399729507 � PAGEREF _Toc399729507 �2��

1.4 Concept of Operations (CONOPS)	� GOTOBUTTON _Toc399729508 � PAGEREF _Toc399729508 �3��

1.4.1 Purpose	� GOTOBUTTON _Toc399729509 � PAGEREF _Toc399729509 �3��

1.4.2 Impact Analysis	� GOTOBUTTON _Toc399729510 � PAGEREF _Toc399729510 �3��

1.4.2.1 Users	� GOTOBUTTON _Toc399729511 � PAGEREF _Toc399729511 �3��

1.4.2.2 System Administrators	� GOTOBUTTON _Toc399729512 � PAGEREF _Toc399729512 �4��

1.4.2.3 Database Administrators	� GOTOBUTTON _Toc399729513 � PAGEREF _Toc399729513 �4��

1.4.2.4 Mission Planners	� GOTOBUTTON _Toc399729514 � PAGEREF _Toc399729514 �5��

1.4.3 Operating Locations	� GOTOBUTTON _Toc399729515 � PAGEREF _Toc399729515 �6��

1.4.3.1 Ashore (Standalone)	� GOTOBUTTON _Toc399729516 � PAGEREF _Toc399729516 �6��

1.4.3.2 Afloat (as well as those locations with JMCIS connectivity)	� GOTOBUTTON _Toc399729517 � PAGEREF _Toc399729517 �7��

1.4.3.3 Performance and Sizing	� GOTOBUTTON _Toc399729518 � PAGEREF _Toc399729518 �8��

1.4.4 System Hardware and Software Requirements	� GOTOBUTTON _Toc399729519 � PAGEREF _Toc399729519 �10��

1.4.4.1 System Hardware	� GOTOBUTTON _Toc399729520 � PAGEREF _Toc399729520 �10��

1.4.4.2 Operating System	� GOTOBUTTON _Toc399729521 � PAGEREF _Toc399729521 �10��

1.4.4.3 Commercial-Off-The-Shelf (COTS) Application Software	� GOTOBUTTON _Toc399729522 � PAGEREF _Toc399729522 �10��

1.4.4.4 Government-Off-The-Shelf (GOTS) Application Software	� GOTOBUTTON _Toc399729523 � PAGEREF _Toc399729523 �10��

1.4.4.5 Installation	� GOTOBUTTON _Toc399729524 � PAGEREF _Toc399729524 �10��

1.4.5 Description of Processing	� GOTOBUTTON _Toc399729525 � PAGEREF _Toc399729525 �11��

1.4.5.1 JMCIS-TAMPS MIDB High Level Operational Data Flow	� GOTOBUTTON _Toc399729526 � PAGEREF _Toc399729526 �11��

1.4.5.2 TAMPS MIDB Context Diagram - Query	� GOTOBUTTON _Toc399729527 � PAGEREF _Toc399729527 �13��

1.4.5.3 TAMPS MIDB Context Diagram - Update	� GOTOBUTTON _Toc399729528 � PAGEREF _Toc399729528 �13��

2. Applicable Documents	� GOTOBUTTON _Toc399729529 � PAGEREF _Toc399729529 �2��

2.1 Government Documents	� GOTOBUTTON _Toc399729530 � PAGEREF _Toc399729530 �2��

2.1.1 Specifications	� GOTOBUTTON _Toc399729531 � PAGEREF _Toc399729531 �2��

2.1.2 Standards	� GOTOBUTTON _Toc399729532 � PAGEREF _Toc399729532 �2��

2.1.3 Other Publications	� GOTOBUTTON _Toc399729533 � PAGEREF _Toc399729533 �2��

2.2 Non-Government Documents	� GOTOBUTTON _Toc399729534 � PAGEREF _Toc399729534 �3��

3. Requirements	� GOTOBUTTON _Toc399729535 � PAGEREF _Toc399729535 �4��

3.1 Required States and Modes	� GOTOBUTTON _Toc399729536 � PAGEREF _Toc399729536 �4��

3.2 Statements of Functionality	� GOTOBUTTON _Toc399729537 � PAGEREF _Toc399729537 �4��

3.3 Requirements Trace	� GOTOBUTTON _Toc399729538 � PAGEREF _Toc399729538 �20��

3.3.1 Requirements Trace DataBase (RTDB) Updates	� GOTOBUTTON _Toc399729539 � PAGEREF _Toc399729539 �20��

3.3.2 Requirements Administrative Actions	� GOTOBUTTON _Toc399729540 � PAGEREF _Toc399729540 �21��

3.3.3 Allocation Trace Matrix	� GOTOBUTTON _Toc399729541 � PAGEREF _Toc399729541 �26��

3.3.4 Assumptions	� GOTOBUTTON _Toc399729542 � PAGEREF _Toc399729542 �34��

4. Design	� GOTOBUTTON _Toc399729543 � PAGEREF _Toc399729543 �35��

4.1 Preliminary Design	� GOTOBUTTON _Toc399729544 � PAGEREF _Toc399729544 �35��

4.1.1 System Administrator Functions	� GOTOBUTTON _Toc399729545 � PAGEREF _Toc399729545 �36��

4.1.1.1 Design Overview	� GOTOBUTTON _Toc399729546 � PAGEREF _Toc399729546 �36��

4.1.1.2 Design	� GOTOBUTTON _Toc399729547 � PAGEREF _Toc399729547 �38��

4.1.2 Database Administrator Functions	� GOTOBUTTON _Toc399729548 � PAGEREF _Toc399729548 �79��

4.1.2.1 Design Overview	� GOTOBUTTON _Toc399729549 � PAGEREF _Toc399729549 �79��

4.1.2.2 Design Summary	� GOTOBUTTON _Toc399729550 � PAGEREF _Toc399729550 �81��

4.1.2.3 Design	� GOTOBUTTON _Toc399729551 � PAGEREF _Toc399729551 �84��

4.1.2.4 Threat Scenarios	� GOTOBUTTON _Toc399729552 � PAGEREF _Toc399729552 �134��

4.1.3 Mission Planner Functions	� GOTOBUTTON _Toc399729553 � PAGEREF _Toc399729553 �152��

4.1.3.1 Design Overview	� GOTOBUTTON _Toc399729554 � PAGEREF _Toc399729554 �152��

4.1.3.2 Design	� GOTOBUTTON _Toc399729555 � PAGEREF _Toc399729555 �154��

4.2 DETAILED DESIGN	� GOTOBUTTON _Toc399729556 � PAGEREF _Toc399729556 �208��

4.2.1 System Generation CSC	� GOTOBUTTON _Toc399729557 � PAGEREF _Toc399729557 �208��

4.2.1.1 High-Level Design Updates	� GOTOBUTTON _Toc399729558 � PAGEREF _Toc399729558 �208��

4.2.1.2 Control Flows	� GOTOBUTTON _Toc399729559 � PAGEREF _Toc399729559 �208��

4.2.1.3 Algorithms	� GOTOBUTTON _Toc399729560 � PAGEREF _Toc399729560 �208��

4.2.1.4 Design Description	� GOTOBUTTON _Toc399729561 � PAGEREF _Toc399729561 �209��

4.2.1.5 Unit Test Plans and Procedures	� GOTOBUTTON _Toc399729562 � PAGEREF _Toc399729562 �212��

4.2.1.6 Assumptions from Preliminary Design	� GOTOBUTTON _Toc399729563 � PAGEREF _Toc399729563 �213��

4.2.1.7 Concerns/Questions/Issues from Preliminary Design	� GOTOBUTTON _Toc399729564 � PAGEREF _Toc399729564 �213��

4.2.2 MIDB Installation CSC	� GOTOBUTTON _Toc399729565 � PAGEREF _Toc399729565 �214��

4.2.2.1 High-Level Design Updates	� GOTOBUTTON _Toc399729566 � PAGEREF _Toc399729566 �214��

4.2.2.2 Database Schema	� GOTOBUTTON _Toc399729567 � PAGEREF _Toc399729567 �214��

4.2.2.3 Control Flow	� GOTOBUTTON _Toc399729568 � PAGEREF _Toc399729568 �214��

4.2.2.4 Algorithms	� GOTOBUTTON _Toc399729569 � PAGEREF _Toc399729569 �216��

4.2.2.5 Design Description	� GOTOBUTTON _Toc399729570 � PAGEREF _Toc399729570 �216��

4.2.2.6 Interface Description	� GOTOBUTTON _Toc399729571 � PAGEREF _Toc399729571 �220��

4.2.2.7 Unit Test Plans and Procedures	� GOTOBUTTON _Toc399729572 � PAGEREF _Toc399729572 �220��

4.2.2.8 Functional Test Plans and Procedures	� GOTOBUTTON _Toc399729573 � PAGEREF _Toc399729573 �223��

4.2.2.9 Assumptions from Preliminary Design	� GOTOBUTTON _Toc399729574 � PAGEREF _Toc399729574 �229��

4.2.2.10 Concerns/Questions/Issues from Preliminary Design	� GOTOBUTTON _Toc399729575 � PAGEREF _Toc399729575 �229��

4.2.3 User Administration CSC	� GOTOBUTTON _Toc399729576 � PAGEREF _Toc399729576 �232��

4.2.3.1 High-Level Design Updates	� GOTOBUTTON _Toc399729577 � PAGEREF _Toc399729577 �232��

4.2.3.2 Database Schema	� GOTOBUTTON _Toc399729578 � PAGEREF _Toc399729578 �232��

4.2.3.3 Control Flow	� GOTOBUTTON _Toc399729579 � PAGEREF _Toc399729579 �233��

4.2.3.4 Algorithms	� GOTOBUTTON _Toc399729580 � PAGEREF _Toc399729580 �237��

4.2.3.5 Design Description	� GOTOBUTTON _Toc399729581 � PAGEREF _Toc399729581 �237��

4.2.3.6 Interface Description	� GOTOBUTTON _Toc399729582 � PAGEREF _Toc399729582 �242��

4.2.3.7 Unit Test Plans and Procedures	� GOTOBUTTON _Toc399729583 � PAGEREF _Toc399729583 �244��

4.2.3.8 Functional Test Plans and Procedures	� GOTOBUTTON _Toc399729584 � PAGEREF _Toc399729584 �246��

4.2.3.9 Assumptions from Preliminary Design	� GOTOBUTTON _Toc399729585 � PAGEREF _Toc399729585 �249��

4.2.3.10 Concerns/Questions/Issues from Preliminary Design	� GOTOBUTTON _Toc399729586 � PAGEREF _Toc399729586 �249��

4.2.4 MIDB Baseload CSC	� GOTOBUTTON _Toc399729587 � PAGEREF _Toc399729587 �251��

4.2.4.1 High-Level Design Updates	� GOTOBUTTON _Toc399729588 � PAGEREF _Toc399729588 �251��

4.2.4.2 Database Schema	� GOTOBUTTON _Toc399729589 � PAGEREF _Toc399729589 �251��

4.2.4.3 Control Flow	� GOTOBUTTON _Toc399729590 � PAGEREF _Toc399729590 �251��

4.2.4.4 Algorithms	� GOTOBUTTON _Toc399729591 � PAGEREF _Toc399729591 �251��

4.2.4.5 Design Description	� GOTOBUTTON _Toc399729592 � PAGEREF _Toc399729592 �251��

4.2.4.6 Interface Description	� GOTOBUTTON _Toc399729593 � PAGEREF _Toc399729593 �254��

4.2.4.7 Unit Test Plans and Procedures	� GOTOBUTTON _Toc399729594 � PAGEREF _Toc399729594 �254��

4.2.4.8 Function Test Plans and Procedures	� GOTOBUTTON _Toc399729595 � PAGEREF _Toc399729595 �256��

4.2.4.9 Assumptions from Preliminary Design	� GOTOBUTTON _Toc399729596 � PAGEREF _Toc399729596 �261��

4.2.4.10 Concerns/Questions/Issues from Preliminary Design	� GOTOBUTTON _Toc399729597 � PAGEREF _Toc399729597 �261��

4.2.5 JMCIS Baseload CSC	� GOTOBUTTON _Toc399729598 � PAGEREF _Toc399729598 �262��

4.2.5.1 High-Level Design Updates	� GOTOBUTTON _Toc399729599 � PAGEREF _Toc399729599 �262��

4.2.5.2 Database Schema	� GOTOBUTTON _Toc399729600 � PAGEREF _Toc399729600 �263��

4.2.5.3 Control Flow	� GOTOBUTTON _Toc399729601 � PAGEREF _Toc399729601 �264��

4.2.5.4 Algorithm	� GOTOBUTTON _Toc399729602 � PAGEREF _Toc399729602 �266��

4.2.5.5 Design Description	� GOTOBUTTON _Toc399729603 � PAGEREF _Toc399729603 �266��

4.2.5.6 exit 0	� GOTOBUTTON _Toc399729604 � PAGEREF _Toc399729604 �280��

4.2.5.7 Interface Description	� GOTOBUTTON _Toc399729605 � PAGEREF _Toc399729605 �281��

4.2.5.8 The following software is required from MP_LAN:	� GOTOBUTTON _Toc399729606 � PAGEREF _Toc399729606 �281��

4.2.5.9 Unit Test Plans and Procedures	� GOTOBUTTON _Toc399729607 � PAGEREF _Toc399729607 �281��

4.2.5.10 Assumptions from Preliminary Design	� GOTOBUTTON _Toc399729608 � PAGEREF _Toc399729608 �282��

4.2.5.11 Concerns/Questions/Issues from Preliminary Design	� GOTOBUTTON _Toc399729609 � PAGEREF _Toc399729609 �282��

4.2.6 Stand-alone GMI Baseload CSC	� GOTOBUTTON _Toc399729610 � PAGEREF _Toc399729610 �283��

4.2.6.1 High-Level Design Updates	� GOTOBUTTON _Toc399729611 � PAGEREF _Toc399729611 �283��

4.2.6.2 Database Schema	� GOTOBUTTON _Toc399729612 � PAGEREF _Toc399729612 �283��

4.2.6.3 Control Flow	� GOTOBUTTON _Toc399729613 � PAGEREF _Toc399729613 �283��

4.2.6.4 Algorithm	� GOTOBUTTON _Toc399729614 � PAGEREF _Toc399729614 �288��

4.2.6.5 Design Description	� GOTOBUTTON _Toc399729615 � PAGEREF _Toc399729615 �288��

4.2.6.6 Create subscriptions for tables to be replicated	� GOTOBUTTON _Toc399729616 � PAGEREF _Toc399729616 �289��

4.2.6.7 Interface Description	� GOTOBUTTON _Toc399729617 � PAGEREF _Toc399729617 �298��

4.2.6.8 None.	� GOTOBUTTON _Toc399729618 � PAGEREF _Toc399729618 �298��

4.2.6.9 Unit Test Plans and Procedure	� GOTOBUTTON _Toc399729619 � PAGEREF _Toc399729619 �298��

4.2.6.10 Assumptions from Preliminary Design	� GOTOBUTTON _Toc399729620 � PAGEREF _Toc399729620 �299��

4.2.6.11 Concerns/Questions/Issues from Preliminary Design	� GOTOBUTTON _Toc399729621 � PAGEREF _Toc399729621 �300��

4.2.7 MIDB Subset CSC	� GOTOBUTTON _Toc399729622 � PAGEREF _Toc399729622 �300��

4.2.8 Query Execution CSC	� GOTOBUTTON _Toc399729623 � PAGEREF _Toc399729623 �300��

4.2.8.1 High-Level Design Updates	� GOTOBUTTON _Toc399729624 � PAGEREF _Toc399729624 �300��

4.2.8.2 Database Schema	� GOTOBUTTON _Toc399729625 � PAGEREF _Toc399729625 �300��

4.2.8.3 Control Flow	� GOTOBUTTON _Toc399729626 � PAGEREF _Toc399729626 �300��

4.2.8.4 Algorithms	� GOTOBUTTON _Toc399729627 � PAGEREF _Toc399729627 �309��

4.2.8.5 Design Description	� GOTOBUTTON _Toc399729628 � PAGEREF _Toc399729628 �309��

4.2.8.6 Interface Description	� GOTOBUTTON _Toc399729629 � PAGEREF _Toc399729629 �320��

4.2.8.7 Unit Test Plans and Procedures	� GOTOBUTTON _Toc399729630 � PAGEREF _Toc399729630 �320��

4.2.8.8 Functional Test Plans and Procedures	� GOTOBUTTON _Toc399729631 � PAGEREF _Toc399729631 �327��

4.2.8.9 Assumptions from Preliminary Design	� GOTOBUTTON _Toc399729632 � PAGEREF _Toc399729632 �343��

4.2.8.10 Concerns/Questions/Issues from Preliminary Design	� GOTOBUTTON _Toc399729633 � PAGEREF _Toc399729633 �343��

4.2.9 Object Conversion CSC	� GOTOBUTTON _Toc399729634 � PAGEREF _Toc399729634 �345��

4.2.9.1 High-Level Design Updates	� GOTOBUTTON _Toc399729635 � PAGEREF _Toc399729635 �345��

4.2.9.2 Database Schema	� GOTOBUTTON _Toc399729636 � PAGEREF _Toc399729636 �345��

4.2.9.3 Control Flow	� GOTOBUTTON _Toc399729637 � PAGEREF _Toc399729637 �347��

4.2.9.4 Algorithms	� GOTOBUTTON _Toc399729638 � PAGEREF _Toc399729638 �347��

4.2.9.5 Design Description	� GOTOBUTTON _Toc399729639 � PAGEREF _Toc399729639 �347��

4.2.9.6 Interface Description	� GOTOBUTTON _Toc399729640 � PAGEREF _Toc399729640 �349��

4.2.9.7 Unit Test Plans and Procedures	� GOTOBUTTON _Toc399729641 � PAGEREF _Toc399729641 �349��

4.2.9.8 Assumptions from Preliminary Design	� GOTOBUTTON _Toc399729642 � PAGEREF _Toc399729642 �350��

4.2.9.9 Concerns/Questions/Issues from Preliminary Design	� GOTOBUTTON _Toc399729643 � PAGEREF _Toc399729643 �350��

4.2.10 Object Editor CSC	� GOTOBUTTON _Toc399729644 � PAGEREF _Toc399729644 �352��

4.2.10.1 High-Level Design Updates	� GOTOBUTTON _Toc399729645 � PAGEREF _Toc399729645 �352��

4.2.10.2 Database Schema	� GOTOBUTTON _Toc399729646 � PAGEREF _Toc399729646 �352��

4.2.10.3 Control Flow	� GOTOBUTTON _Toc399729647 � PAGEREF _Toc399729647 �352��

4.2.10.4 Algorithms	� GOTOBUTTON _Toc399729648 � PAGEREF _Toc399729648 �352��

4.2.10.5 Design Description	� GOTOBUTTON _Toc399729649 � PAGEREF _Toc399729649 �352��

4.2.10.6 Interface Description	� GOTOBUTTON _Toc399729650 � PAGEREF _Toc399729650 �353��

4.2.10.7 Unit Test Plans and Procedures	� GOTOBUTTON _Toc399729651 � PAGEREF _Toc399729651 �353��

4.2.10.8 Function Test Plans and Procedures	� GOTOBUTTON _Toc399729652 � PAGEREF _Toc399729652 �356��

4.2.10.9 Assumptions from Preliminary Design	� GOTOBUTTON _Toc399729653 � PAGEREF _Toc399729653 �359��

4.2.10.10 Concerns/Questions/Issues from Preliminary Design	� GOTOBUTTON _Toc399729654 � PAGEREF _Toc399729654 �359��

4.2.11 Threat OOB Editor CSC	� GOTOBUTTON _Toc399729655 � PAGEREF _Toc399729655 �361��

4.2.11.1 High-Level Design Updates	� GOTOBUTTON _Toc399729656 � PAGEREF _Toc399729656 �361��

4.2.11.2 Database Schema	� GOTOBUTTON _Toc399729657 � PAGEREF _Toc399729657 �361��

4.2.11.3 Control Flow	� GOTOBUTTON _Toc399729658 � PAGEREF _Toc399729658 �361��

4.2.11.4 Algorithms	� GOTOBUTTON _Toc399729659 � PAGEREF _Toc399729659 �361��

4.2.11.5 Design Description	� GOTOBUTTON _Toc399729660 � PAGEREF _Toc399729660 �361��

4.2.11.6 Interface Description	� GOTOBUTTON _Toc399729661 � PAGEREF _Toc399729661 �366��

4.2.11.7 Unit Test Plans and Procedures	� GOTOBUTTON _Toc399729662 � PAGEREF _Toc399729662 �366��

4.2.11.8 Functional Test Plans and Procedures	� GOTOBUTTON _Toc399729663 � PAGEREF _Toc399729663 �369��

4.2.11.9 Assumptions from Preliminary Design	� GOTOBUTTON _Toc399729664 � PAGEREF _Toc399729664 �373��

4.2.11.10 Concerns/Questions/Issues from Preliminary Design	� GOTOBUTTON _Toc399729665 � PAGEREF _Toc399729665 �373��

4.2.12 Data Archival CSC	� GOTOBUTTON _Toc399729666 � PAGEREF _Toc399729666 �375��

4.2.12.1 High-Level Design Updates	� GOTOBUTTON _Toc399729667 � PAGEREF _Toc399729667 �375��

4.2.12.2 Database Schema	� GOTOBUTTON _Toc399729668 � PAGEREF _Toc399729668 �375��

4.2.12.3 Control Flow	� GOTOBUTTON _Toc399729669 � PAGEREF _Toc399729669 �375��

4.2.12.4 Algorithms	� GOTOBUTTON _Toc399729670 � PAGEREF _Toc399729670 �375��

4.2.12.5 Design Description	� GOTOBUTTON _Toc399729671 � PAGEREF _Toc399729671 �375��

4.2.12.6 Interface Description	� GOTOBUTTON _Toc399729672 � PAGEREF _Toc399729672 �381��

4.2.12.7 Unit Test Plans and Procedures	� GOTOBUTTON _Toc399729673 � PAGEREF _Toc399729673 �381��

4.2.12.8 Function Test Plans and Procedures	� GOTOBUTTON _Toc399729674 � PAGEREF _Toc399729674 �383��

4.2.12.9 Assumptions from Preliminary Design	� GOTOBUTTON _Toc399729675 � PAGEREF _Toc399729675 �384��

4.2.12.10 Concerns/Questions/Issues from Preliminary Design	� GOTOBUTTON _Toc399729676 � PAGEREF _Toc399729676 �384��

4.2.13 Threat Query CSC	� GOTOBUTTON _Toc399729677 � PAGEREF _Toc399729677 �386��

4.2.13.1 High-Level Design Updates	� GOTOBUTTON _Toc399729678 � PAGEREF _Toc399729678 �386��

4.2.13.2 Database Schema	� GOTOBUTTON _Toc399729679 � PAGEREF _Toc399729679 �386��

4.2.13.3 Control Flow	� GOTOBUTTON _Toc399729680 � PAGEREF _Toc399729680 �386��

4.2.13.4 Algorithms	� GOTOBUTTON _Toc399729681 � PAGEREF _Toc399729681 �386��

4.2.13.5 Design Description	� GOTOBUTTON _Toc399729682 � PAGEREF _Toc399729682 �386��

4.2.13.6 Interface Description	� GOTOBUTTON _Toc399729683 � PAGEREF _Toc399729683 �396��

4.2.13.7 Unit Test Plans and Procedures	� GOTOBUTTON _Toc399729684 � PAGEREF _Toc399729684 �396��

4.2.13.8 Assumptions from Preliminary Design	� GOTOBUTTON _Toc399729685 � PAGEREF _Toc399729685 �399��

4.2.13.9 Concerns/Questions/Issues from Preliminary Design	� GOTOBUTTON _Toc399729686 � PAGEREF _Toc399729686 �399��

4.2.14 Target Query CSC	� GOTOBUTTON _Toc399729687 � PAGEREF _Toc399729687 �400��

4.2.14.1 High-Level Design Updates	� GOTOBUTTON _Toc399729688 � PAGEREF _Toc399729688 �400��

4.2.14.2 Database Schema	� GOTOBUTTON _Toc399729689 � PAGEREF _Toc399729689 �400��

4.2.14.3 Control Flow	� GOTOBUTTON _Toc399729690 � PAGEREF _Toc399729690 �400��

4.2.14.4 Algorithms	� GOTOBUTTON _Toc399729691 � PAGEREF _Toc399729691 �400��

4.2.14.5 Design Description	� GOTOBUTTON _Toc399729692 � PAGEREF _Toc399729692 �400��

4.2.14.6 Interface Description	� GOTOBUTTON _Toc399729693 � PAGEREF _Toc399729693 �404��

4.2.14.7 Unit Test Plans and Procedures	� GOTOBUTTON _Toc399729694 � PAGEREF _Toc399729694 �404��

4.2.14.8 Functional Test Plans and Procedures	� GOTOBUTTON _Toc399729695 � PAGEREF _Toc399729695 �406��

4.2.14.9 Assumptions from Preliminary Design	� GOTOBUTTON _Toc399729696 � PAGEREF _Toc399729696 �412��

4.2.14.10 Concerns/Questions/Issues from Preliminary Design	� GOTOBUTTON _Toc399729697 � PAGEREF _Toc399729697 �412��

4.2.15 Data Removal CSC	� GOTOBUTTON _Toc399729698 � PAGEREF _Toc399729698 �413��

4.2.15.1 High-Level Design Updates	� GOTOBUTTON _Toc399729699 � PAGEREF _Toc399729699 �413��

4.2.15.2 Database Schema	� GOTOBUTTON _Toc399729700 � PAGEREF _Toc399729700 �413��

4.2.15.3 Control Flow	� GOTOBUTTON _Toc399729701 � PAGEREF _Toc399729701 �413��

4.2.15.4 Algorithms	� GOTOBUTTON _Toc399729702 � PAGEREF _Toc399729702 �413��

4.2.15.5 Design Description	� GOTOBUTTON _Toc399729703 � PAGEREF _Toc399729703 �413��

4.2.15.6 Interface Description	� GOTOBUTTON _Toc399729704 � PAGEREF _Toc399729704 �414��

4.2.15.7 Unit Test Plans and Procedures	� GOTOBUTTON _Toc399729705 � PAGEREF _Toc399729705 �414��

4.2.15.8 Assumptions from Preliminary Design	� GOTOBUTTON _Toc399729706 � PAGEREF _Toc399729706 �414��

4.2.15.9 Concerns/Questions/Issues from Preliminary Design	� GOTOBUTTON _Toc399729707 � PAGEREF _Toc399729707 �415��

4.2.16 Output Reports CSC	� GOTOBUTTON _Toc399729708 � PAGEREF _Toc399729708 �416��

4.2.16.1 High-Level Design Updates	� GOTOBUTTON _Toc399729709 � PAGEREF _Toc399729709 �416��

4.2.16.2 Database Schema	� GOTOBUTTON _Toc399729710 � PAGEREF _Toc399729710 �416��

4.2.16.3 Control Flow	� GOTOBUTTON _Toc399729711 � PAGEREF _Toc399729711 �416��

4.2.16.4 Algorithms	� GOTOBUTTON _Toc399729712 � PAGEREF _Toc399729712 �416��

4.2.16.5 Design Description	� GOTOBUTTON _Toc399729713 � PAGEREF _Toc399729713 �416��

4.2.16.6 Interface Description	� GOTOBUTTON _Toc399729714 � PAGEREF _Toc399729714 �420��

4.2.16.7 Unit Test Plans and Procedures	� GOTOBUTTON _Toc399729715 � PAGEREF _Toc399729715 �421��

4.2.16.8 Assumptions from Preliminary Design	� GOTOBUTTON _Toc399729716 � PAGEREF _Toc399729716 �421��

4.2.16.9 Concerns/Questions/Issues from Preliminary Design	� GOTOBUTTON _Toc399729717 � PAGEREF _Toc399729717 �421��

4.2.17 Utilities Menu CSC	� GOTOBUTTON _Toc399729718 � PAGEREF _Toc399729718 �422��

4.2.17.1 High-Level Design Updates	� GOTOBUTTON _Toc399729719 � PAGEREF _Toc399729719 �422��

4.2.17.2 Database Schema	� GOTOBUTTON _Toc399729720 � PAGEREF _Toc399729720 �422��

4.2.17.3 Algorithms	� GOTOBUTTON _Toc399729721 � PAGEREF _Toc399729721 �422��

4.2.17.4 Interface Description	� GOTOBUTTON _Toc399729722 � PAGEREF _Toc399729722 �427��

4.2.17.5 Unit Test Plans and Procedures	� GOTOBUTTON _Toc399729723 � PAGEREF _Toc399729723 �428��

4.2.17.6 Function Test Plans and Procedures	� GOTOBUTTON _Toc399729724 � PAGEREF _Toc399729724 �429��

4.2.18 Application Interface CSC	� GOTOBUTTON _Toc399729725 � PAGEREF _Toc399729725 �431��

4.2.18.1 High-Level Design Updates	� GOTOBUTTON _Toc399729726 � PAGEREF _Toc399729726 �431��

4.2.18.2 Control Flow	� GOTOBUTTON _Toc399729727 � PAGEREF _Toc399729727 �431��

4.2.18.3 Algorithms	� GOTOBUTTON _Toc399729728 � PAGEREF _Toc399729728 �436��

4.2.18.4 Design Description	� GOTOBUTTON _Toc399729729 � PAGEREF _Toc399729729 �439��

4.2.18.5 Interface Description	� GOTOBUTTON _Toc399729730 � PAGEREF _Toc399729730 �480��

4.2.18.6 Unit Test Plans and Procedures	� GOTOBUTTON _Toc399729731 � PAGEREF _Toc399729731 �510��

4.2.18.7 Assumptions from Preliminary Design	� GOTOBUTTON _Toc399729732 � PAGEREF _Toc399729732 �534��

4.2.18.8 Concerns/Questions/Issues from Preliminary Design	� GOTOBUTTON _Toc399729733 � PAGEREF _Toc399729733 �534��

4.2.19 Target Application Interface CSC	� GOTOBUTTON _Toc399729734 � PAGEREF _Toc399729734 �536��

4.2.19.1 High-Level Design Updates	� GOTOBUTTON _Toc399729735 � PAGEREF _Toc399729735 �536��

4.2.19.2 Database Schema	� GOTOBUTTON _Toc399729736 � PAGEREF _Toc399729736 �536��

4.2.19.3 Control Flow	� GOTOBUTTON _Toc399729737 � PAGEREF _Toc399729737 �537��

4.2.19.4 Algorithms	� GOTOBUTTON _Toc399729738 � PAGEREF _Toc399729738 �543��

4.2.19.5 Design Description	� GOTOBUTTON _Toc399729739 � PAGEREF _Toc399729739 �547��

4.2.19.6 Interface Description	� GOTOBUTTON _Toc399729740 � PAGEREF _Toc399729740 �558��

4.2.19.7 Unit Test Plans and Procedures	� GOTOBUTTON _Toc399729741 � PAGEREF _Toc399729741 �560��

4.2.19.8 Assumptions from Preliminary Design	� GOTOBUTTON _Toc399729742 � PAGEREF _Toc399729742 �565��

4.2.19.9 Concerns/Questions/Issues from Preliminary Design	� GOTOBUTTON _Toc399729743 � PAGEREF _Toc399729743 �565��

4.2.20 Planner Target Updates CSC	� GOTOBUTTON _Toc399729744 � PAGEREF _Toc399729744 �566��

4.2.20.1 High-Level Design Updates	� GOTOBUTTON _Toc399729745 � PAGEREF _Toc399729745 �566��

4.2.20.2 Database Schema	� GOTOBUTTON _Toc399729746 � PAGEREF _Toc399729746 �568��

4.2.20.3 Control Flow	� GOTOBUTTON _Toc399729747 � PAGEREF _Toc399729747 �568��

4.2.20.4 Algorithms	� GOTOBUTTON _Toc399729748 � PAGEREF _Toc399729748 �570��

4.2.20.5 Design Description	� GOTOBUTTON _Toc399729749 � PAGEREF _Toc399729749 �573��

4.2.20.6 Interface Description	� GOTOBUTTON _Toc399729750 � PAGEREF _Toc399729750 �583��

4.2.20.7 Unit Test Plans and Procedures	� GOTOBUTTON _Toc399729751 � PAGEREF _Toc399729751 �583��

4.2.20.8 Assumptions from Preliminary Design	� GOTOBUTTON _Toc399729752 � PAGEREF _Toc399729752 �589��

4.2.20.9 Concerns/Questions/Issues from Preliminary Design	� GOTOBUTTON _Toc399729753 � PAGEREF _Toc399729753 �589��

4.2.21 Open Mission and Save Mission CSC	� GOTOBUTTON _Toc399729754 � PAGEREF _Toc399729754 �590��

4.2.21.1 High-Level Design Updates	� GOTOBUTTON _Toc399729755 � PAGEREF _Toc399729755 �590��

4.2.21.2 Database Schema	� GOTOBUTTON _Toc399729756 � PAGEREF _Toc399729756 �590��

4.2.21.3 Control Flow	� GOTOBUTTON _Toc399729757 � PAGEREF _Toc399729757 �590��

4.2.21.4 Algorithms	� GOTOBUTTON _Toc399729758 � PAGEREF _Toc399729758 �590��

4.2.21.5 Design Description	� GOTOBUTTON _Toc399729759 � PAGEREF _Toc399729759 �590��

4.2.21.6 Interface Description	� GOTOBUTTON _Toc399729760 � PAGEREF _Toc399729760 �595��

4.2.21.7 Unit Test Plans and Procedures	� GOTOBUTTON _Toc399729761 � PAGEREF _Toc399729761 �596��

4.2.21.8 Assumptions from Preliminary Design	� GOTOBUTTON _Toc399729762 � PAGEREF _Toc399729762 �597��

4.2.21.9 Concerns/Questions/Issues from Preliminary Design	� GOTOBUTTON _Toc399729763 � PAGEREF _Toc399729763 �598��

4.2.22 Affected Files CSC	� GOTOBUTTON _Toc399729764 � PAGEREF _Toc399729764 �599��

4.2.22.1 High-Level Design Updates	� GOTOBUTTON _Toc399729765 � PAGEREF _Toc399729765 �599��

4.2.22.2 Database Schema	� GOTOBUTTON _Toc399729766 � PAGEREF _Toc399729766 �599��

4.2.22.3 Control Flow	� GOTOBUTTON _Toc399729767 � PAGEREF _Toc399729767 �599��

4.2.22.4 Algorithms	� GOTOBUTTON _Toc399729768 � PAGEREF _Toc399729768 �599��

4.2.22.5 Design Description	� GOTOBUTTON _Toc399729769 � PAGEREF _Toc399729769 �599��

4.2.22.6 Interface Description	� GOTOBUTTON _Toc399729770 � PAGEREF _Toc399729770 �619��

4.2.22.7 Unit Test Plans and Procedures	� GOTOBUTTON _Toc399729771 � PAGEREF _Toc399729771 �625��

4.2.23 Threat Scenarios CSC	� GOTOBUTTON _Toc399729772 � PAGEREF _Toc399729772 �635��

4.2.23.1 High-Level Design Updates	� GOTOBUTTON _Toc399729773 � PAGEREF _Toc399729773 �635��

4.2.23.2 Database Schema	� GOTOBUTTON _Toc399729774 � PAGEREF _Toc399729774 �635��

4.2.23.3 Control Flow	� GOTOBUTTON _Toc399729775 � PAGEREF _Toc399729775 �635��

4.2.23.4 Algorithms	� GOTOBUTTON _Toc399729776 � PAGEREF _Toc399729776 �640��

4.2.23.5 Design Description	� GOTOBUTTON _Toc399729777 � PAGEREF _Toc399729777 �640��

4.2.23.6 Interface Description	� GOTOBUTTON _Toc399729778 � PAGEREF _Toc399729778 �642��

4.2.23.7 Unit Test Plans and Procedures	� GOTOBUTTON _Toc399729779 � PAGEREF _Toc399729779 �647��

4.2.23.8 Functional Test Plans and Procedures	� GOTOBUTTON _Toc399729780 � PAGEREF _Toc399729780 �654��

4.2.23.9 Assumptions from Preliminary Design	� GOTOBUTTON _Toc399729781 � PAGEREF _Toc399729781 �657��

4.2.23.10 Concerns/Questions/Issues from Preliminary Design	� GOTOBUTTON _Toc399729782 � PAGEREF _Toc399729782 �657��

4.2.24 Interim Threats CSC	� GOTOBUTTON _Toc399729783 � PAGEREF _Toc399729783 �658��

4.2.24.1 High-Level Design Updates	� GOTOBUTTON _Toc399729784 � PAGEREF _Toc399729784 �658��

4.2.24.2 Database Schema	� GOTOBUTTON _Toc399729785 � PAGEREF _Toc399729785 �658��

4.2.24.3 Control Flow	� GOTOBUTTON _Toc399729786 � PAGEREF _Toc399729786 �658��

4.2.24.4 Algorithms	� GOTOBUTTON _Toc399729787 � PAGEREF _Toc399729787 �658��

4.2.24.5 Design Description	� GOTOBUTTON _Toc399729788 � PAGEREF _Toc399729788 �658��

4.2.24.6 Interface Description	� GOTOBUTTON _Toc399729789 � PAGEREF _Toc399729789 �667��

4.2.24.7 Unit Test Plans and Procedures	� GOTOBUTTON _Toc399729790 � PAGEREF _Toc399729790 �667��

4.2.24.8 Assumptions from Preliminary Design	� GOTOBUTTON _Toc399729791 � PAGEREF _Toc399729791 �668��

4.2.24.9 Concerns/Questions/Issues from Preliminary Design	� GOTOBUTTON _Toc399729792 � PAGEREF _Toc399729792 �668��

4.2.25 Output Messages CSC	� GOTOBUTTON _Toc399729793 � PAGEREF _Toc399729793 �668��

4.2.25.1 High-Level Design Updates	� GOTOBUTTON _Toc399729794 � PAGEREF _Toc399729794 �668��

4.2.25.2 Database Schema	� GOTOBUTTON _Toc399729795 � PAGEREF _Toc399729795 �668��

4.2.25.3 Control Flow	� GOTOBUTTON _Toc399729796 � PAGEREF _Toc399729796 �668��

4.2.25.4 Algorithms	� GOTOBUTTON _Toc399729797 � PAGEREF _Toc399729797 �668��

4.2.25.5 Design Description	� GOTOBUTTON _Toc399729798 � PAGEREF _Toc399729798 �668��

4.2.25.6 Interface Description	� GOTOBUTTON _Toc399729799 � PAGEREF _Toc399729799 �668��

4.2.25.7 Unit Test Plans and Procedures	� GOTOBUTTON _Toc399729800 � PAGEREF _Toc399729800 �668��

4.2.25.8 Assumptions from Preliminary Design	� GOTOBUTTON _Toc399729801 � PAGEREF _Toc399729801 �669��

4.2.25.9 Concerns/Questions/Issues from Preliminary Design	� GOTOBUTTON _Toc399729802 � PAGEREF _Toc399729802 �669��

5. Modifications	� GOTOBUTTON _Toc399729803 � PAGEREF _Toc399729803 �670��

5.1 System Generation CSC	� GOTOBUTTON _Toc399729804 � PAGEREF _Toc399729804 �670��

5.2 MIDB Installation CSC	� GOTOBUTTON _Toc399729805 � PAGEREF _Toc399729805 �670��

5.3 User Administration CSC	� GOTOBUTTON _Toc399729806 � PAGEREF _Toc399729806 �670��

5.4 MIDB Baseload CSC	� GOTOBUTTON _Toc399729807 � PAGEREF _Toc399729807 �670��

5.5 JMCIS Baseload CSC	� GOTOBUTTON _Toc399729808 � PAGEREF _Toc399729808 �670��

5.6 MIDB Subset CSC	� GOTOBUTTON _Toc399729809 � PAGEREF _Toc399729809 �670��

5.7 Query Execution CSC	� GOTOBUTTON _Toc399729810 � PAGEREF _Toc399729810 �671��

5.8 Object Conversion CSC	� GOTOBUTTON _Toc399729811 � PAGEREF _Toc399729811 �672��

5.9 Object Editor CSC	� GOTOBUTTON _Toc399729812 � PAGEREF _Toc399729812 �672��

5.10 Threat OOB Editor CSC	� GOTOBUTTON _Toc399729813 � PAGEREF _Toc399729813 �672��

5.11 Data Archival CSC	� GOTOBUTTON _Toc399729814 � PAGEREF _Toc399729814 �672��

5.12 Threat Query CSC	� GOTOBUTTON _Toc399729815 � PAGEREF _Toc399729815 �673��

5.13 Target Query CSC	� GOTOBUTTON _Toc399729816 � PAGEREF _Toc399729816 �673��

5.14 Data Removal CSC	� GOTOBUTTON _Toc399729817 � PAGEREF _Toc399729817 �673��

5.15 Output Reports CSC	� GOTOBUTTON _Toc399729818 � PAGEREF _Toc399729818 �674��

5.16 Application Interface CSC	� GOTOBUTTON _Toc399729819 � PAGEREF _Toc399729819 �674��

5.17 Target Application Interface CSC	� GOTOBUTTON _Toc399729820 � PAGEREF _Toc399729820 �675��

5.18 Planner Target Editor CSC	� GOTOBUTTON _Toc399729821 � PAGEREF _Toc399729821 �675��

5.19 Open Mission and Save Mission CSCs	� GOTOBUTTON _Toc399729822 � PAGEREF _Toc399729822 �675��

5.20 Affected Files CSC	� GOTOBUTTON _Toc399729823 � PAGEREF _Toc399729823 �675��

5.21 Threat Scenarios CSC	� GOTOBUTTON _Toc399729824 � PAGEREF _Toc399729824 �676��

5.22 Interim Threat CSC	� GOTOBUTTON _Toc399729825 � PAGEREF _Toc399729825 �676��

6. Interface Design Updates	� GOTOBUTTON _Toc399729826 � PAGEREF _Toc399729826 �678��

6.1 Proposed IDD Modifications	� GOTOBUTTON _Toc399729827 � PAGEREF _Toc399729827 �678��

6.2 Proposed IDD Deletions	� GOTOBUTTON _Toc399729828 � PAGEREF _Toc399729828 �678��

6.2.1 adt_getTarget	� GOTOBUTTON _Toc399729829 � PAGEREF _Toc399729829 �678��

6.3 Proposed IDD Additions	� GOTOBUTTON _Toc399729830 � PAGEREF _Toc399729830 �678��

6.3.1 const char *dat_getDatabaseForTable(const char*table)	� GOTOBUTTON _Toc399729831 � PAGEREF _Toc399729831 �678��

6.3.2 DBPROCESS *dat_open_dbproc(const char *db_name, Boolean for_update)	� GOTOBUTTON _Toc399729832 � PAGEREF _Toc399729832 �678��

6.3.3 void dat_close_dbproc(DBPROCESS *dbproc)	� GOTOBUTTON _Toc399729833 � PAGEREF _Toc399729833 �678��

6.3.4 SQLHDBC dat_open_odbc(const char *db_name, Boolean for_update)	� GOTOBUTTON _Toc399729834 � PAGEREF _Toc399729834 �678��

6.3.5 void dat_close_odbc(SQLHDBC hdbc)	� GOTOBUTTON _Toc399729835 � PAGEREF _Toc399729835 �679��

6.3.6 dit_createHandle	� GOTOBUTTON _Toc399729836 � PAGEREF _Toc399729836 �679��

6.3.7 dit_deleteHandle	� GOTOBUTTON _Toc399729837 � PAGEREF _Toc399729837 �680��

6.3.8 dit_deleteHandleData	� GOTOBUTTON _Toc399729838 � PAGEREF _Toc399729838 �681��

6.3.9 dit_getMidbData	� GOTOBUTTON _Toc399729839 � PAGEREF _Toc399729839 �682��

6.3.10 dit_createMidbData	� GOTOBUTTON _Toc399729840 � PAGEREF _Toc399729840 �689��

6.3.11 dit_modifyMidbData	� GOTOBUTTON _Toc399729841 � PAGEREF _Toc399729841 �691��

6.3.12 dit_createTargetHandle	� GOTOBUTTON _Toc399729842 � PAGEREF _Toc399729842 �694��

6.3.13 dit_createTarget	� GOTOBUTTON _Toc399729843 � PAGEREF _Toc399729843 �695��

6.3.14 dit_modifyTarget	� GOTOBUTTON _Toc399729844 � PAGEREF _Toc399729844 �698��

6.3.15 dit_deleteTarget	� GOTOBUTTON _Toc399729845 � PAGEREF _Toc399729845 �701��

6.3.16 dit_getTargets	� GOTOBUTTON _Toc399729846 � PAGEREF _Toc399729846 �703��

7. Notes	� GOTOBUTTON _Toc399729847 � PAGEREF _Toc399729847 �707��

7.1 Task Description	� GOTOBUTTON _Toc399729848 � PAGEREF _Toc399729848 �707��

7.2 Source Lines of Code Estimates	� GOTOBUTTON _Toc399729849 � PAGEREF _Toc399729849 �707��

7.3 Dependencies	� GOTOBUTTON _Toc399729850 � PAGEREF _Toc399729850 �708��

7.4 Risks	� GOTOBUTTON _Toc399729851 � PAGEREF _Toc399729851 �708��

7.5 Schedule	� GOTOBUTTON _Toc399729852 � PAGEREF _Toc399729852 �709��

8. Appendices	� GOTOBUTTON _Toc399729853 � PAGEREF _Toc399729853 �710��

�Figures

� TOC \c "Figure" �Figure 0-1 JMCIS-TAMPS MIDB Data Flow	� GOTOBUTTON _Toc399730183 � PAGEREF _Toc399730183 �12��

Figure 0-1 TAMPS MIDB Context Diagram - Query	� GOTOBUTTON _Toc399730184 � PAGEREF _Toc399730184 �13��

Figure 0-1 TAMPS MIDB Context Diagram - Update	� GOTOBUTTON _Toc399730185 � PAGEREF _Toc399730185 �14��

Figure 0-1 System Generation Data Flow	� GOTOBUTTON _Toc399730186 � PAGEREF _Toc399730186 �40��

Figure 0-2 System Generation Control Flow	� GOTOBUTTON _Toc399730187 � PAGEREF _Toc399730187 �41��

Figure 0-3 MIDB Installation Data Flow	� GOTOBUTTON _Toc399730188 � PAGEREF _Toc399730188 �47��

Figure 0-4 System Startup Control Flow	� GOTOBUTTON _Toc399730189 � PAGEREF _Toc399730189 �53��

Figure 0-5 System Shutdown Control Flow	� GOTOBUTTON _Toc399730190 � PAGEREF _Toc399730190 �55��

Figure 0-6 MIDB GMI Subset Selection HMI	� GOTOBUTTON _Toc399730191 � PAGEREF _Toc399730191 �64��

Figure 0-7 MIDB GMI Subset Table Selection HMI	� GOTOBUTTON _Toc399730192 � PAGEREF _Toc399730192 �65��

Figure 0-8 MIDB Data Load Data Flow	� GOTOBUTTON _Toc399730193 � PAGEREF _Toc399730193 �68��

Figure 0-9 MIDB Data Load Control Flow	� GOTOBUTTON _Toc399730194 � PAGEREF _Toc399730194 �69��

Figure 0-10 User Administration Data Flow	� GOTOBUTTON _Toc399730195 � PAGEREF _Toc399730195 �76��

Figure 0-1 Database Search HMI	� GOTOBUTTON _Toc399730196 � PAGEREF _Toc399730196 �86��

Figure 0-2 Data Query Data Flow	� GOTOBUTTON _Toc399730197 � PAGEREF _Toc399730197 �87��

Figure 0-3 Data Query Control Flow	� GOTOBUTTON _Toc399730198 � PAGEREF _Toc399730198 �88��

Figure 0-4 Object Editor HMI	� GOTOBUTTON _Toc399730199 � PAGEREF _Toc399730199 �90��

Figure 0-5 Edit Dialog HMI	� GOTOBUTTON _Toc399730200 � PAGEREF _Toc399730200 �91��

Figure 0-6 Object Editor Data Flow	� GOTOBUTTON _Toc399730201 � PAGEREF _Toc399730201 �92��

Figure 0-7 Object Editor Control Flow (1 of 2)	� GOTOBUTTON _Toc399730202 � PAGEREF _Toc399730202 �94��

Figure 0-8 Object Editor Control Flow (2 of 2)	� GOTOBUTTON _Toc399730203 � PAGEREF _Toc399730203 �94��

Figure 0-9 Query Tool HMI	� GOTOBUTTON _Toc399730204 � PAGEREF _Toc399730204 �98��

Figure 0-10 Query Tool Data Flow	� GOTOBUTTON _Toc399730205 � PAGEREF _Toc399730205 �99��

Figure 0-11 Query Tool Control Flow	� GOTOBUTTON _Toc399730206 � PAGEREF _Toc399730206 �100��

Figure 0-12 Planner Merge OOB	� GOTOBUTTON _Toc399730207 � PAGEREF _Toc399730207 �102��

Figure 0-1 Target Context-Sensitive Pop-up Menu HMI	� GOTOBUTTON _Toc399730208 � PAGEREF _Toc399730208 �105��

Figure 0-2 Target Editor Data Flow	� GOTOBUTTON _Toc399730209 � PAGEREF _Toc399730209 �106��

Figure 0-3 Target Editor Control Flow (1 of 2)	� GOTOBUTTON _Toc399730210 � PAGEREF _Toc399730210 �107��

Figure 0-4 Target Editor Control Flow (2 of 2)	� GOTOBUTTON _Toc399730211 � PAGEREF _Toc399730211 �108��

Figure 0-5 OOB Facility Context-Sensitive Pop-up Menu HMI	� GOTOBUTTON _Toc399730212 � PAGEREF _Toc399730212 �110��

Figure 0-6 OOB Unit Context-Sensitive Pop-up Menu HMI	� GOTOBUTTON _Toc399730213 � PAGEREF _Toc399730213 �111��

Figure 0-8 DIA Editor for Create New Unit HMI	� GOTOBUTTON _Toc399730214 � PAGEREF _Toc399730214 �114��

Figure 0-9 DIA Editor for Equipment Maintenance HMI	� GOTOBUTTON _Toc399730215 � PAGEREF _Toc399730215 �115��

Figure 0-10 DIA Editor for Create New Installation/Facility HMI	� GOTOBUTTON _Toc399730216 � PAGEREF _Toc399730216 �116��

Figure 0-11 TAMPS-DIA Production Data Flow	� GOTOBUTTON _Toc399730217 � PAGEREF _Toc399730217 �116��

Figure 0-12 DIA Query HMI	� GOTOBUTTON _Toc399730218 � PAGEREF _Toc399730218 �117��

Figure 0-13 Threat OOB Editor Data Flow	� GOTOBUTTON _Toc399730219 � PAGEREF _Toc399730219 �118��

Figure 0-14 Threat OOB Editor Control Flow (1 of 2)	� GOTOBUTTON _Toc399730220 � PAGEREF _Toc399730220 �119��

Figure 0-15 Threat OOB Editor Control Flow (2 of 2)	� GOTOBUTTON _Toc399730221 � PAGEREF _Toc399730221 �120��

Figure 0-16 TAMPS-DIA Production Data Flow	� GOTOBUTTON _Toc399730222 � PAGEREF _Toc399730222 �122��

Figure 0-17 Utilities Menu HMI	� GOTOBUTTON _Toc399730223 � PAGEREF _Toc399730223 �124��

Figure 0-Data Load Data Flow	� GOTOBUTTON _Toc399730224 � PAGEREF _Toc399730224 �127��

Figure 0-19 Data Load Control Flow	� GOTOBUTTON _Toc399730225 � PAGEREF _Toc399730225 �129��

Figure 0-2 DBA/MPM Threat Scenarios Menu	� GOTOBUTTON _Toc399730226 � PAGEREF _Toc399730226 �136��

Figure 0-3 Threat Scenarios Data Flow	� GOTOBUTTON _Toc399730227 � PAGEREF _Toc399730227 �138��

Figure 0-6 MIDB Utility HMI	� GOTOBUTTON _Toc399730228 � PAGEREF _Toc399730228 �144��

Figure 4.1.2.4-7 Archive/Restore Control Flow (1 of 4)	� GOTOBUTTON _Toc399730229 � PAGEREF _Toc399730229 �146��

Figure 4.1.2.4-8 Archive/Restore Control Flow (2 of 4)	� GOTOBUTTON _Toc399730230 � PAGEREF _Toc399730230 �147��

Figure 4.1.2.4-9 Archive/Restore Control Flow (3 of 4)	� GOTOBUTTON _Toc399730231 � PAGEREF _Toc399730231 �148��

Figure 4.1.2.4-10 Archive/Restore Control Flow (4 of 4)	� GOTOBUTTON _Toc399730232 � PAGEREF _Toc399730232 �149��

Figure 4.1.2.4-11 Load Databases HMI	� GOTOBUTTON _Toc399730233 � PAGEREF _Toc399730233 �151��

Figure 0-1 Open Mission Data Flow	� GOTOBUTTON _Toc399730234 � PAGEREF _Toc399730234 �155��

Figure 0-2 Open Mission Control Flow (1 of 3)	� GOTOBUTTON _Toc399730235 � PAGEREF _Toc399730235 �156��

Figure 0-3 Open Mission Control Flow (2 of 3)	� GOTOBUTTON _Toc399730236 � PAGEREF _Toc399730236 �157��

Figure 0-4 Open Mission Control Flow (3 of 3)	� GOTOBUTTON _Toc399730237 � PAGEREF _Toc399730237 �158��

Figure 0-5 Save Mission Data Flow	� GOTOBUTTON _Toc399730238 � PAGEREF _Toc399730238 �159��

Figure 0-6 Save Mission Control Flow	� GOTOBUTTON _Toc399730239 � PAGEREF _Toc399730239 �160��

Figure 0-7 Target Query Data Flow	� GOTOBUTTON _Toc399730240 � PAGEREF _Toc399730240 �162��

Figure 0-8 Target Query Control Flow (1 of 3)	� GOTOBUTTON _Toc399730241 � PAGEREF _Toc399730241 �164��

Figure 0-9 Target Query Control Flow (2 of 3)	� GOTOBUTTON _Toc399730242 � PAGEREF _Toc399730242 �165��

Figure 0-10 Target Query Control Flow (3 of 3)	� GOTOBUTTON _Toc399730243 � PAGEREF _Toc399730243 �166��

Figure 0-11 Planner Target Updates Dialog	� GOTOBUTTON _Toc399730244 � PAGEREF _Toc399730244 �171��

Figure 0-12 Planner Target Updates Data Flow	� GOTOBUTTON _Toc399730245 � PAGEREF _Toc399730245 �172��

Figure 0-13 Planner Target Updates Control Flow (1 of 4)	� GOTOBUTTON _Toc399730246 � PAGEREF _Toc399730246 �174��

Figure 0-14 Planner Target Updates Control Flow (2 of 4)	� GOTOBUTTON _Toc399730247 � PAGEREF _Toc399730247 �175��

Figure 0-15 Planner Target Updates Control Flow (3 of 4)	� GOTOBUTTON _Toc399730248 � PAGEREF _Toc399730248 �176��

Figure 0-16 Planner Target Updates Control Flow (4 of 4)	� GOTOBUTTON _Toc399730249 � PAGEREF _Toc399730249 �177��

Figure 0-17 Old OOB Air Query Selection	� GOTOBUTTON _Toc399730250 � PAGEREF _Toc399730250 �179��

Figure 0-18 New OOB Air Query Menu Selection	� GOTOBUTTON _Toc399730251 � PAGEREF _Toc399730251 �180��

Figure 0-19 OOB Air Query List Dialog HMIs	� GOTOBUTTON _Toc399730252 � PAGEREF _Toc399730252 �181��

Figure 0-20 Deleted OOB SAM Query Selection	� GOTOBUTTON _Toc399730253 � PAGEREF _Toc399730253 �182��

Figure 0-21 OOB Query Data Flow	� GOTOBUTTON _Toc399730254 � PAGEREF _Toc399730254 �183��

Figure 0-22 OOB Query Control Flow (1 of 2)	� GOTOBUTTON _Toc399730255 � PAGEREF _Toc399730255 �185��

Figure 0-23 OOB Query Control Flow (2 of 2)	� GOTOBUTTON _Toc399730256 � PAGEREF _Toc399730256 �187��

Figure 0-24 Range Rings Using SAM Objects Data Flow	� GOTOBUTTON _Toc399730257 � PAGEREF _Toc399730257 �188��

Figure 0-25 Radar Terrain Mask Data Flow	� GOTOBUTTON _Toc399730258 � PAGEREF _Toc399730258 �190��

Figure 0-1 System Generation Control Flow (MIDB activities only)	� GOTOBUTTON _Toc399730259 � PAGEREF _Toc399730259 �208��

Figure 0-1 MIDB Installation Control Flow	� GOTOBUTTON _Toc399730260 � PAGEREF _Toc399730260 �215��

Figure 0-1 New TAMPS Account Control Flow	� GOTOBUTTON _Toc399730261 � PAGEREF _Toc399730261 �233��

Figure 0-2 Network DBA Pre-modification Control Flow (Part 1)	� GOTOBUTTON _Toc399730262 � PAGEREF _Toc399730262 �234��

Figure 0-3 Network DBA Pre-modification Control Flow (Part 2)	� GOTOBUTTON _Toc399730263 � PAGEREF _Toc399730263 �235��

Figure 0-4 Network DBA Pre-modification Control Flow (Part 3)	� GOTOBUTTON _Toc399730264 � PAGEREF _Toc399730264 �236��

Figure 0-5 Network DBA Account Modification Control Flow	� GOTOBUTTON _Toc399730265 � PAGEREF _Toc399730265 �236��

Figure 0-1: HMI to request JMCIS "sa" password	� GOTOBUTTON _Toc399730266 � PAGEREF _Toc399730266 �243��

Figure 0-2: HMI to request JMCIS user's Sybase password	� GOTOBUTTON _Toc399730267 � PAGEREF _Toc399730267 �243��

Figure 1 "Re-sync process with named-pipe bcp method for JMCIS connected TAMPS"	� GOTOBUTTON _Toc399730268 � PAGEREF _Toc399730268 �264��

Figure 2 "Re-sync process with flat file bcp method for JMCIS connected TAMPS"	� GOTOBUTTON _Toc399730269 � PAGEREF _Toc399730269 �265��

Figure 3 "Create replication definitions"	� GOTOBUTTON _Toc399730270 � PAGEREF _Toc399730270 �284��

Figure 4 "Create subscriptions - 1"	� GOTOBUTTON _Toc399730271 � PAGEREF _Toc399730271 �286��

Figure 5 "Create subscriptions - 2"	� GOTOBUTTON _Toc399730272 � PAGEREF _Toc399730272 �286��

Figure 6 "Re-sync process for stand-alone TAMPS"	� GOTOBUTTON _Toc399730273 � PAGEREF _Toc399730273 �288��

Figure 0-1 Main Query Execution Control Flow	� GOTOBUTTON _Toc399730274 � PAGEREF _Toc399730274 �301��

Figure 0-2 Default Condition Generation Control Flow	� GOTOBUTTON _Toc399730275 � PAGEREF _Toc399730275 �302��

Figure 0-3 Boundary Condition Generation Control Flow	� GOTOBUTTON _Toc399730276 � PAGEREF _Toc399730276 �303��

Figure 0-4 Join Condition Generation Control Flow (Part 1)	� GOTOBUTTON _Toc399730277 � PAGEREF _Toc399730277 �304��

Figure 0-5 Join Condition Generation Control Flow (Part 2)	� GOTOBUTTON _Toc399730278 � PAGEREF _Toc399730278 �305��

Figure 0-6 Join Condition Generation Control Flow (Part 3)	� GOTOBUTTON _Toc399730279 � PAGEREF _Toc399730279 �306��

Figure 0-7 Join Condition Generation Control Flow (Part 4)	� GOTOBUTTON _Toc399730280 � PAGEREF _Toc399730280 �307��

Figure 0-8 Join Condition Generation Control Flow (Part 5)	� GOTOBUTTON _Toc399730281 � PAGEREF _Toc399730281 �308��

Figure 0-9 Join Condition Generation Control Flow (Part 6)	� GOTOBUTTON _Toc399730282 � PAGEREF _Toc399730282 �309��

�

�Scope

Description

This document provides a description of the concept of operation, requirements analysis, preliminary design and detailed design involved in implementation of the Tactical Automated Mission Planning System version 6.2 (TAMPS 6.2) integration of the Defense Intelligence Agency (DIA) Modernized Integrated Data Base version 2.0 (MIDB 2.0) product. The integration of MIDB 2.0 into TAMPS 6.2 is being accomplished under the TAMPS 6.2 Statement of Requirements (SOR) 96-01a.

This SOR is highly interdependent with the MP LAN SOR (SOR 95-47) and the JSIPS-N Integration SOR (SOR 97-11). The MP LAN SOR, among other tasks, has the responsibility to set up and maintain connections (both network and database) between the TAMPS CVIC Server and the Joint Maritime Command Information System (JMCIS) Central Database Server (CDBS), which will be used as the central point of processing in a TAMPS MP LAN/JMCIS configuration. The JSIPS-N Integration SOR is interdependent with the MP LAN and MIDB SORs, since JSIPS-N will be depending on MP LAN to provide connectivity to the JSIPS-N workstations and the TAMPS server/client workstations and it will be depending on MIDB for connectivity to the TAMPS MIDB for GMI and target data. JSIPS-N will be a consumer as well as a producer of TAMPS MIDB data.

Meaning of “Object Hierarchy”

Throughout this document, references are made to the TAMPS Object Hierarchy. The following discussion is presented merely to clarify what we mean when we say “integrated into the Object Hierarchy”. This has often been a point of misinterpretation, since numerous areas of TAMPS software create “in-line” objects that are static memory structures representing a pseudo-database/datatable. While these types of objects do emulate the Object Hierarchy, they are not truly integrated into the Object Hierarchy, since a TAMPS DBA cannot modify the data attributes or actions of these objects.

If a data set is integrated into the object hierarchy, it means that objects are created with the TAMPS Object Editor and delivered with TAMPS Core to represent the data set. This can be very extensive or very simplistic, depending on the data set and the requirements. The Object Hierarchy is defined by a set of records in data base tables, defining the specific objects and query support data such as table joins. These tables include the DD_QUERY, DD_CONDITIONS and DD_USER_FIELDS, among others.

The TAMPS Query Tool is used to create a data base query on a single object in the Object Hierarchy. Software can be written to retrieve results from data base tables, but this document does not consider objects other than “Object Editor - produced” objects. If you don’t need to use the TAMPS Query Tool to create a query to return results from a data base table, then there is no need to create an object which includes that table. One other reason to create an object is when a different symbol is needed to represent a data entity. In this case, a query will be built against one object, and the results will be displayed using the symbol defined for that object. This object would have children defined with different symbols. The “symbol specific” function would be used on the bucket containing the results to change the symbol to be the symbol used to define the children. For example, we could define HAT as an object with children of SKULL CAP, BASEBALL CAP, DR SEUSS HAT, etc., assigning appropriate symbols to each object. We could create a query against HATS to return all hats and use Symbol Specific to change the symbols to the specific ones defined for the children objects. There is nothing to preclude creating a query against any object, but requirements determine the number of queries created and delivered with TAMPS Core.

An object is a definition of an data base entity with certain attributes and relationships to other objects. An object has the following basic data:

Unique Name

Type (spatial or text)�Spatial objects have a single symbol defined for graphic display, a data base table used to extract the position of the object for graphic display, the data base columns used for quick amplifying information on the object, and the data base column used for pick resolution.

Data base tables which comprise the object

Columns within the data base tables which comprise the object

Data base column which is used to define the object

Value(s) of the data base column which is used to define the object

Relationship of the object with another object (child of a parent or an orphan)�This relationship data is important, since an object inherits many of its attributes from its parent.

The integration of the MIDB 2.0 product into the TAMPS 6.2 product will integrate the MIDB General Military Intelligence (GMI) database schema into the TAMPS Object Hierarchy. This will provide the TAMPS user the extensibility and flexibility necessary to accomplish the various intelligence tasks involved in mission planning. It will also allow for future growth in intelligence data queries and mission/threat situational awareness, since the queries and the objects can be modified and “tweaked” by sufficiently skilled TAMPS users.

MIDB Production, Query Processing and the TAMPS Object Hierarchy

Since the MIDB 2.0 product is a Government Off-The-Shelf (GOTS) product and we are trying to minimize the customization of that product, parts of the MIDB application software package will only be partially integrated into the TAMPS architecture. The GMI data will be available through TAMPS Object Hierarchy data objects as well as through the MIDB Query Processing data views provided as part of the MIDB product. The dual path is required in order to integrate the MIDB Production software (which will be used to support the TAMPS Add/Edit capability), which requires a query capability in order to retrieve the correct data record from the MIDB GMI database. While we could fully integrate the MIDB Production software into the TAMPS and use our query tool, the risk and cost was felt to be too high for the schedule available in the TAMPS 6.2 time frame.

�Concept of Operations (CONOPS)

Purpose

The purpose of this section is to describe how the Modernized Integrated Data Base version 2.0 (MIDB 2.0) will be integrated into the Tactical Automated Mission Planning System version 6.2 (TAMPS 6.2). MIDB 2.0 replaces MIIDS/IDB as the national/theater production environment for general military intelligence (GMI) data. MIDB 2.0 also expands the role of its database schema to provide for additional tactical intelligence data, as opposed to the MIIDS/IDB national intelligence view; including local observation data, track data (time-dependent observation data), and target data. MIDB 2.0 provides a set of Defense Intelligence Agency (DIA) approved software for processing (load, extract, query, add, modify, delete) the intelligence data. Since the TAMPS Program is committed to being consistent with DOD standard databases and products, the DIA software used at the production sites, along with the intelligence database schema, will be used by TAMPS 6.2.

In the past, the Modernized Integrated Intelligence Data System/Integrated Data Base (MIIDS/IDB) has been the national/theater source for threat data within TAMPS. Moreover, a single producer (AIC) has provided this data in a format readable by TAMPS software. With the advent of MIDB 2.0, TAMPS, conceivably, will be able to receive intelligence data loads from any DIA approved MIDB 2.0 Shared Production Program (SPP) site; realistically, we expect TAMPS to still depend on the two major theater intelligence centers (AIC and JICPAC). This means that TAMPS will no longer be tied to one intelligence center for initial data loads or transaction loads. It will also allow the theater intelligence centers to produce theater loads for those TAMPS sites that need theater specific data, as long as that theater continues to provide later updates to the site.

�In order to limit the aeffect of future MIDB database schema changes and software deliveries, the MIDB installation scripts and data will be kept in a separate CSC from the main System Generation software. TAMPS will provide the capability to install the MIDB software and databases separately from the TAMPS Core “cold start” procedures. This will allow new “patch” deliveries of DIA software to be integrated more easily, as well as limit the aeffect of MIDB schema changes on TAMPS users. There will also be more than one possible MIDB database configuration, which It will also allow the TAMPS software to be installed on a workstation that does not have the necessary hard disk space and memory for running a full MIDB data loadthe MIDB products. Because of this, MIDB will be treated somewhat differently than most Core libraries and applications. All interfaces between MPMs, TAMPS Core and the MIDB software will be through a TAMPS-MIDB Application Programmer’s Interface (API). Some of this interface will be public to all applications (both Core and MPM), but parts of it will be an internal interface between Core and MIDB. �Also, all objects within the Object Hierarchy representing MIDB database tables will be installed as part of the MIDB installation. When the MIDB is not loaded on a TAMPS workstation, the Object Hierarchy objects, affected menu items, queries, and HMI will be unavailable for use. Queries (including those referenced directly from the TAMPS menus, such as threat queries) will be available for selection by the operator, but will display an error message indicating that MIDB has not been installed.

Impact Analysis

Users

There are three general categories of TAMPS users: System Administrator, Data Base Administrator, and Mission Planner. Most of the impacts from the MIDB integration will be felt by the System Administrator and the Database Administrator. The impacts to the Mission Planner, other than some minor HMI changes, should be minimal.

System Administrators

Since MIDB is planned to be “installable”, the System Administrator will be required to install the TAMPS MIDB software package. The SA will have the option of installing MIDB as part of the TAMPS arctic start process or at a later time, when the system is fully operational. �If the MIDB is not installed at arctic start, then the SA will be capable of installing the MIDB database and application software at run time from the TAMPS installation media. Depending on the TAMPS installation type,The SA will be able to install one of twothree types of MIDB systems, a Server MIDB, or a workstation MIDB, or a remote MIDB, will be installed. The SA will also be able to install updates to the MIDB software in order to keep in synchronization with any DIA provided software updates. When the SA installs MIDB, the menu items and HMI related to MIDB query and maintenance will become available when next executed. Any current applications, either on the workstation or on the MP LAN (if configured for LAN operations) would have to be stopped and restarted. Because of this and the possibility of system performance degradation during installation, it is likely that the MIDB would have to be installed in a system maintenance mode and not during normal run-time operations (the installation scripts will verify that the system is in the proper state). One of the changes implied by the installable nature of MIDB is that the Sybase database file system will no longer be a “raw” Unix partition, the database will live on a regular Unix file system in a “container” file. This allows for significant flexibility in defining our database layout, as well as allows for ad hoc allocation of file system space for database growth.

AlthoughSince MIDB has its own access control methodology, that will not be used as a method of access control for TAMPS users. A new TAMPS privilege will be added to indicate which TAMPS users should have access to the MIDB Editor applications. it is likely that new roles and privileges will be added to TAMPS. The SA will have the added responsibility to assign the correct MIDB roles and privileges to users when creating user accounts. �In a JMCIS configuration, the SA will also have the responsibility of coordinating with the JMCIS SA to set up user access to the JMCIS ISDSCDBS MIDB.

Database Administrators

One of the TAMPS DBAís many roles is to ensure that threat and target data in TAMPS is as accurate as possible to support mission planning. Currently, this involves loading IDB data from tape, requesting and processing tactical IDB updates from JMCIS, and manually updating IDB and targets. In a stand-alone TAMPS environment, the workload will not be any different, only the tools will change.

Loading from tape will have to be more selective because of the size and complexity of MIDB. TAMPS currently loads a country of data at a time, and every record from every table for that country. However, most MPMs and users access a very limited amount of this data. DIA has recommended that systems selectively load the required tables. Filtration by country code is under development by the producer and �is not expected to be available in time for TAMPS 6.2 utilization.

In a TAMPS MP LAN/JMCIS environment (further known as the ìafloatî configuration), the DBAís workload will be lowered with respect to threat data maintenance. While in an ìafloatî configuration, all updates to the MIDB intelligence data will be performed against the JMCIS ISDSCDBS, and the TAMPS CIVIC Server’s MIDB will be updated via a Sybase Replication server installed on the JMCIS ISDSCDBS, thereby eliminating the need for maintenance of threat data on both JMCIS and TAMPS. This means that the DBA will not have to request tactical updates from the JMCIS ISDSCDBS and then apply those updates to the TAMPS database.

Sybase Replication as a networked method of theater data support will eventually be available from the supporting theater, but it is not addressed in this document due to the immaturity of this within the MIDB environment. In the currently envisioned ìafloatî configuration, there will be replication between JMCIS and TAMPS. IDBTFs and manual updates will be processed by the JMCIS ISDSCDBS MIDB and updates will be replicated to the TAMPS CVIC Server MIDB. For a stand-alone (ìashoreî) TAMPS configuration, the capability will exist to process IDBTFs via tape or from files resident on a disk drive. We plan on using the ��DIA-provided Data Exchange (DEX) software for both afloat and ashore bulk data loads or data extractions.

Manual updates to the MIDB will use DIA provided tools to support the “Add/Edit” capability currently provided with TAMPS. The current TAMPS “Add/Edit” tools will be replaced by the DIA software. In an ìafloatî configuration, ìadd/editî operations will be performed against the JMCIS ISDSCDBS MIDB, no modifications will be made directly to the TAMPS CIVIC Server’s MIDB.

Data Archival for the MIDB will be available via the Dump/Restore capability. Archive/Restore capability for MIIDS/IDB will be modified to support MIDB; however, every attempt will be made to keep the user interface and processing the same.

It is expected that the Object and Query tools currently used in TAMPS will be used with appropriate modifications for MIDB tables.

Any attempted access to the MIDB, whether query, load, edit, dump/restore, when the MIDB has not been installed will display an error dialog indicating that the MIDB has not been installed.

Mission Planners

Whether utilizing MIIDS/IDB or MIDB, the planner expects the threat data to be accurate on the local TAMPS display on which the planning is being performed. Currently, display of threat data is accomplished through several menu items under the “Threat/Intel” menu option off of the MPM main menu bar. The same methodology is planned with MIDB. The names appearing in the menu list may require change although a concerted effort will be made to map these menu items to MIDB equivalent data to minimize training impact. Some of the query sub-menus may change due to consolidation of data within MIDB, e.g., the SAM query menu’s “Fixed”, “Tactical”, and “Unit” sub-options will most likely be replaced with a single list of SAMs (i.e., SA-2, SA-3, SA-8, etc.), the AAA query menu’s “Facility”, “Unit Equipment”, and “Fire Control Radars” sub-options will also be replaced by a single list of AAA equipment. The “Air” OOB query menu will have the “Select” pushbutton replaced with a cascade menu, since the “Select” pushbutton has hidden this functionality from most users.

Since we are not integrating the MIDB mapping software, there should be no change to what the planner sees on the MPM’s map when an object is displayed through the TAMPS Display Manager software. The data behind the symbol should still be the same “kind” of data, although individual field names will change due the conversion from the MIIDS/IDB schema to the MIDB schema.

The Amp Info functionality will display different field names than those used in MIIDS/IDB. These changes are not expected to particularly impact the planners as the names are at least as intuitive as those currently used. One of the planned improvements for Amp Info will be normalization of the Location fields on the Amp Info display, currently the Lat/Lon data is displayed as character strings with separate hemisphere data in an intuitive format. Since MIDB added a new format for its internal storage of location data, we had to support the new format or provide a standard location display for all spatial objects. The latter choice makes more sense. The standard location display in Amp Info dialogs will match the user’s chosen defaults and will be applicable across all types of spatial data within TAMPS.

The threat equipment codes, which drives the Range Ring and Radar Terrain Mask generation functions is available in MIDB. These two functions should not be affected, although the object definitions for applicable objects will have to be modified. The mission planner shouldn’t notice any difference.

The OOB Report (Output->Reports->System->OOB) will be removed from TAMPS, as it does not provide any more detail (and can often give incorrect data) than displaying the OOB data on the MPM map and creating a text report through the use of the Clutter/Declutter Tool. The Target Report will remain, although the columns available will change.

Currently, we plan on maintaining the capability to create and/or process OBREP and TACELINT message traffic. There has been some discussion about the validity of the current message generation software and, if it is determined that the software is inaccurate, then there will be more major changes required.

When MIDB added tactical intelligence data support, it also added target and weaponeering tables which were not provided with IDB. Target definitions are considerably more detailed than in TAMPS and provide some of the supporting fields for SPWM/JMEM data fill. Since a mission planner still requires the capability to add & modify target data, there will be two target data sets, one within control of the MIDB software and one within control of the TAMPS software. �Both target data sets will use the MIDB target data schema. The MIDB target data set will be used to support external target data creators (i.e., JSIPS-N, CTAPS, RAAP), while the TAMPS target data set will support the mission planner who needs to create a “local” target record. When a planner selects an MIDB target for use in a mission, that target will be copied into the TAMPS target data set and an association will be created between the mission and the TAMPS target data set. In order to ensure that the most recent target is being used when a planner opens a previously created mission, an “obsolete data” check capability will be added that will compare target data in the mission to the MIDB target data set and warn the planner if the MIDB target record is more recent than the TAMPS target record. Creation of target data by the mission planner will use the current “User Defined Target” HMI, although some fields will be added in order to support the more detailed target schema supported by MIDB.

Operating Locations

The biggest difference in operating locations, as far as MIDB is concerned, will be in a JMCIS-connected TAMPS vice a standalone TAMPS.

Ashore (Standalone)

The TAMPS 6.2 standalone (“ashore”) configuration consists of a high-end desktop (currently, a SparcUltra 2) workstation without LAN connectivity to any other TAMPS workstation. All of its local databases are used as the source of data for queries as well as the repository of data for updates. The MIDB data installed on a workstation will be a limited subset of the whole MIDB, as disk space will be at a premium (note that the whole database schema WILL be loaded). All updates to the MIDB will be via the DIA production editors or via IDBTF loads from tape or disk, through the DEX software. Threat scenario data load and selection will continue to be supported. No connectivity to external C4I systems will be supported, including JMCIS, CTAPS, JSIPS-N, and RAAP.

Data Base Schema

Under TAMPS 6.1, all database data was stored in one SQL database, called ìtamps.î MIDB 2.0 requires the creation of several separate databases for storing MIDB intelligence and support data. These databases, along with the other TAMPS database data, will be managed by a single SQL server. We will need to coordinate these changes with SOR 95-47, MP LAN, which will be moving the NID and DAFIF datasets into separate databases. The current TAMPS SQL Server will be separated into two servers, one will contain the TAMPS database and all supporting “internal” data tables along with the DAFIF data tables, the other SQL server will contain the MIDB databases and tables along with the NID database and tables. The responsibility of separating the database server falls under SOR 95-47 MP LAN. The TAMPS Intel SQL Server will contain MIDB and NID. The MIDB database schema is controlled by DIA; therefore, changes made to MIDB will have to be reflected in the TAMPS MIDB schema.

Initial Data Population

There will be an MIDB tape product available from AIC and JICPAC (and possibly other theater support centers) and TAMPS will be capable of loading this tape product.

Maintenance of the data base

TAMPS will initially populate its local MIDB with national data. Updates to MIDB will be made manually, through the DIA production editors. If the site requires operation with the latest version of theater MIDB data, IDBTFs may be processed to accomplish this.

Targets

The MIDB target data will be populated by either the DBA or the planner through manual updates. The TAMPS Planner Target HMI will be modified to support the new data required for the MIDB target tables. The TAMPS DBA Target HMI will be replaced in deference to the MIDB Target production editor HMI.

Scenario/Exercise Data

The capability to manually enter exercise/scenario data will be provided. The ability to query against a given scenario data set will be provided.

Afloat (as well as those locations with JMCIS connectivity)

In an ìafloatî configuration, the interface to JMCIS for threat updates becomes simple. The JMCIS ISDSCDBS MIDB will be the single point of modification and all updates will be replicated to the TAMPS Server MIDB. TAMPS 6.2 will only be inter-operable with JMCIS 3.0 (a.k.a. JMCIS 98) or later, since both systems are required to have identical MIDB database schema.

Data Base Schema

The current TAMPS SQL Server will be separated into two servers, one will contain the TAMPS database and all supporting “internal” data tables along with the DAFIF data tables, the other SQL server will contain the MIDB databases and tables along with the NID database and tables. The responsibility of separating the database server falls under SOR 95-47 MP LAN. The TAMPS Intel SQL Server will contain MIDB and NID. The MIDB database schema is controlled by DIA; therefore, changes made to MIDB will have to be reflected in the TAMPS MIDB schema. The TAMPS Intel and JMCIS ISDSCDBS SQL Servers will contain all MIDB databases and tables. They will need to have exactly the same size, structure, unique indices, and primary keys. The TAMPS Intel SQL server will be running on the TAMPS CVIC Server system. All applications running on the TAMPS CVIC server or a TAMPS client workstation, will direct MIDB queries to the TAMPS Intel SQL server and MIDB updates to the JMCIS ISDSCDBS SQL server (in a JMCIS-connected environment) or the TAMPS Intel SQL server (in an environment without JMCIS). The TAMPS Intel SQL Server will also need to maintain a smaller, limited copy of the main MIDB data, this copy will have the standard MIDB schema; however, it will only contain the data appropriate for aircraft mission planning -- facility, equipment, unit, targets, and local observation data. This data will be the data that is backed up and sent to the client workstations.

Initial Data Population

There will be an MIDB tape product available from AIC and JICPAC (and possibly other theater support centers) and both TAMPS and JMCIS will be capable of loading this tape product. In a replicated environment from the JMCIS ISDSCDBS to the TAMPS CVIC Server, data will be loaded to the JMCIS ISDSCDBS and then loadeddumped and restored to TAMPS. � Preferably, the TAMPS load will be done by dumping on JMCIS and restoring on TAMPS, but this may not be supported by Sybase. Since copying the data via dump and restore is not feasible due to the differing hardware platforms, the data will be copied by using bulk-copy out from the JMCIS databases and bulk-copy

Maintenance of the data base

While connected to the MP LAN in a JMCIS-connected environment, all updates are made to the JMCIS ISDSCDBS MIDB. TAMPS DBAs will enter intelligence updates from TAMPS workstations, with the edits actually going to the JMCIS ISDSCDBS MIDB. All of the updates made to the JMCIS MIDB will be replicated back to TAMPS.

Targets

The MIDB target data will be populated by either the DBA or the planner through manual updates. The TAMPS Planner Target HMI will be modified to support the new data required for the MIDB target tables. The capability to accept updates from JMCIS will also be supported.

Scenario/Exercise Data

Exercise/scenario data, if loaded and maintained on JMCIS, will also be replicated down to TAMPS. The capability to manually enter exercise/scenario data will be provided.

Updates

Initial distribution of MIDB data will be via tape, with updates provided via IDBTFs. Eventually, replication will be available from the theaters or agencies supporting systems. Currently, the capability exists within JMCIS to connect to AIC and download IDBTFs for processing into JMCIS. It is expected that this capability will be expanded for the MIDB environment to include connection to any supporting theater for downloading of IDBTF files. These IDBTF files will be used to update the MIDB in JMCIS. Updates to JMCIS will be replicated to the TAMPS CVIC Server.

Performance and Sizing

TEMP Thresholds

The TAMPS TEMP identifies two performance requirements directly or indirectly on which this SOR has bearing.

The first is that a load/reload of IDB data (hence MIDB) must not exceed 6 hours for an operational load. Typically, this includes Worldwide tables and at least two country codes. The load times for MIIDS/IDB have been reduced in TAMPS 6.1 from 7 hours (on DTC-2) to approximately 3 hours using Worldwide tables and North and South Korea as a benchmark. A selective load capability, as well as a selective “produce the load” capability at the theater production centers should reduce the risk of exceeding 6 hours for required data fields. With the advent of Mission Planning LAN, MIDB 2.0 data will be stored in a separate database from the rest of TAMPS. This is expected to significantly increase the speed of a recovery load, and dump of the MIDB 2.0 database. The dump/restore time for a 600MB database is expected to be less than 1 hour, far exceeding the TAMPS reload time requirements. Currently approximately 600MB is allocated for IDB data. For a complete load of the MIDB 2.0 tables (e.g. CVIC server), approximately 16 GB of storage are required with a potential of 20 GB for queueing of tactical updates and history table growth.

The second requirement is that mission plan development time (not including download) for a single aircraft mission shall not exceed two hours. Queries for data within the confines of a standard TAMPS op area from the MIDB 2.0 database are not expected to significantly impact this planning time, nor are they expected to significantly change from current. Queries based upon world-wide data sets can be expected to take longer than geographically limited queries, this has nothing to do with a change in database, but rather the amount of data stored in a world-wide data set. Current timing for these queries is unknown, and is dependent on too many different variables to even hazard a guess until some timing tests can be performed. However, considering the geographic limitations of a tactical mission, this SOR should not adversely affect the time to plan a tactical mission.

RAM and hard disk utilization

The following table was generated from data presented at the MIDB Developer’s Conference in February 1997. These numbers are for a theater-level production facility, which would be performing a very large number of edits to the MIDB. It is not clear exactly what the corresponding requirements are for TAMPS, which will be performing comparatively few edits to the MIDB data. It was also not clear to what extent these numbers represented a minimum operable configuration, as opposed to a recommended configuration. Although the TAMPS systems do not meet the RAM and disk space sizes presented, we do not feel that this will prevent TAMPS use of the MIDB. These numbers are presented here for information.

Table � STYLEREF 3 \n �1.4.3�-� SEQ Table * ARABIC \r 1 �1� Processing Allocation

Type�CPU Type�RAM�DISK SPACE��Workstation�2 - Sparc 20�256 MB�9 GB��Server�6 - Sparc 1000�1024 MB�20 GB��

System Hardware and Software Requirements

System Hardware

The MIDB 2.0 software and database require considerably more space than the MIIDS/IDB database. This is primarily due to the change in schema definition and the expansion of the scope of data that DIA is planning on storing in the MIDB. Due to this change in schema, the requirements for TAMPS workstations has increased. A stand-alone workstation will require approximately 48 GB of hard disk space for the MIDB database (including database logs) along with 600 MB disk space for the MIDB software. The TAMPS CVIC Server will require at least 16 GB of disk storage, with a margin of 20 GB for database and application software growth. Current TAMPS requirements are for only 600MB of IDB data. There is insufficient space on current TAMPS hardware (ACE and DTC-2) to accommodate this growth without significant impacts to storage of other mission critical mapping products.

Operating System

MIDB software for loading, which will largely be reused, is only available for Solaris 2.5.1. NO HP support is currently available.

Commercial-Off-The-Shelf (COTS) Application Software

MIDB software requires Sybase SQL Server 11, and Sybase Replication Server 11, Perl 5.002, and ICS/Motif 1.2.4. The MIDB maintenance software currently uses the new Sybase “ct lib” interface vice the now obsolete “db lib.” �All new TAMPS queries to MIDB are planned to use an ODBC interface to reduce the dependency of TAMPS on Sybase for future releases of TAMPS. At this time, a vendor has not yet been selected. Since ODBC is a translation layer that allows interoperability between applications and differing vendor’s database servers, the actual calls to the database server by the ODBC driver will be in the database server’s “native” library calls.

Government-Off-The-Shelf (GOTS) Application Software

The DIA MIDB application software will be integrated into the TAMPS 6.2 product on a piece-by-piece basis. Currently, we are planning to integrate the following parts of the MIDB application software:

Table � STYLEREF 3 \n �1.4.4�-� SEQ Table * ARABIC \r 1 �1� MIDB Application Software

MIDB CSCI/CSC�Reason��Production Software (IPU)�Add/Edit��Query Software (IQU)�Support for Add/Edit��Brokered Login Trusted Services (BLTS) �Required for IPU/IQU access to database��Data Exchange (DEX) �Data import/export��Installation

The System Generation software will allow for installationselection of twothree MIDBTAMPS configurations corresponding to a TAMPS server (full MIDB database), and a TAMPS workstation (partial MIDB database), and a TAMPS remote (no MIDB database, only MIDB application software) configuration. The MIDB configuration will be determined from the TAMPS installation type. �System Generation will allow the SA to select the type of install as well as allow the SA to NOT install the MIDB at sysgen time, however, in this case the MIDB cannot be installed later on without re-installing the entire TAMPS system. MIDB Installation can then be accomplished at some later time.

Description of Processing

The MIDB database (as a whole) includes several databases and TAMPS specifically interfaces with the GMI database. The replication from JMCIS MIDB to TAMPS MIDB will be established for the GMI data.

JMCIS-TAMPS MIDB High Level Operational Data Flow

The JMCIS and TAMPS database receive the initial database load from the national theater producers. Once on-line, the JMCIS MIDB database is considered the “gold” database. JMCIS will accept changes to the MIDB data by processing IDBTFs from the national/theater producers, updates from the OBS and TRACK tables via the JMCIS review tool, updates from CTAPS and/or RAAP, and manual updates from the TAMPS DBAs through the TAMPS CVIC Server. Any changes to the JMCIS MIDB data is then replicated back to the MIDB data on the TAMPS CVIC Server. All TAMPS Client users access the MIDB data resident on the TAMPS Server. The TAMPS MIDB database will accept and process TAMPS Client queries.

�

Figure � STYLEREF 4 \n �1.4.5.1�-� SEQ Figure * ARABIC \r 1 �1� JMCIS-TAMPS MIDB Data Flow

TAMPS MIDB Context Diagram - Query

All users of the MIDB data will have access to the data programmatically through the TAMPS Application Interface. The DIA Editors will be used to provide the DBA the capability to add, modify, and delete data in the MIDB tables.

�

Figure � STYLEREF 4 \n �1.4.5.2�-� SEQ Figure * ARABIC \r 1 �1� TAMPS MIDB Context Diagram - Query

TAMPS MIDB Context Diagram - Update

The TAMPS MIDB database is updated via the Sybase Replication Server using the MP LAN. All updates to the TAMPS MIDB database are received from the JMCIS ISDSCDBS MIDB database. Any updates by the MPMs, TERPES applications or JSIPS-N Core Extension are sent to the JMCIS database using the MP LAN. The TAMPS Application Interface provides the capability for planners to send updates to the JMCIS database or to use the DIA software to update the JMCIS database through HMI screens.

�

Figure � STYLEREF 4 \n �1.4.5.3�-� SEQ Figure * ARABIC \r 1 �1� TAMPS MIDB Context Diagram - Update

��Applicable Documents

Government Documents

Specifications

None

Standards

Microsoft Open Data Base Connectivity Standard, Version 2.1 (or greater)

Other Publications

Intelligence Systems Board ltr CMS95-01270, Modernized Integrated Data Base (MIDB) Data Structures and Selected Migration Systems, 13 Oct 95

Defense Intelligence Agency, Modernized Integrated Data Base (MIDB) Version 2.0 Data Base Design Document, January 1997.

Defense Intelligence Agency, Modernized Integrated Data Base (MIDB) Replication Architecture Plan, Initial Draft, November 95

Defense Intelligence Agency, Modernized Integrated Data Base (MIDB) Re-Design, Version 2.0, January 96

Defense Intelligence Agency, Modernized Integrated Data Base (MIDB) Re-Design Support Information, Version 2.0, January 96

Defense Intelligence Agency, Modernized Integrated Data Base (MIDB) Version 2.0a, June 96

Defense Intelligence Agency, Replication Server Conference Minutes, February 96

Defense Intelligence Agency Message 131419Z SEP 96, Subj: Termination of MIIDS/IDB at DIA

Sterling Software, Modernized Integrated Data Base (MIDB 2.0) Software Installation Plan (SIP), Version 1.00 (DRAFT), March 1997

TAMPS Test and Evaluation Master Plan (TEMP) (Rev A)

TAMPS 6.2 SOR 95-47 Software Design Notebook

TAMPS 6.2 SOR 97-10 Software Design Notebook

Non-Government Documents

ODBC SDK 2.1 Programmer’s Reference, Microsoft Corporation

�Requirements

Required States and Modes

There are no specific states and modes within TAMPS.

Statements of Functionality

CS0037	System generation shall support installation of TAMPS application software and databases, including construction of TAMPS database schema.

	TAMPS MIDB Installation CSC

 The System Generation CSC shall use the TAMPS MIDB Installation CSC to install the MIDB system.

 The TAMPS MIDB Installation CSC shall install the TAMPS subset of the MIDB software.

 The TAMPS MIDB Installation CSC shall install the MIDB Brokered Login Trusted Services (BLTS) software.

 The TAMPS MIDB Installation CSC shall install the BLTS server software on the system.

 The TAMPS MIDB Installation CSC shall install the BLTS client software on the system.

 The TAMPS MIDB Installation CSC shall install required “start-up” scripts on the system to start the BLTS applications.

 The TAMPS MIDB Installation CSC shall install the MIDB Production System software.

 The TAMPS MIDB Installation CSC shall install the MIDB Data Exchange System software.

 The TAMPS MIDB Installation CSC shall install the MIDB Data Query System software.

 The TAMPS MIDB Installation CSC shall install the MIDB database schema.

 The TAMPS MIDB Installation CSC shall support twothree types of database installation.

 The TAMPS MIDB Installation CSC shall support a “server” MIDB installation.

 The “server” MIDB installation shall install all MIDB tables.

 This installation shall support a complete load of MIDB data.

 This installation shall support scenario data.

 The TAMPS MIDB Installation CSC shall support a “workstation” MIDB installation.

 The “workstation” MIDB installation shall install all MIDB tables.

This installation shall be support a subset of MIDB data.

 This installation shall support scenario data.

 DELETEDThe TAMPS MIDB Installation CSC shall support a “remote” MIDB installation.

 DELETEDThe “remote” MIDB installation shall install only the MIDB application software.

 DELETEDThe “remote” MIDB installation shall require a connection to a “server” or “workstation” MIDB installation.

 NOTE: The “remote” MIDB installation may be used in those situations where a TAMPS workstation will always be connected to a MIDB database server.

 DELETEDThe TAMPS MIDB Installation CSC shall provide the capability to install the MIDB database and software separately from system generation.

 DELETEDThe TAMPS MIDB Installation CSC shall check for required disk space.

 DELETEDIf the TAMPS MIDB Installation CSC cannot find the required disk space for the selected installation, it shall inform the user and exit the install process without installing the MIDB database and software.

 DELETEDThe TAMPS MIDB Installation CSC shall accept user input to define the parameters of the MIDB installation.

 The TAMPS MIDB Installation CSC shall assign a unique MIDB Server ID to the system.

 The TAMPS MIDB Installation CSC shall use the MIDB Server ID when generating a database record’s surrogate key.

 The TAMPS MIDB Installation CSC shall ensure that the MIDB surrogate key counters are initialized such that newly generated surrogate keys will not conflict with any surrogate key previously generated.

 In a JMCIS environment (e.g., TAMPS-Afloat), the TAMPS MIDB Installation CSC shall initialize access to the MIDB database stored on the JMCIS system.

CS0230	Allow the system administrator to add, modify, and delete accounts through a menu driven interface.

	TAMPS System Administration CSC

 The TAMPS System Administration CSC shall ensure that created user accounts have appropriate permissions for the MIDB databases.

 In a JMCIS environment (e.g., TAMPS-Afloat), the TAMPS System Administration CSC shall ensure that created user accounts have appropriate permissions for the JMCIS MIDB databases.

 The TAMPS System Administration CSC shall ensure maintenance access to the MIDB is restricted to the TAMPS Database Administrator (DBA) role.

 The TAMPS System Administration CSC shall restrict MIDB archive operations to the TAMPS DBA role.

 The TAMPS System Administration CSC shall restrict MIDB restore operations to the TAMPS DBA role.

 The TAMPS System Administration CSC shall restrict MIDB load operations to the TAMPS DBA role.

 The TAMPS System Administration CSC shall restrict MIDB maintenance operations to the TAMPS DBA role.

In a MP-LAN environment, the TAMPS MIDB Installation CSC shall support generation of a subset of the currently loaded MIDB GMI data for copying to client workstation databases.

DELETEDIn an MP-LAN environment, the TAMPS MIDB Installation CSC shall allow the Database Administrator to specify the subset of MIDB GMI data to be copied to the client workstation databases.

CT0480xxx1	To support inter-operability with other Mission Planning, Intelligence, Imagery, and Weaponeering systems, TAMPS shall use the DIA produced MIDB schema, tables, and software to support its general military intelligence (GMI) data needs.

CT0483xxx2	TAMPS shall support the ability to operate against exercise/scenario intelligence data.

	Intelligence Data Processing

 	GMI Data CSC

 The GMI Data CSC shall support mission planning against operational data.

 The GMI Data CSC shall support mission planning against scenario data.

 The GMI Data CSC shall support storage of data for up to 17 different scenarios at the same time.

 The GMI Data CSC shall limit query access to 1 (one) scenario at a time.

 The GMI Data CSC shall limit create access to 1 (one) scenario at a time.

 The GMI Data CSC shall limit modify access to 1 (one) scenario at a time.

 The GMI Data CSC shall limit delete access to 1 (one) scenario at a time.

 The GMI Data CSC shall limit the scenario data to no more than five megabytes (5 MB)..Deleted.

 The GMI Data CSC shall provide the DBA the capability to add a set of scenario data.

 The GMI Data CSC shall provide the DBA the capability to remove a set of scenario data.

 The GMI Data CSC shall allow the DBA to allow access to a set of scenario data.

 The GMI Data CSC shall allow the DBA to stop access to a set of scenario data.

 The GMI Data CSC shall support query and maintenance of the following data sets:

 Equipment - This data set provides the structure for equipment such as Surface-to-Air Missiles, Radars (including parametric data), Anti-Aircraft Artillery, Aircraft, Helicopters, and various other types of equipment. This data set holds information on where the specific piece of equipment is located, e.g., SA-2F at this location, SA-2F at that location, etc. It also provides the structure for holding associated ELINT Notations, as well as parametric data.

 Equipment Index - This data set provides the structure for equipment such as Surface-to-Air Missiles, Radars (including parametric data), Anti-Aircraft Artillery, Aircraft, Helicopters, and various other types of equipment. However, this data set does not hold any type of location data. It simply has information on a piece of equipment, e.g., SA-2F.

 Unit - This data set provides the structure for command, combat, and combat support units.

 Facility - This data set provides the structure for facilities such as Surface-to-Air Missile sites, Radar sites, Anti-Aircraft Artillery sites, and Airfields. This data set holds information on where the specific facility is located, e.g., SAM site at this location, SAM site at that location, etc.

 Target - This data set consists of the data elements required to support target aimpoint definition, as well as target lists, and weaponeering information.

 Observation - This data set provides the structure for locally observed data, it contains data elements that support detailed ELINT parametric data.

 Track - This data set provides the structure for time-dependent analysis of Observation data. The current CONOPS for Observation/Track data is that uncorrelated observations go into the Observation data set, while correlations are added to the Track data set.

 The GMI Data CSC shall provide the data elements required (equipment code and position data) to support radar terrain mask calculations for radar entries.

 The GMI Data CSC shall provide the data elements required (equipment code and position data) to support range ring calculations for surface-to-air missile (SAM) entries.

 The GMI Data CSC shall provide the data elements required (equipment code and position data) to support range ring calculations for anti-aircraft artillery (AAA) entries.

CT0671	TAMPS shall provide the planner the capability to create and maintain a set of threat data separate and distinct from the MIDB data.

	Interim Threat CSC

 The Interim Threat CSC shall support creation of threat data.

 The Interim Threat CSC shall support storage of threat data.

 The Interim Threat CSC shall support display of threat data.

 The Interim Threat CSC shall use the Overlay Manager to support graphic display of query results.

 The Interim Threat CSC shall use the Text Tool to support textual display of query results.

 The Interim Threat CSC shall support modification of existing records.

 The Interim Threat CSC shall support deletion of existing records.

 The Interim Threat CSC shall provide ownership designation of records to restrict modification and deletion to the data originator.

 The Interim Threat CSC shall support creation of Range Rings based upon Interim Threat data.

 The Interim Threat CSC shall support creation of Radar Terrain Masks based upon Interim Threat data.

 The TAMPS DBA shall be capable of deleting any Interim Threat data.

 The TAMPS DBA shall be capable of updating the MIDB database with data available from the TAMPS Interim Threat database.

 The Interim Threat CSC shall automatically delete the record from the Interim Threat database once the DBA updates the MIDB GMI database with that record.

CT0485	TAMPS shall provide the capability to load MIDB data from any DIA approved MIDB 2.0 production facility.

	MIDB Data Load CSC

 The MIDB Data Load CSC shall support loading GMI data into an empty MIDB GMI database.

 The MIDB Data Load CSC shall support overwriting an existing MIDB GMI database with new GMI data.

 The MIDB Data Load CSC shall support bulk GMI data updates to an existing MIDB GMI database.

 The MIDB Data Load CSC shall support loading of operational GMI data.

 The MIDB Data Load CSC shall support loading of exercise/scenario GMI data.

 The MIDB Data Load CSC shall be able to process Sybase Bulk Copy (BCP) files.

 The MIDB Data Load CSC shall be able to process Standard Extract Format (SEF) files.

 The MIDB Data Load CSC shall be able to process IDB Transaction Files (IDBTFs) files.

 The MIDB Data Load CSC shall support loading GMI data from standard TAMPS mass storage devices.

 The MIDB Data Load CSC shall support loading GMI data to the client workstations from the TAMPS server attached via the Mission Planning LAN.

 The MIDB Data Load CSC shall support updating the client workstations from the TAMPS server attached via the Mission Planning LAN.

 In a JMCIS environment (e.g., TAMPS-afloat), the MIDB Data Load CSC shall process updates from the JMCIS CDBS replication server to the TAMPS Server via the Mission Planning LAN-JMCIS LAN connection.

 The MIDB Data Load CSC shall provide a report to the DBA on any data that cannot be loaded.

 In a JMCIS environment (e.g., TAMPS-afloat), the MIDB Data Load CSC shall provide a report to the DBA on any replication failures.

 The MIDB Data Load CSC shall support selective (profiled) extraction of data.

 The MIDB Data Load CSC shall support selective (profiled) insertion of data.

 The MIDB Data Load CSC shall allow the DBA to define new data profiles.

 The MIDB Data Load CSC shall provide a default profile to support an MIDB Server configuration.

 The MIDB Data Load CSC shall provide a default profile to support an MIDB Workstation configuration.

CT0525 	TAMPS shall provide the capability to query for intelligence data and display the results.

 	MIDB Query CSC

 The MIDB Query CSC shall use the Overlay Manager to support graphic display of query results.

 The MIDB Query CSC shall use the Text Tool to support textual display of query results.

 The MIDB Query CSC shall use the Object Hierarchy to support querying for data.

 The MIDB Query CSC shall provide the capability to query for operational data.

 The MIDB Query CSC shall provide the capability to query for scenario data.

 The MIDB Query CSC shall restrict the queries to only one set of scenario data at a time.

 The MIDB Query CSC shall require the user to select the data set that the query is run against.

 The MIDB Query CSC shall use operational data by default.

 The MIDB Query CSC shall support the following pre-defined queries:

 The MIDB Query CSC shall support pre-defined queries for the following data:

 Airfields

 To the major types of airfields

 Including an all types option

 Anti-Aircraft Artillery (AAA) sites/equipment

 To the level of the type of gun

 Including an all types option

 Surface-to-Air Missiles (SAM)

 To the level of the individual SAM equipment

 Including an all types option

 Radars

 To the level of radar type

 Including an all types option

 Units

 To the level of unit primary mission

 To the echelon level DELETED

 Aircraft

 Fixed wing aircraft

 Rotary wing aircraft.

 Ships

 Targets

 The MIDB Query CSC shall support spatial objects for the following data:

 Airfields

 To the major types of airfields

 AAA sites/equipment

 To the level of the type of gun

 SAMs

 To the level of the individual SAM equipment

 Radars

 To the level of radar type

 Surface-to-Surface Missiles

 Units

 To the primary mission/echelon level

 Aircraft

 Fixed wing

 Rotary wing

 Ships

 Targets

 The MIDB Query CSC shall support text objects for the following data:

 Radar ELINT Notations

 Remarks

 Equipment

 The MIDB Query CSC shall by default retrieve the “best” data from the database. Best data is defined as data that matches all other conditions of the query as well as the following:

The most recent update to a record that is marked as a “local” update

Any other record that does not have any “local” updates

 The MIDB GMI Query CSC shall provide the capability to retrieve historical data instead of “best” data.

CT0540	TAMPS shall provide the capability to manually maintain the MIDB GMI data.

 	GMI Editor CSC

 In a standalone environment (e.g., TAMPS-ashore), the GMI Editor CSC shall perform all edits against the workstation’s MIDB database.

 In an MP LAN environment (e.g., TAMPS-afloat, without JMCIS connectivity), the GMI Editor CSC shall perform all edits against the TAMPS Server’s MIDB database.

 The GMI Editor CSC shall support being disabled when connected to the MP LAN.

 The GMI Editor CSC shall support being enabled when disconnecting from the MP LAN.

 In a JMCIS environment (e.g., TAMPS-afloat), the GMI Editor CSC shall perform all edits against the JMCIS MIDB database.

 The TAMPS Server MIDB database shall be used only for processing of TAMPS query requests.

 Updated data from the JMCIS MIDB shall be replicated to the TAMPS MIDB.

 The TAMPS Server MIDB database shall only accept updates from the JMCIS server.

 The GMI Editor CSC shall provide the capability to create data.

 The GMI Editor CSC shall provide the capability to modify data.

 The GMI Editor CSC shall provide the capability to delete data.

CT0550xxx3	TAMPS MPMs shall have programmatic access to the MIDB GMI data.

	GMI Application Interface CSC

 The GMI Application Interface CSC shall provide the capability to query for Facility data.

 The GMI Application Interface CSC shall provide the capability to query for Equipment data.

 The GMI Application Interface CSC shall provide the capability to query for Unit data.

 The GMI Application Interface CSC shall provide query capability for data based upon geographic bounding rectangle and threat type.

 The GMI Application Interface CSC shall provide the capability of specifying the returned data items within the data set.

CT1098	To support inter-operability with other Mission Planning, Intelligence, Imagery, and Weaponeering systems, TAMPS shall use the MIDB target data schema to support its target data needs.

	Target Data Processing

	Target Data CSC

 The Target Data CSC shall use the Overlay Manager to support graphic display of query results.

 The Target Data CSC shall use the Text Tool to support textual display of query results.

 The Target Data CSC shall use the Object Hierarchy to support querying for data.

 The Target Data CSC shall support storage of target data.

 The Target Data CSC shall support retrieval of target data.

 The Target Data CSC shall support modification of target data.

 The Target Data CSC shall define a target by its geospatial coordinates and a unique identifier.

 The Target Data CSC shall provide the capability to convert a coordinate from any TAMPS defined datum to a coordinate in any other TAMPS defined datum.

 The Target Data CSC shall perform datum conversions with no more than 1% computational error.

 The Target Data CSC shall display the target location in the current application’s selected horizontal datum.

 The Target Data CSC shall be capable of defining target location coordinates to 1/100 of an arc-second.

 The Target Data CSC shall store target location coordinates to the precision specified when the target record was created.

 The Target Data CSC shall retrieve target location coordinates at the same precision in which it was stored.

 The Target Data CSC shall display target location coordinates at the current application’s selected level of precision.

 The Target Data CSC shall provide the capability to store the horizontal datum in which the target was defined.

 The Target Data CSC shall provide the capability to retrieve the horizontal datum in which the target was defined.

 The Target Data CSC shall provide the capability to store a target’s horizontal location accuracy value and associated unit of measurement.

 The Target Data CSC shall provide the capability to retrieve a target’s horizontal location accuracy value and associated unit of measurement.

 The Target Data CSC shall provide the capability to store a target’s vertical location accuracy value and associated unit of measurement.

 The Target Data CSC shall provide the capability to retrieve a target’s vertical location accuracy value and associated unit of measurement.

 The Target Data CSC shall provide the capability to display a target’s horizontal accuracy value and associated unit of measurement.

 The Target Data CSC shall provide the capability to display a target’s vertical accuracy value and associated unit of measurement.

 The Target Data CSC shall provide the capability to store a target’s confidence data.

 The Target Data CSC shall provide the capability to retrieve a target’s confidence data.

 The Target Data CSC shall provide the capability to display a target’s confidence data.

 The Target Data CSC shall support storage of target data provided by the JTIM (Joint Service Imagery Production System - Navy (JSIPS-N)--TAMPS Interface Module) Core Extension.

 The Target Data CSC shall support retrieval of target data provided by the JTIM Core Extension.

 The Target Data CSC shall support display of target data provided by the JTIM Core Extension.

 The Target Data CSC shall differentiate TAMPS targets from other target records within the target tables.

 The Target Data CSC shall differentiate TAMPS planner targets from TAMPS DBA targets.

 The Target Data CSC shall provide a capability to associate targets and missions.

 CT1100	TAMPS shall provide the capability to load target data.

	Target Data Load CSC

 The Target Data Load CSC shall provide the capability to load target records.

 DELETEDThe Target Data Load CSC shall be able to load target data separately from other MIDB data sets.

 The Target Data Load CSC shall be able to load target data from standard TAMPS external mass storage devices.

 The Target Data Load CSC shall be able to load target data to the client workstations from the TAMPS server attached via the TAMPS Mission Planning LAN.

 Unused.

 DELETEDThe Target Data Load CSC shall be capable of accepting target data from other MIDB 2.0-compliant C4I systems (e.g., RAAP, CTAPS, JSIPS-N).

 The Target Data Load CSC shall support loading data in Sybase BCP format.

 The Target Data Load CSC shall support loading data in the IDB Standard Extract Format (SEF).

 The Target Data Load CSC shall support bulk updates performed via replacement by deleting all existing target data and inserting new target data.

 DELETEDThe Target Data Load CSC shall support bulk updates performed via addition by adding new data to an existing target data set and ensuring no duplicate records are added.

 DELETEDThe Target Data Load CSC shall support bulk updates performed manually by allowing the DBA to review existing target records and modify updatable fields.

CT1115	TAMPS shall provide the capability to manually maintain target data.

	Target Editor CSC

 The Target Editor CSC shall provide the capability to manually maintain target data.

 The Target Editor CSC shall support creating new target records.

 When a target is created from within the DBA application, the Target Editor CSC shall add a new target record to the TAMPS MIDB target data table.

 When a target is created within a TAMPS MPM, the Target Editor CSC shall add a new target record to the TAMPS target data table.

 The Target Editor CSC shall support creation of a target by graphical selection through the Overlay Manager of any spatial object within the TAMPS Object Hierarchy.

NOTE: Use of a spatial object entity as the source of a new target record will automatically transfer all applicable data from the source to the new target, this includes (but is not limited to/by): location data (latitude, longitude, grid, grid system, elevation, datum, precision, confidence), BE Number, entity name, and entity type.

 The Target Editor CSC shall support creation of a target by selection of any point on the application map.

 The Target Editor CSC shall support creation of a target by text entry of required data.

 The Target Editor CSC shall support modifying existing targets.

 The Target Editor CSC shall allow the DBA modify any updatable field of any existing target record.

 The Target Editor CSC shall allow a planner to modify any updatable field of that planner’s target records.

 If a planner modifies a record that the planner does not own (either owned by a different planner, the DBA, or the record is from a source external to TAMPS), then the Target Editor CSC shall create a new record that will contain the modifications to the data.

 The Target Editor CSC shall support deleting existing targets.

The Target Editor CSC shall allow the DBA to delete any planner or DBA created targets.

 The Target Editor CSC shall limit a planner’s ability to delete targets to those targets created by the planner.

 In a JMCIS environment (e.g., TAMPS-afloat), the Target Editor CSC shall perform all MIDB Target edits against the JMCIS MIDB database.

 The TAMPS Server MIDB database shall be used only for processing of MIDB target query requests.

 Updated target data from the JMCIS MIDB shall be replicated to the TAMPS MIDB target data.

 The TAMPS Server MIDB database shall only accept updates from the JMCIS server.

CT1120xxx4	TAMPS MPMs shall have programmatic access to the target data.

	Target Application Interface CSC

 The Target Application Interface CSC shall provide MPMs with target creation functions.

The Target Application Interface CSC shall provide MPMs with target query functions.

The Target Application Interface CSC shall provide the capability of specifying the required data items to return from a query.

The Target Application Interface CSC shall provide query capability for target data based upon geographic bounding rectangle and target type.

The Target Interface CSC shall provide MPMs with target modification functions.

The Target Application Interface CSC shall provide MPMs with target deletion functions.

 The Target Application Interface CSC shall allow an MPM to remove a target from the application’s display.

 The Target Application Interface CSC shall allow an MPM to delete a target from the target tables within the limits described in the Target Editor CSC requirements.

CT1180	TAMPS shall provide the capability to plan attack and strike missions for both aircraft and precision guided munitions against a target.

	Target Planning CSC

 The Target Planning CSC shall allow a planner to create multiple target references within a route.

 The Target Planning CSC shall allow a planner to remove a target reference from a route.

 The Target Planning CSC shall allow a planner to modify a target reference within a route.

 The Target Planning CSC shall allow a planner to create Offset Aimpoints with a target as the referenced location.

 The Target Planning CSC shall allow a planner to select a pre-defined target as the intended point of attack within a route.

 The Target Planning CSC shall allow a planner to create a new target as the intended point of attack within a route.

 The Target Planning CSC shall provide the capability to store a target’s relationship to a route/mission.

 The Target Planning CSC shall provide the capability to retrieve a target’s relationship to a route/mission.

 The Target Planning CSC shall alert planners when a target used in a route has been modified.

CT2300xxx5	TAMPS shall provide the capability to access and display both geographic and text data from the TAMPS databases.

	TAMPS Data Query Processing

	Data Query CSC

 The Data Query CSC shall determine the location of spatial object data using the Lat/Lon table specified for that object in the Object Editor.

 The Data Query CSC shall support the use of the ILAT/ILON columns as used in the MIDB GMI database to determine the location of spatial object data.

 The Data Query CSC shall support the use of the WGS-84 lat/lon columns as used in the DAFIF database to determine the location of spatial object data.

 The Data Query CSC shall support the use of the lat_radian/lon_radian columns in the TAMPS tailored databases to determine the location of spatial object data.

 The Data Query CSC shall constrain queries of a spatial object to the active geographic filter, or to the current operating area if there is no active geographic filter.

 The Data Query CSC shall provide the capability to specify that the results of a query of a spatial object will be displayed as symbols on the application map.

 The Data Query CSC shall use the symbol information specified in the Object Editor for the object being queried and the currently selected symbol set when displaying query results as symbols on the application map.

 The Data Query CSC shall provide the capability to specify that the results of a query of a spatial object will be displayed in a text window.

 The Data Query CSC shall provide the capability to specify that the results of a query of a spatial object will be displayed both as symbols on the application map, and in a text window.

 The Data Query CSC shall display the results of a query of a text object in a text window.

 The Data Query CSC shall allow for a query to be saved.

 The Data Query CSC shall allow the user to select and execute a pre-defined query from the application menu.

 The Data Query CSC shall allow the DBA to add queries to the list of queries available off the main menu.

 The Data Query CSC shall allow the DBA to remove queries from the list of queries available off of the main menu.

 The Data Query CSC shall allow the user to select the query to be retrieved from a list of available queries for a specified object.

 The Data Query CSC shall allow the user to retrieve a query for execution.

 The Data Query CSC shall allow the user to execute the retrieved query.

 The Data Query CSC shall allow the user to add the retrieved query to the list of commonly used queries for that user.

 The Data Query CSC shall allow the user to select the query to be executed from the list of commonly used queries for that user.

 The Data Query CSC shall allow a user to remove a query from the list of commonly used queries for that user.

 The Data Query CSC shall allow the user to retrieve a query for editing.

The Data Query CSC shall allow the user to retrieve a query for deletion.

 The Data Query CSC shall allow the retrieved query to be deleted.

 The Data Query CSC shall allow a planner to delete a query that was saved by that planner.

 The Data Query CSC shall allow the DBA to delete a system query that was saved by a DBA.

 The Data Query CSC shall not allow any deletions of system queries installed by the System Installation CSC.

 The Data Query CSC shall provide the capability for a sub-query to be run against selected object data to retrieve additional information not provided by the original query.

 The Data Query CSC shall allow the user to specify that a scenario/exercise database should be used for queries.

 The Data Query CSC shall allow the user to specify which scenario/exercise database queries should be run against for queries.

 The Data Query CSC shall allow the user to specify that the operational database should be used for queries.

 The Data Query CSC shall use the operational database for queries by default.

CT2306	TAMPS shall provide the capability to access the various TAMPS databases through creation of geographic and text objects and association with a defined or operator created database query.

CT2307	The geographic and text objects shall be capable of supporting queries that require data from more than one data table or more than one database.

	Object Editor CSC

 The Object Editor CSC shall provide the DBA with the capability to create new objects.

 The Object Editor CSC shall provide the DBA with the capability to create a new object which contains a subtype of an existing object by applying a filter condition to the existing object.

 The Object Editor CSC shall allow a filter condition on a single column (the Object Determinator) of the available columns for that object.

 The Object Editor CSC shall allow one or more values to be specified for the Object Determinator of an object.

 The Object Editor CSC shall consider a data record to be of a specified object type if the value in the Object Determinator column matches any one of the values specified in the Object Editor.

 The Object Editor CSC shall allow a wild card character in an Object Determinator value to indicate that any following combination of characters is a filter condition match.

 The Object Editor CSC shall provide the DBA with the capability to store objects.

 The Object Editor CSC shall provide the DBA with the capability to retrieve objects.

 The Object Editor CSC shall provide the DBA with the capability to delete objects.

 The Object Editor CSC shall provide the DBA with the capability to modify objects.

 The Object Editor CSC shall provide the DBA with the capability to associate different symbols from different symbol sets to the same object.

 The Object Editor CSC shall allow only one active symbol set at a time.

 The Object Editor CSC shall use the TAMPS symbol set by default.

 The Object Editor CSC shall provide the capability to review the complete object hierarchy.

 The review capability within the Object Editor CSC shall not allow a DBA or planner to create, delete, or modify any object.

 The Object Editor CSC shall allow objects to include data elements from any of the MIDB GMI data tables.

 The Object Editor CSC shall allow objects to include data elements from any of the MIDB target data tables.

 The Object Editor CSC shall provide the capability to access data across multiple tables within a single object.

 The Object Editor CSC shall provide the capability to access data across multiple databases within a single object.

CT2320	TAMPS shall provide an interface for the creation of SQL statements to search the TAMPS databases with user ability to select and enter query logic requiring minimal knowledge of database table schema or SQL syntax.

	Query Tool CSC

 The Query Tool CSC shall allow a filter condition to be placed on any data element included within the object being queried.

 The Query Tool CSC shall allow at least the following comparisons in a filter condition: equal to, not equal to, greater than, greater than or equal, less than, less than or equal, like, not like, between, not between, in, and not in.

 The Query Tool CSC shall, if more than one filter condition is specified in the query, allow the filter conditions to be connected with “and”, “or”, “and not”, or “or not”, and shall allow conditions to be grouped using parentheses.

 The Query Tool CSC shall allow a filter condition to contain a specific value to be used in the comparison.

 The Query Tool CSC shall allow a filter condition that will request a value to be used in the comparison from the user at the time of query execution.

 The Query Tool CSC shall allow a filter condition to contain a specific value that will be used as a default value when a value is requested from the user at the time of query execution.

 The Query Tool CSC shall, if the comparison to be used in the filter condition is “like” or “not like”, allow a wild card character to indicate that any following combination of characters is a filter condition match.

 The Query Tool CSC shall always retrieve the data elements referenced in the ìAmp Infoî and ìLabelî actions of an object.

 The Query Tool CSC shall allow additional data elements to be selected to be retrieved by the query.

 The Query Tool CSC shall process queries which retrieve or filter on data elements from more than one table or database.

 The Query Tool CSC shall perform the database joins such that if a data element (other than the Object Determinator for that object) is not present in the database, other data elements for that object will still be retrieved.

 The Query Tool CSC shall allow a query to be executed and the results displayed without requiring that the query be saved.

 The Query Tool CSC shall, after executing a query, allow the query to be edited.

 The Query Tool CSC shall, after executing a query, allow the query to be saved.

 The Query Tool CSC shall allow the queries created to be assigned a name, saved and retrieved for later use.

 The Query Tool CSC shall restrict a user from saving a query that would replace an existing query.

 The Query Tool CSC shall not allow replacement of an existing system query installed by the System Installation CSC.

 The Query Tool CSC shall allow an existing query being edited to be assigned a new name and saved as a new query.

	TAMPS Database Utilities

CT2740	TAMPS shall provide the capability to archive and restore databases for data backup and recovery purposes.

	Database Archive CSC

 The Database Archive CSC shall provide the capability to archive a data set as a database dump file, or as a set of BCP files.

 The Database Archive CSC shall provide the capability to restore a data set from an archive file set.

 The Database Archive CSC shall support archiving the MIDB data.

 The Database Archive CSC shall support restoring the MIDB data.

	Database Utilities CSC

CT2825xxx6	TAMPS shall provide the DBA with the capability to backup and restore tactical data updates.

 The Database Utilities CSC shall support the backup of tactical updates made to the GMI data in the local MIDB database.

 The Database Utilities CSC shall support the restoration of tactical updates made to the GMI data in the local MIDB GMI database.

CT2990	TAMPS shall provide the DBA with information on the size of each data set within the database.

 The Database Utilities CSC shall provide the DBA with sizing information on the GMI data in the MIDB database.

 The Database Utilities CSC shall provide the DBA with sizing information on the target data in the MIDB GMI database.

 The Database Utilities CSC shall provide the DBA with sizing information of the reference data in the MIDB database.

CT3020	TAMPS shall provide the DBA a data removal utility to remove a database in its entirety or to remove specific files from a dataset which results in update of status information.

 The Database Utilities CSC shall support the deletion of GMI data from the MIDB database.

 The Database Utilities CSC shall support the deletion of target data from the MIDB database.

 The Database Utilities CSC shall not allow MIDB data (GMI or target) to be removed if the MIDB data is being replicated from JMCIS. DELETEDThe Database Utilities CSC shall support the removal of any reference data from the MIDB database.

	TAMPS System Utilities

CS0410	No Change

CS0420	No Change

CS0430	No Change

	Alerts CSC

 DELETEDThe Alerts CSC shall send warning alerts whenever there is an update to data that could affect Radar Terrain Mask (RTM) calculations.

 DELETEDThe Alerts CSC shall warn upon updates to Digital Terrain Elevation Data (DTED) that could affect RTM calculations.

 DELETEDThe Alerts CSC shall warn upon updates to MIDB GMI data that could affect RTM calculations.

 DELETEDThe Alerts CSC shall warn upon updates to the Naval Identification Database (NID) data that could affect RTM calculations.

 DELETEDThe Alerts CSC shall send warning alerts whenever there is an update to data that could affect Range Ring calculations.

 DELETEDThe Alerts CSC shall warn upon updates to Digital Terrain Elevation Data (DTED) that could affect Range Ring calculations.

 DELETEDThe Alerts CSC shall warn upon updates to MIDB GMI data that could affect Range Ring calculations.

 DELETEDThe Alerts CSC shall warn upon updates to the Naval Identification Database (NID) data that could affect Range Ring calculations.

 DELETEDThe Alerts CSC shall support alerts sent from the MIDB application software.

 DELETEDThe Alerts CSC shall generate alerts based upon the data in the MIDB alert.

 DELETEDThe Alerts CSC shall inform the user to refer to the MIDB alert application to determine the nature of the alert message.

 DELETEDThe Alerts CSC shall only forward MIDB alerts to the TAMPS DBA alert queue.

��Requirements Trace

Requirements Trace DataBase (RTDB) Updates

RTDB #�RTDB Statement��CC0840�No Change��CC0860�No Change��CC0870�No Change��CD1045�The threat range ring sub-function shall use data from the TAMPS tactical databases to perform calculations.��CD1047�Threat range ring calculation data shall include threat descriptive information from the MIDB and NID.��CS0037�System generation shall support installation of TAMPS application software and databases, including construction of TAMPS database schema.��CS0230�TAMPS shall allow the system administrator to add, modify, and delete accounts through a menu driven interface.��CP1175�The threat assessment sub-function shall use data from the TAMPS tactical databases to perform calculations.��CP1176�The threat assessment calculation data shall include mission route information and threat descriptive information from the MIDB and NID.��CT0480�To support inter-operability with other Mission Planning, Intelligence, Imagery, and Weaponeering systems, TAMPS shall use the MIDB schema, tables, and software to support its GMI data needs.��CT0483�TAMPS shall support the ability to operate against exercise/scenario intelligence data.��CT0485�TAMPS shall provide the capability to load MIDB GMI data from any DIA approved production facility.��CT0525�TAMPS shall provide the capability to query the GMI data and display the results.��CT0540�TAMPS shall provide the capability to manually maintain the MIDB GMI data.��CT0550�TAMPS MPMs shall have programmatic access to the MIDB GMI data.��CT0671�TAMPS shall provide the planner the capability to create and maintain a set of threat data separate and distinct from the MIDB GMI data.��CT1098�To support inter-operability with other Mission Planning, Intelligence, Imagery, and Weaponeering systems, TAMPS shall use the MIDB target data schema to support its target data needs.��CT1100�TAMPS shall provide the capability to load MIDB target data.��CT1115�TAMPS shall provide the capability to manually maintain target data.��CT1120�TAMPS MPMs shall have programmatic access to the target data.��CT1180�TAMPS shall provide the capability to plan attack and strike missions for both aircraft and precision guided munitions against a target.��CT2300�TAMPS shall provide the capability to access and display both geographic and text data from the TAMPS databases.��CT2306�TAMPS shall provide the capability to access the various TAMPS databases through creation of geographic and text objects and association with a defined or operator created database query.��CT2307�Geographic and text objects shall be capable of supporting queries that require data from more than one data table or more than one database.��CT2320�TAMPS shall provide an interface for the creation of queries to search the TAMPS databases with user ability to select and enter query conditions requiring minimal knowledge of database table schema or SQL syntax.��CT2740�TAMPS shall provide the capability to archive and restore the MIDB data tables.��CT2825�TAMPS shall provide the DBA with the capability to backup and restore tactical data updates.��CT2990�TAMPS shall provide the DBA with information on the size of each data set within the database.��CT3020�TAMPS shall provide the DBA a data removal utility to remove a database in its entirety or to remove specific files from a dataset which results in update of status information.��CS0410�No Change��CS0420�No Change��CS0430�No Change��

Requirements Administrative Actions

RTDB #�Action�SRS Paragraph �CSC�Remarks��CC0840�N/C���OBREPs��CC0860�N/C���OBREPs��CC0870�N/C���OBREPs��CD1045�DEL���Duplicate CD1047/CD1048��CD1047�MOD�3.2.3.2.7�Interim Threat���CD1048�MOD�3.2.3.4.5.2.2, 3.2.3.4.5.3.2�MIDB Query

MIDB Query���CP1170�DEL���Duplicate CP1175/CP1176��CP1175�MOD�3.2.3.2.8�Interim Threat���CP1176�MOD�3.2.3.4.5.4.2�MIDB Query���CR0101�N/C�����CR0102�N/C�����CS0037�MOD�3.2.1�MIDB Installation���CS0230�MOD�3.2.2�System Administration���CS0410�N/C�����CS0420�N/C�����CS0430�N/C�����CS0680�FIX���Duplicated in RTDB��CT0072 �DEL���Break into separate SRS stmts��CT0480 �DEL���Duplicate CT0485��CT0485 �MOD�3.2.3.3.6, 3.2.3.3.7�Data Load���CT0490 �MOV���Move to new hi-level rqmt��CT0492�DEL���Duplicate CT0490��CT0495�MOD�����CT0497�DEL���Duplicate CT0495��CT0500 �SRS�3.2.3.3.9�Data Load���CT0505�DEL���Duplicate CT0500��CT0510 �DEL���Duplicate CT0515��CT0515�DEL���not feasible by CC��CT0520 �DEL���Duplicate CT0525��CT0525�MOD�3.2.3.4�MIDB Query���CT0527�SRS�3.2.5.1.2�Object Editor���CT0530 �DEL���Up to MIDB��CT0531�DEL���Duplicate CT0530��CT0533�SRS�3.2.3.4.7�MIDB Query���CT0534�DEL���Duplicate CT0533��CT0535�DEL���Duplicate CT0537��CT0537�SRS�3.2.5

3.2.5.3.1�Data Query Processing

Query Tool���CT0540 �MOD�3.2.3.3.3, 3.2.3.3.6, 3.2.3.3.8, 3.2.3.3.11, 3.2.3.3.12

3.2.3.5�Data Load

MIDB Editor���CT0542�SRS�3.2.3.3.8, 3.2.3.3.3�Data Load���CT0544�SRS�3.2.3.3.6, 3.2.3.3.3�Data Load���CT0546�SRS�3.2.3.5�MIDB Editor���CT0548�SRS�3.2.3.3.11, 3.2.3.3.12�Data Load���CT0550 �SRS�3.2.3.3.13�Data Load���CT0552�DEL���Duplicate CT 0550��CT0555 �SRS�NONE����CT0557�DEL���Duplicate CT0555��CT0560 �DEL���Duplicate CT0542��CT0565 �DEL���not feasible by CC��CT0567�DEL���Duplicate CT0565��CT0580 �DEL���Duplicate CT0585��CT0585�SRS�3.2.3.3.2, 3.2.3.3.3�Data Load���CT0590 �DEL���Ambiguous��CT0600 �SRS�3.2.4.2.10

3.2.4.3.4.1�Target Data Load

Target Editor�targets��CT0601�DEL���Duplicate CT0601��CT0602 �DEL���OBE��CT0610 �DEL���OBE��CT0615 �DEL���RAAP��CT0630 �DEL���RAAP��CT0650 �DEL���RAAP��CT0660 �DEL���OBE��CT0670 �SRS�NONE����CT0670.0020�DEL���Duplicate CT1098��CT0670.0030�DEL���Duplicate CT1136��CT0670.0040�MOD�3.2.3.1�GMI Data���CT0670.0060�SRS�NONE,

 3.2.3.1.2.4,

3.2.3.5.5�

GMI Data

MIDB Editor���CT0670.0080�SRS�NONE,

 3.2.3.3.3, 3.2.3.3.6�

Data Load���CT0670.0100�SRS�3.2.3.3.11�Data Load���CT0670.0120�DEL�����CT0671�MOD�3.2.3.2�Interim Threat���CT0671.0010�DEL���Duplicate CT0671��CT0672�SRS�3.2.3.2.1, 3.2.3.2.4, 3.2.3.2.5�Interim Threat���CT0673�DEL���Duplicate CT0673.0010��CT0673.0010�SRS�3.2.3.2.10�Interim Threat���CT0674�DEL���Duplicate CT0674.0010��CT0674.0010�SRS�3.2.3.2.11�Interim Threat���CT0675�SRS�3.2.3.2.1, 3.2.3.2.2, 3.2.3.2.3�Interim Threat���CT0676�SRS�3.2.3.2.2, 3.2.5.3.1�Interim Threat,

Query Tool���CT0955�DEL���NERF��CT0960�DEL���“��CT0975�DEL���“��CT0980�DEL���“��CT0985�DEL���“��CT0995�DEL���“��CT1010�DEL���“��CT1020�DEL���“��CT1098�MOD�3.2.4�Target Data Processing���CT1099�SRS�3.2.4.1.1

3.2.4.1.2

3.2.4.1.3�Target Data���CT1100�MOD�3.2.4.2.1-

3.2.4.2.11�Target Data Load���CT1115�MOD�3.2.4.3.1

3.2.4.3.3

3.2.4.3.4

3.2.4.3.4.1�Target Editor���CT1135�SRS�3.2.4.3.3 -

3.2.4.3.3.2�Target Editor���CT1136�SRS�3.2.4.3.4

(3.2.3.3.3, 3.2.3.3.6)�Target Editor���CT1137�DEL���Duplicate CT1150/60��CT1150�SRS�3.2.4.2.9�Target Data Load���CT1160�SRS�3.2.4.2.10�Target Data Load���CT1170�SRS�3.2.4.2.11�Target Data Load���CT1180�MOD�3.2.4.1.11�Target Data���CT1184�SRS�3.2.4.1.17-

3.2.4.1.20�Target Data���CT1188�SRS�3.2.4.1.24 -

3.2.4.1.25�Target Data���CT1190�SRS�3.2.4.1.1-

3.2.4.1.3�Target Data���CT2306�MOD�3.2.5.2�Object Editor���CT2306.0020�N/C���TERPES requirement��CT2306.0040�N/C���TERPES requirement��CT2307 �MOD�?? 3.2.6.8-3.2.6.11����CT2308�SRS�3.2.5.2.9-

3.2.5.2.9.1

3.2.5.2.9.2�Object Editor���CT2309�SRS�3.2.5.1,

 3.2.5.3�Data Query���CT2310�SRS�3.2.5.2.10-

3.2.5.2.10.1�Object Editor���CT2320�MOD�3.2.5.3�Query Tool���CT2330�SRS�3.2.5.3.1-

3.2.5.3.1.6�Query Tool���CT2340�SRS�3.2.5.3.1.1�Data Query���CT2350�SRS�3.2.5.3.1.2�Query Tool���CT2360�SRS�3.2.5.1.2�Data Query���CT2370�SRS�3.2.5.3.1.3-

3.2.5.3.1.5�Data Query���CT2380�SRS�3.2.5.3.1.6�Data Query���CT2390�SRS�3.2.5.1.3-

3.2.5.1.6,

3.2.5.3.3�Data Query

Query Tool���CT2400�SRS�3.2.5.1.3.1�Data Query���CT2410�SRS�3.2.5.1.9,

 3.2.5.1.9.1,

 3.2.5.1.13,

3.2.5.1.13.1,

3.2.5.3.5-

3.2.5.3.6,

 3.2.5.3.6.2�Data Query

Query Tool���CT2420�SRS�3.2.5.3.5,

 3.2.5.3.6.2�Query Tool���CT2430�SRS�3.2.5.3.6����CT2440�SRS�3.2.5.1.12,

 3.2.5.1.9.1,

 3.2.5.1.13,

 3.2.5.1.13.1,

 3.2.5.1.11,

 3.2.5.1.11.1�Data Query���CT2450�SRS�3.2.5.1.9.4�Data Query���CT2460�SRS�3.2.5.1.8.1,

 3.2.5.1.11.2�Data Query���CT2470�SRS�3.2.5.1.8.2�Data Query���CT2480�SRS�3.2.5.1.8.3,

3.2.5.1.11

3.2.5.1.12,

3.2.5.1.13�Data Query���CT2490�SRS�3.2.5.1.8.2,

3.2.5.1.9.2�Data Query���CT2500�SRS�??3.2.5.11.1.2,

??3.2.5.11.2,

3.2.5.3.6.1�

Data Archive���CT2510�SRS�3.2.5.3.6.2�Query Tool���CT2740 �MOD�3.2.6.1����CT2750 �DEL��Data Archive�new��CT2755 �DEL���new��CT2820 �SRS�3.2.6.1.1�Data Archive�Need other DB SRS reqmts��CT2830�DEL���Duplicate CT2820��CT2840�SRS�3.2.6.1.1�Data Archive���CT2850 �SRS�3.2.6.1.1�Data Archive���CT3010�CLA���Is this reqmt obsolete?��

Allocation Trace Matrix

The following table maps the RTDB requirements to this SOR’s statements of functionality (SRS Paragraph) and then to the CSC/CSU level. The RTDB column indicates the high level RTDB requirement and for clarity the requirement has only been allocated to the highest level SRS paragraph number. The following SRS paragraph numbers are also allocated to the precedingpreceeding RTDB requirement(s). The CSC/CSU column indicates the current allocation for each requirement. When the current TAMPS functionality already exists for the requirement, the source file or the function name have been supplied.

RTDB #�SRS Paragraph �CSC/CSU�Remarks��CS0037�3.2.1�MIDB Installation CSC�Header���3.2.1.1�MIDB installation����3.2.1.2�MIDB installation����3.2.1.2.1�MIDB installation�BLTS���3.2.1.2.1.1�MIDB installation�BLTS���3.2.1.2.1.2�MIDB installation�BLTS���3.2.1.2.1.3�MIDB installation

System Startup

System Shutdown

User Login�startup scripts for BLTS���3.2.1.2.2�MIDB installation�Production Software���3.2.1.2.3�MIDB installation�DEX Software���3.2.1.2.4�MIDB installation�Data Query Software���3.2.1.2.5�MIDB installation�MIDB schema���3.2.1.2.5.1�MIDB installation����3.2.1.2.5.1.1�MIDB installation����3.2.1.2.5.1.1.1�MIDB installation�server���3.2.1.2.5.1.1.2�MIDB installation�server���3.2.1.2.5.1.1.3�MIDB installation�server���3.2.1.2.5.1.2�MIDB installation����3.2.1.2.5.1.2.1�MIDB installation�workstation���3.2.1.2.5.1.2.2�MIDB installation�workstation���3.2.1.2.5.1.2.3�MIDB installation�workstation���3.2.1.2.5.1.3�MIDB installation����3.2.1.2.5.1.3.1�MIDB installation�remote���3.2.1.2.5.1.3.2�MIDB installation�remote���3.2.1.2.6�MIDB installation����3.2.1.2.6.1�MIDB installation����3.2.1.2.6.2�MIDB installation����3.2.1.2.7�MIDB installation����3.2.1.2.8�MIDB installation����3.2.1.2.8.1�MIDB installation����3.2.1.2.8.2�MIDB installation����3.2.1.2.9�MIDB installation��������CS0230�3.2.2�System Administration CSC�Header���3.2.2.1�MIDB installation,

User Administration�database permissions���3.2.2.2�MIDB installation,

User Administration�JMCIS MIDB permissions���3.2.2.3�User Administration�TAMPS DBA role���3.2.2.3.1��archive���3.2.2.3.2��restore���3.2.2.3.3��load���3.2.2.3.4�User Administration�restrict maintenance to TAMPS DBA�������CT0480�3.2.3

3.2.3.1�Intelligence Data Processing

GMI Data CSC�Header

Header���3.2.3.1.1�DBA - threat scenarios�operational data�������CT0483�3.2.3.1.2�DBA - threat scenarios�scenario���3.2.3.1.2.1�DBA - threat scenarios�storage 17 scenarios���3.2.3.1.2.2�DBA - threat scenarios�query 1 scenario���3.2.3.1.2.3�DBA - threat scenarios�create 1 scenario���3.2.3.1.2.4�DBA - threat scenarios�modify 1 scenario���3.2.3.1.2.5�DBA - threat scenarios�delete 1 scenario���3.2.3.1.2.6�Deleted�maximum 5 Mbmb size���3.2.3.1.2.7�DIA Editor�add records to scenario���3.2.3.1.2.8�DIA Editor�delete records from scenario���3.2.3.1.2.9�DBA - threat scenarios�access to scenario data���3.2.3.1.2.10�DBA - threat scenarios�stop accessacess to scenario data�������CT0480�3.2.3.1.3�DIA Editor�query/maintain data���3.2.3.1.3.1�DIA Editor

MPM - Threat OOB Query �equipment���3.2.3.1.3.2�DIA Editor

MPM - Threat OOB Query �equipment index���3.2.3.1.3.3�DIA Editor

MPM - Threat OOB Query �unit���3.2.3.1.3.4�DIA Editor

MPM - Threat OOB Query �facility���3.2.3.1.3.5�DIA Editor�target���3.2.3.1.3.6�DIA Editor�observation���3.2.3.1.3.7�DIA Editor�track���3.2.3.1.4�ert_int_rtm_init()�RTM���3.2.3.1.5�edt_mera_cb()�range rings - SAM���3.2.3.1.6�edt_mera_cb()�range rings - AAA�������CT0671�3.2.3.2�Interim Threat CSC�Header���3.2.3.2.1�dil_AddInterimThreat.c�create���3.2.3.2.2�TAMPS_INTERIM_THREAT�storage���3.2.3.2.3�dil_DisplayInterimThreats.c�display���3.2.3.2.3.1�dil_DisplayInterimThreats.c�graphic display ���3.2.3.2.3.2�dil_DisplayInterimThreats.c�textual display���3.2.3.2.4�dil_EditThreat.c�modify���3.2.3.2.5�dil_DeleteThreat.c�delete���3.2.3.2.6�dil_EditThreat.c�ownership���3.2.3.2.7� edt_mera_cb()�range rings���3.2.3.2.8�ert_int_rtm_init()�RTMs���3.2.3.2.9�dil_DeleteThreat.c�DBA delete���3.2.3.2.10�dil_DbaAddInterimThreatToIdb.c�DBA update���3.2.3.2.11�dil_DbaAddInterimThreatToIdb.c�automatic delete�������CT0485�3.2.3.3�MIDB Data Load CSC�Header���3.2.3.3.1�DIA DEX�load empty database���3.2.3.3.2�DIA DEX�overwrite database���3.2.3.3.3�DIA DEX�bulk data updates���3.2.3.3.4�DIA DEX�load operational data���3.2.3.3.5�DIA DEX�load scenario data���3.2.3.3.6�DIA DEX�process bcp files���3.2.3.3.7�DIA DEX�process SEF files���3.2.3.3.8�DIA DEX�process IDBTF’s���3.2.3.3.9�DIA DEX�mass storage devices���3.2.3.3.10�DIA DEX�load via MP LAN���3.2.3.3.11�DIA DEX�update via MP LAN���3.2.3.3.12�DIA DEX

JMCIS MIDB baseload�replication from JMCIS���3.2.3.3.13�DIA DEX�report unloaded data���3.2.3.3.14�DIA DEX�report replication errors���3.2.3.3.15�DIA DEX�selective extraction���3.2.3.3.16�DIA DEX�selective loading���3.2.3.3.17�DIA DEX�new profiles���3.2.3.3.18�DIA DEX�default profile���3.2.3.3.19�DIA DEX�workstation configuration�������CT0525�3.2.3.4�MIDB Query�Header���3.2.3.4.1�MPM - Threat OOB Query�use Overlay Manager���3.2.3.4.2�MPM - Threat OOB Query�text display of query���3.2.3.4.3�MPM - Threat OOB Query�use Object HierarchyHierachy���3.2.3.4.3.1�DBA - Threat Scenarios �default to operational data���3.2.3.4.3.2�DBA - Threat Scenarios �scenario data���3.2.3.4.3.3�DBA - Threat Scenarios �one scenario���3.2.3.4.3.4�DBA - Threat Scenarios �select dataset���3.2.3.4.3.5�DBA - Threat Scenarios �default operational data���3.2.3.4.4�DBA - Query Tool�pre-defined queries���3.2.3.4.4.1

to

3.2.3.4.4.1.8�DBA - Query Tool����3.2.3.4.5�DBA - Query Tool�spatial objects���3.2.3.4.6�DBA - Query Tool�text object���3.2.3.4.7�DBA - Query Tool�retrieve “best” data���3.2.3.4.8�DBA - Query Tool�retrieve historical data�������CT0540�3.2.3.5�MIDB Editor CSC�Header���3.2.3.5.1�MP-LAN workstation connect/disconnect�standalone environ���3.2.3.5.2��use TAMPS Server���3.2.3.5.2.1�MP-LAN workstation connect/disconnect�disabled from LAN���3.2.3.5.2.2�MP-LAN workstation connect/disconnect�disconnect from LAN���3.2.3.5.3�JMCIS MIDB server,

MP-LAN workstation connect/disconnect�edits performed on JMCIS db���3.2.3.5.3.1�DBA - Query Tool�TAMPS Server���3.2.3.5.3.2�MP-LAN workstation connect/disconnect�replication from JMCIS���3.2.3.5.3.3�MP-LAN workstation connect/disconnect�updates from JMCIS���3.2.3.5.4�DIA Editor

aet_CreateRefOAPDialog()�create data���3.2.3.5.5�DIA Editor

adt_target.c

adt_tgData.c�modify data���3.2.3.5.6�DIA Editor

adt_target.c

adt_tgData.c�delete data�������CT0550�3.2.3.6�GMI Application Interface CSC�Header���3.2.3.6.1�dit_getMIDBData()�query for facility���3.2.3.6.2�dit_getMIDBData()�query for equipment���3.2.3.6.3�dit_getMIDBData()�query for unit���3.2.3.6.4�dit_getMIDBData()�query with geo area and threat type���3.2.3.6.5�dit_getMIDBData()�return query data�������CT1098�3.2.4

3.2.4.1�Target Data Processing

Target Data CSC�Header

Header���3.2.4.1.1�MPM - target query�display query results���3.2.4.1.2�MPM - target query�text display���3.2.4.1.3�MPM - target query�use OH���3.2.4.1.4�MPM - save msn�store target data���3.2.4.1.5�MPM- open msn

MPM - planner target update�retrieve target data���3.2.4.1.6�MPM - planner target update�modify target data���3.2.4.1.7�MPM - planner target update�geo coordinates���3.2.4.1.8�MPM - planner target update�convert datum���3.2.4.1.9�MPM - planner target update�< 1% convert error���3.2.4.1.10�MPM - target query�display loc coordinates���3.2.4.1.11�MPM - planner target update�define 1/100 arc sec���3.2.4.1.12�MPM - planner target update�store loc coord���3.2.4.1.13�MPM - target query�get loc coord���3.2.4.1.14�MPM - target query�display loc coordinates���3.2.4.1.15�MPM - planner target update�store horiz datum���3.2.4.1.16�MPM - target query�get horiz datum���3.2.4.1.17�MPM - planner target update�store horiz loc accuracy���3.2.4.1.18�MPM - target query�get horiz loc accuracy���3.2.4.1.19�MPM - planner target update�store vert loc accuracy���3.2.4.1.20�MPM - target query�get vert loc accuracy���3.2.4.1.21�MPM - target query�display horiz accuracy���3.2.4.1.22�MPM - target query�display vert accuracy���3.2.4.1.23�MPM - planner target update�store confidence���3.2.4.1.24�MPM - target query�get confidence���3.2.4.1.25�MPM - target query�display target confidence���3.2.4.1.26�MPM - target query�store JTIM target���3.2.4.1.27�MPM - target query�retrieval by JTIM���3.2.4.1.28�MPM - target query�display JTIM target���3.2.4.1.29�MPM - target query�TAMPS target vs others���3.2.4.1.30�MPM - planner target update�DBA vs planner targets���3.2.4.1.31�MPM - open msn

MPM - save msn�reference targets in missions�������CT1100�3.2.4.2�Target Data Load CSC�Header���3.2.4.2.1�DIA DEX�load���3.2.4.2.2�DIA DEX�load only targets���3.2.4.2.3�DIA DEX�load from storage device���3.2.4.2.4�DIA DEX�load to client���3.2.4.2.5�Unused����3.2.4.2.6�DIA DEX�C4I targets���3.2.4.2.7�DIA DEX�load BCP targets���3.2.4.2.8�DIA DEX�IDB SEF targets���3.2.4.2.9�DIA DEX�bulk replacement���3.2.4.2.10�DIA DEX�bulk updates���3.2.4.2.11��manual bulk updates�������CT1115�3.2.4.3�Target Editor CSC�Header���3.2.4.3.1�MPM - planner target update�maintain target���3.2.4.3.2�DIA Editor�create target���3.2.4.3.2.1�DIA Editor�DBA target creation���3.2.4.3.2.2�MPM - planner target update�MPM target creation���3.2.4.3.2.3�MPM - planner target update�graphical selection���3.2.4.3.2.4�DIA Editor

MPM - planner target update�point selection���3.2.4.3.2.5�DIA Editor�text entry���3.2.4.3.3�DIA Editor�modify target���3.2.4.3.3.1�DIA Editor�DBA modification���3.2.4.3.3.2�MPM - planner target update�MPM modification���3.2.4.3.3.3�MPM - planner target update�MPM modification���3.2.4.3.4�DIA Editor

MPM - planner target update�delete target���3.2.4.3.4.1�DIA Editor�DBA deletion���3.2.4.3.4.2�MPM - planner target update�MPM deletion���3.2.4.3.5�MP-LAN workstation connect/disconnect�edit using JMCIS Server���3.2.4.3.5.1�DBA - Query Tool�TAMPS Server���3.2.4.3.5.2�MP-LAN workstation connect/disconnect�replication from JMCIS���3.2.4.3.5.3�MP-LAN workstation connect/disconnect�updates from JMCIS�������CT1120�3.2.4.4�Target Application Interface CSC�Header���3.2.4.4.1�dit_createTarget()�create���3.2.4.4.2�dit_getTargets()�query���3.2.4.4.2.1�dit_getTargets()�return data���3.2.4.4.2.2�dit_getTargets()�query using geo area and target type���3.2.4.4.3�dit_modifyTargets()�modify���3.2.4.4.4�dit_deleteTargets()�delete���3.2.4.4.4.1��remove from display���3.2.4.4.4.2�dit_deleteTargets()�delete in database and remove from display�������CT1180�3.2.4.5�Target Planning CSC�Header���3.2.4.5.1�adt_target.c�create target���3.2.4.5.2�adt_target.c�remove target in route���3.2.4.5.3�adt_target.c �modify target in route���3.2.4.5.4�aet_CreateRefOAPDialog()�create offset aimpoint���3.2.4.5.5�adt_target.c

adt_tgData.c�pre-defined target���3.2.4.5.6�adt_target.c

adt_tgData.c�create target as point of attack���3.2.4.5.7�adt_target.c�store target relationship���3.2.4.5.8�adt_retrieveTarget()�retrieve target relationship���3.2.4.5.8.1�MPM - open msn�notify when target is modified�������CT2300�3.2.5

3.2.5.1�Data Query Processing

Data Query CSC�Header

Header���3.2.5.1.1�DBA - Query Tool�location of spatial object���3.2.5.1.1.1�DBA - Query Tool�use ilat/ilon���3.2.5.1.1.2�DBA - Query Tool�use WGS-84 lat/lon���3.2.5.1.1.3�DBA - Query Tool�lat/lon radian���3.2.5.1.2�DBA - Query Tool�use active geo filter���3.2.5.1.3�DBA - Query Tool�display symbols���3.2.5.1.3.1�DBA - Query Tool�use symbol info���3.2.5.1.4�DBA - Query Tool�query results in text���3.2.5.1.5�DBA - Query Tool�query results ���3.2.5.1.6�DBA - Query Tool�query results���3.2.5.1.7�dmt_query_save_callback()�save query���3.2.5.1.8�dmt_query_browse_callback()�pre-defined query���3.2.5.1.8.1�dmt_query_new_callback()�add queries���3.2.5.1.8.2�dmt_query_delete_callback()�delete queries���3.2.5.1.8.3�dmt_query_browse_callback()�retrieve queries���3.2.5.1.9�DBA - Database Search�retrieve for execution���3.2.5.1.9.1�dmt_query_execute_callback()

dmt_qfq_execute_callback()�execute query���3.2.5.1.9.2�dmt_qfq_add_callback()�add query���3.2.5.1.9.3�DBA - Database Search�select query���3.2.5.1.9.4�dmt_qfq_delete_callback()�delete query���3.2.5.1.10�dmt_query_edit_callback()�edit query���3.2.5.1.11�dmt_query_delete_callback()�delete query���3.2.5.1.11.1�dmt_query_delete_callback()�delete query���3.2.5.1.11.1.1�dmt_query_delete_callback()�planner delete query���3.2.5.1.11.1.2�dmt_query_delete_callback()�DBA delete query���3.2.5.1.11.2�dmt_query_delete_callback()�inhibit query deletion���3.2.5.1.12�dmt_query_sub_convert_callback()

dmt_query_sub_delete_callback()�sub-query���3.2.5.1.13�DBA - Threat Scenarios�scenario queries���3.2.5.1.13.1�DBA - Threat Scenarios�use scenario queries���3.2.5.1.14�DBA - Threat Scenarios�use operational data���3.2.5.1.14.1�DBA - Threat Scenarios�default to operational�������CT2306

CT2307�3.2.5.2�Object Editor CSC�Header���3.2.5.2.1�oet_createObjectCallback()�create new objects���3.2.5.2.2�oet_det*.c�create with filter���3.2.5.2.2.1�oet_det*.c�single filter column���3.2.5.2.2.2�oet_det*.c�one or more filters���3.2.5.2.2.2.1�oet_det*.c�match columns���3.2.5.2.3�oet_det*.c�wild card character���3.2.5.2.4�Object Hierarchy�DBA stores objects���3.2.5.2.5�Object Hierarchy�DBA retrieves objects���3.2.5.2.6��DBA deletes objects���3.2.5.2.7�oet_editObject()�DBA modifies objects���3.2.5.2.8�oet_invokeSymbolMapping()�associate symbols���3.2.5.2.8.1�oet_invokeSymbolMapping()�one active symbol���3.2.5.2.8.2�oet_invokeSymbolMapping()�default TAMPS symbols���3.2.5.2.9�obt_getBrowserForm()�review Object Hierarchy���3.2.5.2.9.1�obt_getBrowserForm()�no changes in review���3.2.5.2.10�obt_getBrowserForm()�include MIDB GMI info���3.2.5.2.11�obt_getBrowserForm()�include MIDB target info���3.2.5.2.12�oet_tab*.c

oet_col*.c�multiple tables ���3.2.5.2.13�oet_tab*.c

oet_col*.c�multiplemulitple databases�������CT2320�3.2.5.3�Query Tool CSC�Header���3.2.5.3.1�dmt_qnecond.c�filter condition���3.2.5.3.1.1�dmt_qnebtw*.c

dmt_qnein*.c�filter conditions���3.2.5.3.1.2�dmt_qneopcb.c�filter condition���3.2.5.3.1.3�dmt_qne*.c�filter condition���3.2.5.3.1.4�dmt_qne*.c�use filter condition���3.2.5.3.1.5�dmt_qne*.c�filter condition���3.2.5.3.1.6�dmt_qne*.c�filter condition���3.2.5.3.2�DBA - Query Tool�retrieve Amp Info/Label���3.2.5.3.3�dmt_qneres.c�retrieve additional data���3.2.5.3.4�DBA - Query Tool�retrieve more than 1 table database���3.2.5.3.4.1�DBA - Query Tool�database joins���3.2.5.3.5�dmt_qne_execute_callback()�execute without saving query���3.2.5.3.5.1�dmt_qne_edit_callback()�edit executedexectued query���3.2.5.3.5.2�dmt_qne_save_callback()�save executed query���3.2.5.3.6�dmt_qne_save_callback()�save query���3.2.5.3.6.1�dmt_qne_save_callback()�prevent replacing saves���3.2.5.3.6.2�dmt_qne_save_callback()�prevent saving to pre-defined queries���3.2.5.3.6.3�dmt_qne_save_callback()�provide save as query�������CT2740�3.2.6.1�Data Archive CSC�Header���3.2.6.1.1�Utilities - Archive/Restore�archive BCP file���3.2.6.1.2�Utilities - Archive/Restore�restore archive file���3.2.6.1.3�Utilities - Archive/Restore�archive MIDB data���3.2.6.1.4�Utilities - Archive/Restore�restore MIDB data�������CT2825�3.2.6.2�Database Utilities�Header���3.2.6.2.1��backup MIDB updates���3.2.6.2.2��restore MIDB backup�������CT2990�3.2.6.2.3�Output - Reports�size of GMI data���3.2.6.2.4�Output - Reports�size of target data���3.2.6.2.5�Output - Reports�size of reference data�������CT3020�3.2.6.2.6�UtilitiesUtilites - Data Removal�delete GMI data���3.2.6.2.7�UtilitiesUtilites - Data Removal�delete target data���3.2.6.2.8�UtilitiesUtilites - Data Removal�delete reference data�������CS0410

CS0420

CS0430�3.2.7

3.2.7.1�TAMPS System Utilities

Alerts CSC�Header

Header���3.2.7.1.1�Alerts CSC�RTM affected���3.2.7.1.1.1�Alerts CSC�DTED updated���3.2.7.1.1.2�Alerts CSC�MIDB GMI updated���3.2.7.1.1.3�Alerts CSC�NID updated���3.2.7.1.2�Alerts CSC�Range Rings affected���3.2.7.1.2.1�Alerts CSC�DTED updated���3.2.7.1.2.2�Alerts CSC�MIDB GMI updated���3.2.7.1.2.3�Alerts CSC�NID updated���3.2.7.1.3�Alerts CSC�forward MIDB alerts���3.2.7.1.3.1�Alerts CSC����3.2.7.1.3.2�Alerts CSC����3.2.7.1.3.3�Alerts CSC���

Assumptions

RTDB #�CSC/CSU�Assumptions������������Design

Preliminary Design�System Administrator Functions

Design Overview

The System Administrator functions affected by the MIDB are listed below. These functions are grouped by the external event or HMI menu item that triggers the processing. Although some of the external events can be initiated through a TAMPS HMI menu item (such as System Shutdown), they are treated here as external events because the processing is performed within the Unix system files rather than the TAMPS applications.

Only external events and HMI menu items that will (or could be expected to) be affected by MIDB processing are listed below, and only the processing associated with the MIDB software is described.

MIDB Product Summary

The System Administrator functions affected by each of the MIDB 2.0 products, services and roles are shown in the table below. The System Administration role involves the following primary functions: System Installation, MIDB Installation, System Startup, User Administration.

MIDB 2.0 Products,

Services and Roles�Sys Admin Functions

affected by MIDB 2.0 ��Database Schema�System Installation, MIDB Installation��Application Software��� Installation�MIDB Installation�� Loader��� Production Editors�User Administration�� Query Processing��� COTS�System Installation, MIDB Installation��System Services��� BLTS daemon�MIDB Installation, System Startup, User Administration�� DEX daemon�MIDB Installation, System Startup�� RPCs�System Installation or MIDB Installation��MIDB Roles��� Producer�User Administration�� Analyst�User Administration�� User�User Administration��

The MIDB 2.0 database schema affects primarily the MIDB Installation function, although the System Installation function must identify and reserve disk space for the MIDB 2.0 databases. The new MIDB Installation function is dependent upon the MIDB 2.0 database schema throughout. The planned use of GOTS to perform as much of the installation as possible should minimize the exposure of the TAMPS community to future changes in the MIDB database schema

The MIDB 2.0 Installation Software is used by the MIDB Installation function to perform the installation. Since TAMPS runs on a limited number of hardware configurations, we expect to be able to utilize the manual installation procedures outlined in the MIDB 2.0 Software Installation Plan to install the software with a minimum of user intervention.

Utility applications associated with the MIDB 2.0 Production Editors will be required by the User Administration function to ensure that newly created users are assigned the MIDB roles and privileges that correspond to their TAMPS roles and privileges.

The MIDB 2.0 COTS and GOTS packages are installed by the System Installation and MIDB Installation functions. Those packages which are required for other TAMPS processing (Sybase, for example), and libraries linked into TAMPS applications (ODBC, for example) will be installed by the System Installation function. Some of these (such as Sybase) are COTS packages already used by TAMPS; we only need to verify that the correct version is installed and configured as required by MIDB 2.0.

The MIDB 2.0 System Services are initialized by the MIDB Installation function for processing by the System Startup function (with the possible exception of the RPC identifiers, which will be easier to initialize at System Installation). The BLTS Daemon will be used by the User Administration function to ensure that newly created and modified accounts have MIDB access appropriate to their TAMPS roles and privileges.

The MIDB 2.0 User Roles are required by the User Administration function to ensure that newly created or modified accounts have access to the MIDB and to the MIDB 2.0 Production Editors as appropriate to the user’s TAMPS roles and privileges.

Design Summary

The System Administrator functions associated with the MIDB 2.0 software contain two major functions: installing the MIDB, and ensuring that users have access to the MIDB applications and database. An additional function included here is generating an alert when MIDB data referenced by a range ring or Radar Terrain Mask has been changed (since we cannot tell which data is actually being referenced by a range ring or RTM, we will generate the alert whenever any data is changed that might be referenced).

Unlike installation of the IDB, MIDB installation has been moved into a separate CSC. This will enhance maintainability by keeping the related software together, as well as allowing TAMPS installations to be created without MIDB installed (although some functionality will not be available, there is a substantial reduction in the disk space required). The existing IDB installation processing will be removed from the System Generation CSC.

MIDB installation on a TAMPS system will copy the MIDB software and data files to the appropriate locations. It will then follow the manual installation procedures outlined in the MIDB 2.0 System Installation Plan for setting up the file permissions and ownership, creating the database schema, procedures, and static data. It must then set up permissions for all existing TAMPS user accounts, and initialize the connection to the JMCIS MIDB server.

User administration for the MIDB software includes creating the user’s Sybase account (as is already done), initializing the user with the MIDB BLTS software, and assigning permissions appropriate to the user’s roles and privileges using the utility applications associated with the MIDB Production Editors.

There will also be a new TAMPS daemon process which will periodically check to see if any updates have been made to data that might affect the generation of RTMs or Range Rings, and to send an alert if there have been any updates.

Design

Much of the System Administration processing is triggered not by user interaction through a TAMPS HMI, but by external events. Processing associated with external events are listed first (by event type), since this processing is the majority of the System Administrator processing for MIDB 2.0. This is followed by processing associated with TAMPS menu items.

System Generation

The System Generation external event is initiated by the System Administrator entering the install TAMPS command at a Unix command line.

System Generation processing requires only a few changes for MIDB 2.0. Most of the MIDB Installation processing is contained within the MIDB Installation CSC, which may, but is not required to, be called by the System Generation CSC.

The MIDB 2.0 software requires that the Unix operating system be set up to use the Network Information Service (NIS) or NIS+ to store system information (users, groups, etc). It is our understanding that the use of NIS+ is already planned for TAMPS 6.2, but it is included here for completeness.

COTS/GOTS packages used both by MIDB and by other TAMPS applications must be installed. These include Sybase 11.0.2, ODBC, and ICS/Motif 1.2.4, and Perl 5.002. The complete list is TBD.

One change in the installation of Sybase is that MIDB requires that the Sybase “sa” password not be null, as has been TAMPS practice in the past. This will also improve the security level of the TAMPS system.

Disk space must be allocated for the MIDB software and databases on any TAMPS installation which might want to install MIDB (at System Generation time or in the future), which is expected to be all TAMPS installations except those which will be permanently set up as client workstations on a local area network. This disk space may be spread across several disk partitions. The disk space required will vary based on the MIDB configuration to be installed (which can be determined from System Generation parameters). For each MIDB configuration to be installed (except “custom”, which is not supported on fielded systems), there will be a pre-determined set of locations where the MIDB database files will be stored. No other processing is required at this time with regard to this disk space.

Note: 	The disk space allocated for the MIDB databases need no longer be on separate raw disk partition(s), as has been the TAMPS custom in the past, as we plan to use Unix filesystem files as the Sybase database devices. The consensus is that using Unix filesystem files offers much more flexibility in database setup, better use of large disk partitions, potentially easier copying of databases from one machine to another, better integration with RAID devices, and little if any performance degradation (some say better performance can be expected). The risk is in reduced database integrity should the Unix machine crash without flushing the file system buffers. Given that TAMPS does not have a high degree of database activity, and does not depend onuse the Sybase transaction log to maintain up-to-the-minute database recoverabilityintegrity at present, we believe that this risk is not substantially greater than in the present TAMPS environment. The allocation of space for other TAMPS databases can be on either raw disk partitions, or Unix filesystem files, without affecting MIDB processing.

The System Generation CSC must allow the System Administrator to specify whether the MIDB software and database should be installed and, if so, the System Generation CSC must activate the MIDB Installation CSC. (If the MIDB is not to be installed at this time, then TAMPS HMI menu items which require the MIDB should be greyed out or removed until the MIDB is installed. Removing the menu item, or causing the application to display an error dialog, is more consistent with TAMPS HMI guidelines than greying out the menu item) It is expected that the majority of TAMPS installations will install the MIDB at System Generation time. The design of the MIDB Installation, along with the associated concerns, issues, and risks, are discussed under the MIDB Installation CSC below. Some of the issues regarding MIDB Installation may have an effect on the System Generation CSC design.

There are some MIDB Installation tasks that may be more convenient to perform at System Generation time, and which will not interfere with TAMPS processing (or require many system resources) on systems that do not install the MIDB. These may include: generating the RPC values (this requires knowing the exact MIDB version), and copying the MIDB software to the appropriate location on the TAMPS system.

There are several reasons why we may want to install the MIDB BLTS library and applications at System Generation time; these reasons are discussed under the MIDB Installation CSC below.

We will be installing the MIDB BLTS library and applications at System Generation time. These provide a uniform, and more secure, method of accessing the database whether or not the MIDB is installed. See the detailed discussion under the MIDB Installation CSC issues, below.

Installation of the IDB database schema and software will be removed from the System Generation CSC. The System Generation CSC must still create the TAMPS Interim Threat database tables, however.

Requirements

Requirements Section�Requirements Sub-section�Requirements

Keywords:�Satisfied by:��3.2.1�1�use MIDB Installation CSC���3.2.2�3�restrict maintenance access���3.2.2�3.1�restrict archive access���3.2.2�3.2�restrict restore access���3.2.2�3.3�restrict load access���3.2.2�3.4�restrict MIDB maint.���HMI

The only expected change is that the System Administrator must be offered the option to install the MIDB; if the MIDB will be installed, then any inputs required by the MIDB Installation CSC should also be accepted.

Data Flow

Only a very high-level data flow diagram is presented for the System Generation CSC, since no change is expected in the data flow for this CSC (the data to be processed will change, for example, the specific COTS to be installed).

�

Figure � STYLEREF 4 \n �4.1.1.2�-� SEQ Figure * ARABIC \r 1 �1� System Generation Data Flow

Control Flow

Only a portion of the System Generation control flow is shown here, since the majority of the System Generation processing will remain unchanged.

�

�

Figure � STYLEREF 4 \n �4.1.1.2�-� SEQ Figure * ARABIC �2� System Generation Control Flow

Assumptions

Solaris 2.5.1 (or higher) is assumed to be already included in the TAMPS 6.2 delivery. The change to Solaris 2.5.1, and the accompanying Common Desktop Environment, will require other changes to TAMPS (mostly within the System Generation CSC) that are not described under this SOR.

We are generally assuming that no major MIDB processing needs to take place at System Generation on the system being installed. Some software needs to be installed in the appropriate directories; some system startup scripts need to be placed into the system startup directory.

We are assuming that the MP-LAN SOR will take care of initializing the connection to the JMCIS Sybase server (specifically, putting an entry into the “interfaces” file in the TAMPS Sybase directory).

It is assumed that we will not need to install or initialize the Apache http daemon included in the MIDB delivery. (See the discussion under Issues below).

No MIDB applications or libraries are required for minimal TAMPS operation; specifically, no MIDB libraries are linked into TAMPS applications.

Currently, System Generation initializes the TAMPS WSE menu bar so that only users with the Database Administrator role active can access the DBA application. Since archive, restore, and load operations can only be activated from within the DBA application, this restricts these operations (for MIDB and all other TAMPS databases) to users with the Database Administrator role active. MIDB maintenance functions are also expected to be activated from within the DBA application, so access to those functions will be similarly limited.

Concerns / Questions / Issues

Exactly what COTS packages (and versions) need to be installed at System Generation? So far, we are aware of: Solaris 2.5.1 (or higher), Sybase 11.0.2 (or higher), and ODBC (package selection TBD), and Perl 5.002.

We willShould we install the BLTS software at System Generation time, and install the system startup files to start the BLTS daemon process at system boot.? This is software which could be of use to other TAMPS processes, and willwould simplify the User Administration processing slightly. See the detailed discussion under the MIDB Installation CSC design, below.

MIDB 2.0 requires the use of an HTTP daemon and a browser to display some of its help files (and to display its Characteristics and Performance Reference Database, which TAMPS is not planning to support at present). It is our understanding that the JSIPS-N integration will require the use of an HTTP daemon and the Netscape browser, and that there will be a Mosaic browser (reviewed for the security issues described below) available on systems with the Performance Support Tools installed. MIDB 2.0 is delivered with the Apache daemon and the Mosaic browser; however, we are not planning to install or initialize this software on TAMPS. There because it is required only for the CPRD subsystem of MIDB, which TAMPS is not planning to use, and some help callbacks. In addition, there are serious security issues with Mosaic and all existing browsers that we are aware of, since they allow the user to open and save any Unix file (subject only to the Unix file permissions). It would require a major inspection of the TAMPS system, and changes to several subsystems, in order for the TAMPS system to be secure under these conditions. TAMPS has been operating on the assumption that all access to TAMPS files is controlled through TAMPS, and several files (including the TAMPS roles and privileges information) have the Unix permissions set to allow write access, but are assumed to be only written by the TAMPS software. We must also verify that the browser software will never allow a user access to a Unix shell (except as allowed by the TAMPS roles and privileges). While it would probably be desirable to review the design of the TAMPS system, and make it more secure with respect to an unprivileged but knowledgeable user, such an effort is beyond the scope of this SOR. Therefore, we are not planning to install the Apache http daemon and Mosaic browser delivered with MIDB 2.0. However, if a browser is already installed for which these security issues have already been reviewed for the JSIPS-N integration and a browser installed for their use, we should be able to use that browser for the MIDB (with their http daemon, if they run one on TAMPS, or the Apache daemon from MIDB).

We are not aware of all the interconnections between the DIA-provided MIDB applications. There may be a way for a TAMPS user who has been granted access to a permitted MIDB application to access an application the user would not normally have access to. It may be possible to control this by disabling the HMI elements within the MIDB application, but even if possible, that could have undesired side effects.

Even if the MIDB is not being installed at System Generation, is there information that can be more easily determined at System Generation that will be required by MIDB Installation? If so, can this information be stored somewhere for retrieval by MIDB Installation?

Risks

This SOR introduces new versions of existing COTS and new COTS packages to the TAMPS system. Although no problems have been experienced and none are anticipated, any new COTS introduces some risk.

MIDB 2.0 requires Solaris 2.5.1 or higher. Although this had already been planned as part of the TAMPS 6.2 delivery, it should be mentioned that the new version of Solaris will require other changes to the System Generation CSC that are not listed here.

Tasks

Identify the exact COTS/GOTS packages that must be installed on the system; verify that the versions of existing COTS are suitable; determine where those packages should reside on the installed TAMPS system; place the software and installation scripts into the appropriate directory on the TAMPS directory tree.

Verify that System Generation will install or upgrade the Solaris operating system such that it uses NIS+ to store system information. (MIDB is documented to require all system information be stored in NIS or NIS+; it has been noted to require this for at least the RPC identifiers.)

Insert some way for the System Generation CSC to give the System Administrator the option to install the MIDB and, if selected, call the MIDB Installation CSC. Ideally, if the System Administrator does not elect to install the MIDB, then all TAMPS menu items that require the MIDB should be removed or greyed out.

Are there items from the MIDB Installation CSC that would be better performed at System Generation time even if the MIDB is not being installed until a later time? An example of this might be the RPC identifiers.

MIDB Installation

The MIDB Installation external event is initiated by the System Administrator selecting the System Admin -> Install MIDB menu item. It will display an HMI dialog asking for the required inputs, and then pass these inputs to the script which will install the MIDB.entering the install MIDB command at a Unix command line. It would be possible to create a TAMPS menu item or other HMI; however, we planning to support only a Unix shell interface for the following reasons. The MIDB Installation is expected to be run at System Generation time for the majority of TAMPS installations. For the remainder, MIDB Installation will only be run once at most, and always by the System Administrator. We also plan to allow MIDB upgrades and patches to be installed in this CSC; however, since we do not have any info from DIA on what might be included in these future MIDB releases, it is difficult to design an installation script.

The MIDB Installation external event can also be initiated from within the System Generation CSC, and this is expected to be the method used for the majority of TAMPS installations. In this case, the required inputs will already have been accepted by the System Generation CSC, which will call the MIDB installation script directly, passing the input values.

The MIDB Installation CSC is expected to follow the Manual Installation Procedures outlined in the MIDB System Installation Plan. However, before starting this procedure we must identify the configuration to be installed and verify that there is enough available disk space to create the Sybase database container files.

It is expected that we will have the following configurations. In each configuration, there is assumed to be a known set of disks where MIDB software should be installed, and the MIDB databases created.

“server”: a TAMPS CVIC server machine. This system will have enough database space allocated to store the complete MIDB world-wide baseload, plus space for transaction logs and replication processing.

“workstation”: a stand-alone TAMPS system, or a TAMPS workstation connected to the MP-LAN. This system will have enough database space allocated to store a partial MIDB baseload, with minimal updates expected (so less transaction log space), and no replication support.

“remote”: a TAMPS workstation connected to the MP-LAN which is never expected to be disconnected to serve as a stand-alone TAMPS system. This system will not have a local MIDB database installed. It will only have the software configured to access the MIDB database stored on a TAMPS CVIC server.

We will also support a “custom” configuration. This option will use the MIDB “installmidb” application to give the System Administrator complete control over the database segment sizing and location. This will facilitate installing TAMPS in a non-standard (such as a development system) environment. However, when using the “custom” option, the MIDB Installation CSC cannot check whether there is sufficient disk space available, nor will the MIDB Installation CSC be able to perform other validity checking or provide help. The “custom” configuration will be intended for use only by a knowledgeable System Administrator who has access to a copy of the MIDB Software Installation Plan, and it will only be available by running the MIDB installation script from a Unix command line.

In summary, the steps outlined in the SIP are as follows (some of these steps will not be necessary for a “remote” configuration):

Create the required Unix users (http, midb) and groups (http, midbdba, midbpadm, midbuser).

Add the required services, RPCs, and host aliases to the NIS+ tables, and the required syslog.conf entry to the /etc/syslog.conf file.

Copy in (and unpack, if necessary) the MIDB software and support data files.

Update the “site_params/SetMidbEnv.sh” file to update various environment variable settings. We may be able to deliver a pre-modified version of this file that would depend on TAMPS-defined environment variables for those items that cannot be determined ahead of time (such as host names).

Run the “set_protection” and “CreateDynamic.sh” scripts.

Update the “CreateDevicesAndDatabases.sql” file to reflect the desired configuration of database device segments and database sizes. We may be able to deliver several pre-modified versions of this file (one for each of a limited number of configurations), and select one file at installation time.

Run the modified “CreateDevicesAndDatabases.sql” file.

For each database, create the datatypes, tables, defaults, and procedures.

Re-run the procedure creation in the MDUIQU, GMI, and ALERTS databases (is this working around an installation bug? Will it still be required with the final MIDB 2.0 delivery?)

For each database, load the .BCP static data files.

If desired, The MIDB Software Installation Plan suggests that the user can load in the initial MIDB baseload be loaded at this point. (It is the most efficient place to do it, since the triggers and indices have not yet been created.) However, loading the MIDB GMI data at this point does not match the TAMPS expectation of completing the installation process before loading any data, so this loading the GMI data will not be performed as part of MIDB Installation.

For each database, create the triggers and indexes.

Load the SUPPORT data and ALERTS data.

Run the “GrantDbObjectsPermission.sh”, “LoadAccession.pl” and “init_user_access” scripts.

Start the BLTS and DEX servers.

Set the sa password forRegister the Sybase “sa” password with the BLTS server.

Once the MIDB software, database schema, and static data have been installed per the SIP, we must install script files to be run at system startup to start the MIDB daemon processes (and start the TAMPS MIDB RTM daemon, if required, to watch for data changes that could affect Range Rings or RTMs).

Finally, we need to ensure that each existing TAMPS user is set up as an MIDB user, with the appropriate access to the TAMPS and JMCIS MIDB servers. We will call the User Administration CSC to perform these actions for each user.

The BLTS daemon process maintains a list of Sybase users along with their encrypted Sybase passwords. These passwords can then be retrieved by any process running under the Unix account of the same name. This can be used to connect a user process to Sybase without having to ask the user for the Sybase password, or keeping the Sybase password available in an environment file or other open storage. The BLTS software also provides interfaces (command-line and API) for creating and managing Sybase accounts, and for terminating a Sybase process given its Unix process ID and application ID, and several BLTS maintenance functions.

We willmight want to install the BLTS software at System Generation so that it will be available for use by any TAMPS application. This willwould be more secure (against both release of information and loss/damage of information) than the current TAMPS method of keeping the user’s Sybase password in an environment variable. It willwould also simplify the User Administration CSC, since that would no longer need to check whether the MIDB had been installed before attempting to register an account with the BLTS daemon. The disadvantages of installing the BLTS software at System Generation include losing the flexibility of using a Sybase account name different from the Unix account name (currently used in the development lab, but not, we believe, in a fielded environment), and more complicated setup for a development or limited-use setup that was not planning on using the MIDB, but does require some TAMPS applications. However, these disadvantages are minor, and are believed to only affect the development systems, so should not have any impact on installed TAMPS environments.

After MIDB Installation is complete, files that are no longer used should be removed from the system to free up the disk space. However, it is TBD at this time which files from the MIDB directories can be safely removed without impacting the DIA-provided GOTS. The TAMPS menu item System Admin -> Install MIDB should be removed (or disabled) when MIDB Installation is complete.

Requirements

Requirements Section�Requirements Sub-section�Requirements

Keywords:�Satisfied by:��3.2.1�1�use MIDB Installation CSC���3.2.1�2�install TAMPS subset���3.2.1�2.1�install BLTS���3.2.1�2.1.1�install BLTS server���3.2.1�2.1.2�install BLTS client���3.2.1�2.1.3�install BLTS startup scripts���3.2.1�2.2�install Production s/w���3.2.1�2.3�install Data Exchange s/w���3.2.1�2.4�install Data Query s/w���3.2.1�2.5�install MIDB schema���3.2.1�2.5.1�three installation types���3.2.1�2.5.1.1�support “server” installation���3.2.1�2.5.1.1.1�“server”: all MIDB tables���3.2.1�2.5.1.1.2�“server”: complete load���3.2.1�2.5.1.1.3�“server”: scenario data���3.2.1�2.5.1.2�support “workstation” install���3.2.1�2.5.1.2.1�“workstation”: all MIDB tables���3.2.1�2.5.1.2.2�“workstation”: subset load���3.2.1�2.5.1.2.3�“workstation”: scenario data���3.2.1�2.5.1.3�support “remote” installation���3.2.1�2.5.1.3.1�“remote”: apps only���3.2.1�2.5.1.3.2�“remote”: needs connection���3.2.1�2.6�install sep from Sys Gen���3.2.1�2.6.1�check for disk space���3.2.1�2.6.2�exit if not enough disk space���3.2.1�2.7�user-specified parameters���3.2.1�2.8�assign MIDB Server ID���3.2.1�2.8.1�use Server ID for SK gen���3.2.1�2.8.2�do not ever repeat SK’s���3.2.1�2.9�initialize access to JMCIS���3.2.2�1�init user access to MIDB���3.2.2�2�user access to JMCIS MIDB���HMI

The following inputs mayare expected to be required to the MIDB Installation CSC. It is still TBD whether any of these values can be automatically determined from information already available (using an automatically-determined value is preferable to requesting the user to enter a value). When MIDB Installation is initiated from within the System Generation CSC, the input values should be accepted by the System Generation CSC at the same time as other user input, and passed to the MIDB Installation CSC.from the System Administrator at time of installation:

Type of configuration (server, workstation, remote). This is expected to be determined from the SYSTEM_CONFIG environment variable set by System Generation.

MIDB Server ID. It is TBD whether this can be generated automatically, although this would be preferable to accepting a manual user entry value. See the discussion under Concerns below.

RESPROD value assigned to local users. (tThere will probably be a default for TAMPS installations, but there may be a need to override this value -- for example, TERPES). This is expected to be determined from the SYSTEM_CONFIG environment variable set by System Generation.

If installing from a DIA installation tape, the tape device name to be read from. (If the software will be included in the standard TAMPS delivery, then this does not apply).

If installing from a DIA installation tape, the MIDB version number (we would prefer to determine this automatically, though).

The Sybase “sa” password. This will be available when called from System Generation, and may be available without user entry (for example, from an environment variable) otherwise.

The JMCIS Sybase server name and other information.

Data Flow

�

Figure � STYLEREF 4 \n �4.1.1.2�-� SEQ Figure * ARABIC �3� MIDB Installation Data Flow

Control Flow

See the Data Flow diagram above.

Assumptions

The following items will be required as inputs to the MIDB installation process as outlined in the SIP. However, these values are expected to be the same for all TAMPS installations, or dependent only on the MIDB configuration selected by the System Administrator, and will not require user input at runtime (except in a “custom” configuration). The exact values are TBD.

MIDB root directory (perhaps “/opt/midb”)

MIDB output directory (somewhere under “/tamps/dynamic”?)

On a “server” system which will be connected to JMCIS, Tthe JMCIS files “data/user/network_users”, “data/user/user_access”, and “site_params/DbPassword” will be available during the MIDB installation process. These paths are given with reference to the MIDB root directory on the JMCIS system. The DSQUERY value used to access the JMCIS Sybase server is also assumed to be available (presumably in an environment variable).

The Manual Installation Procedures from the SIP are a complete description of what needs to be done to install the MIDB software. According to a comment at the MIDB Developer’s Conference, these procedures have not been thoroughly tested.

We can determine a small number of pre-defined MIDB database configurations that the System Administrator can select from when installing the MIDB.

Concerns / Questions / Issues

How do the MIDB Server ID and RESPROD values get set during a manual installation? These values were not mentioned in the Manual Installation Procedures from the SIP.

Do we need a configuration for a client workstation initially connected to the TAMPS CVIC server? Or does a client workstation get installed as a standalone workstation, which does an MP-LAN connection immediately following installation? Does the answer to this vary if we are doing an installation at System Generation vice a later time?

Should the MIDB software and static data files come from the TAMPS installation media, or should we distribute a copy of the DIA MIDB Installation media with the TAMPS distribution? The advantages of keeping the MIDB software with the TAMPS installation are: easier installation, less distribution hassles, fewer variables (such as version number), and much more chance to pre-configure the software. The advantage of using the DIA installation media is the ability of a TAMPS installation to use upgrades of the DIA software much more quickly than if they must wait for those upgrades to be included in a TAMPS delivery. We will be assuming that we will include the MIDB files within the TAMPS installation media, but it will be noted if the behavior would be different if reading from an MIDB installation tape.

Do we need a method to upgrade a “remote” installation to a “workstation” (beyond the transitions supported by MP-LAN connection/disconnection)?

How will the MIDB Server ID values be assigned?

At last report, it was still TBD by DIA how these values will be assigned. Most likely, each service will be assigned a block of values, and the Navy will allocate TAMPS a subset of their block. But we still need a way to assign each TAMPS system a unique ID within this block.

It might be possible to use the host ID or some other system-specific value and map that to the range of valid MIDB server ID’s. However, this would not guarantee uniqueness.

Each new or updated MIDB record has a “surrogate key” assigned to it. This “surrogate key” contains the MIDB server ID, plus a counter to ensure that no two records within the same table have the same surrogate key value.

Since a MIDB record created by a TAMPS system could be copied to another MIDB database in several different ways (archive/restore, TF export), it is required that each TAMPS system (excepting “remote” installations) have a unique MIDB server ID. It may seem unlikely that such a record would find its way to another system using the same server ID, but the integrity of the MIDB depends on the uniqueness of the surrogate key values within a database table.

The MIDB Server ID value should not be changed by a restore of a dump (or archive) if there is already an existing Server ID value.

How can we prevent re-generating surrogate key values when a TAMPS system (and the MIDB) is reinstalled?

Just as we must never assign the same MIDB server ID to two separate TAMPS systems, an MIDB server must never reset the counters used to generate the surrogate keys.

This is a difficult problem, given that TAMPS System Generation is designed around the principle of re-initializing the system from scratch when a new version of TAMPS is installed (or any time the System Administrator thinks re-installing the software might fix a problem).

Without a complete redesign of the System Generation software, the best solution to this problem may be to instruct the TAMPS System Administrators to dump their MIDB databases before re-initializing, and restore those databases afterwards.

Any MIDB upgrades that are delivered must also not destroy and re-create the database from scratch (at least the SUPPORT database, where these values are stored, must be maintained).

Care must be taken when restoring a dump (or archive) of the MIDB database so that the surrogate key counters are updated only if the counters in the database being restored are for the same Server ID, and are higher, and the current database.

It should be possible to restore a dump of the MIDB that was made on another TAMPS system (assuming that the Server ID issue above is worked out). When restoring a dump from another system, we probably only want to restore the GMI data (including TGT). Can we detect that the dump was restored on another system? We may need to define two separate dump capabilities -- a dump for backup purposes, to be restored on the same system in case of database failure, and a dump for transportation purposes. Restoring a dump taken on a JMCIS system is not supported by Sybase, because the two systems run on different platforms.

What RESPROD value should be used for the TAMPS server? It is likely that a TAMPS system will not be considered the RESPROD (responsible producer) for any portion of the MIDB. However, the MIDB installation requires that a RESPROD code be specified. This issue may depend on the “Local Record” modifications proposed by JMCIS and being worked by DIA.

It would be possible to design the MIDB installation CSC to support installation directly from a DIA-provided MIDB tape. This could allow the fielded systems to more quickly install a new MIDB version. However, the potential drawbacks of such a design are many: If the new MIDB version has not been verified for compatibility with the rest of TAMPS, this would place a risk on the installing system; if TAMPS is required to make changes in any MIDB software or data, this could conflict with those changes; and fielded systems may not have access to the DIA-provided tapes. Therefore, we do not plan to offer such support. If we are installing from the DIA MIDB installation media, we will require a foolproof method of determining the correct MIDB version number. There was some confusion during test installation of the MIDB beta tape, where the version number was expected to be “2.0” (as outlined in the Software Installation Plan), but for this beta delivery was actually “20b”. There should be a way for TAMPS to determine this value without requiring the user to input it, but the best way to do this is TBD. (If the MIDB software is delivered as part of a TAMPS delivery, then the installation scripts can be modified if needed to match the current version number.)

Do we need to match RPC numbers with JMCIS? If so, what values are they using?

What happens if TAMPS and JMCIS both create a user with the same name? Can we detect this situation before creating the TAMPS account? Do we need to (and can we) share a common user database?

Although the MIDB software is believed to be unclassified, some of the static data loaded with it may be classified. This should be taken into consideration when determining where on the TAMPS system the MIDB should be located. This is not expected to be an issue for System Generation or MIDB Installation, but the possibility should be kept in mind

The manual installation procedures outlined in the MIDB Software Installation Plan only cover what they call a “full” MIDB installation. We need to know which steps need to be performed for a “remote” configuration, and which steps need to be performed to connect to JMCIS.

The behavior of the MIDB software in a two-server (TAMPS and JMCIS) environment is not clear. The software does support this environment (many screens have an option menu to select the server to use), but the details of account management, permission setup, etc. need to be investigated.

What is needed to initialize the connection to JMCIS? We probably need to add their data server to our Sybase interfaces file, so we will need that information. We may need their SA password.

What steps are necessary to perform a “remote” installation? If the database is located on the server system, and the software is located on a disk mounted on the server system, is there any setup necessary on a “remote” system? (If no steps are necessary to perform a “remote” installation, then there is no conflict if we upgrade the system to a “workstation” configuration later.)

What is needed to support the help menu items from within the MIDB applications? Some menu items are known to be self-contained within the application; others bring up an HTTP browser displaying a page with the help text. Are there other help systems in use? Can any HTTP browser (and daemon) be used? Supporting the help screens from within the MIDB editors (Production System) should be given priority.

Can we support allowing MIDB edits on the TAMPS server when JMCIS becomes unavailable (and is expected to remain to for an extended period)? Although it is relatively simple to switch the configuration so that the edits are directed to the TAMPS CVIC server database, resuming the connection to JMCIS would be extremely difficult. Replication would need to be stopped; the TAMPS and JMCIS databases would need to be brought back into synchronization, and the replication would need to be re-started. If a dump/restore from JMCIS to TAMPS is feasible, then this recovery could take an hour or so. However, if the dump/restore is not feasible, then it may not be possible to recover without re-baseloading both JMCIS and TAMPS. Therefore, we do not plan to support allowing edits when a TAMPS server (configured to expect JMCIS connectivity) cannot connect to JMCIS.

Risks

The MIDB software must be considered a large risk, as this software is still under development. Due to the schedules of the two projects, TAMPS will be required to run one of the first releases of MIDB 2.0. There is a risk that this software may contain bugs. There is also a risk that changes made late in the MIDB development cycle could have an impact on TAMPS. Also, there is a risk that if the announced MIDB schedule cannot be met by DIA, TAMPS might not receive the official MIDB 2.0 delivery until too late in its development cycle to meet its schedule.

It is still TBD how TAMPS should create new records and modify existing records in such a way that the new records are immediately visible, and the original records are still available if requested. This is dependent on the “Local Record” proposal written by JMCIS and under consideration by DIA. There is also a risk that these changes, even if accepted by DIA, will not make it into an early release of MIDB 2.0. We must create these new and modified records in the same way that JMCIS will, since in a TAMPS-Afloat environment, we will be making modifications in the JMCIS database.

As described above under Concerns, there is a risk of a TAMPS system (or two separate TAMPS systems) generating new or modified records with identical surrogate key values. The MIDB depends on the uniqueness of the surrogate key values, and at best a duplicate key would lead to the affected record(s) being corrupted.

If we are installing from the DIA MIDB installation media, then there is a risk that the MIDB version being installed at the TAMPS site may not match the version expected. This could be a benefit (allowing the systems faster access to DIA updates), but it is also a risk in that the new version may not work in exactly the same way as the old in some way that TAMPS depends on.

Interfacing with JMCIS has several risks associated with it. They may not be running the same version of the MIDB software that we are (especially since their version has been ported from Solaris to HP-UX), and this could cause problems. If they make local changes to the MIDB (or if TAMPS does), that could cause problems. This interface will require coordination between the TAMPS and JMCIS System Administrators on several points. In short, this is a new interface for TAMPS, and there are many risks associated with interfacing to any outside system.

Tasks

Determine the exact configurations to be used for the various TAMPS MIDB configurations (server, workstation, remote). This includes what disk files should be used for database segments, how big each segment should be, and what MIDB databases should be allocated to each segment.

Write scripts to install the MIDB using the steps described in the Manual Installation Procedure. Where the procedures call for a file to be edited, provide a pre-edited version of the file whenever possible (or one pre-edited version for each installation configuration).

Determine which of the MIDB Installation tasks need to be performed for a “remote” installation.

Increase communication with JMCIS and DIA personnel with regard to the “Local Record” proposal and the eventual CONOPS for creating and querying new and updated MIDB records.

Coordinate with development of System Generation CSC to allocate tasks between the two CSCs, and to resolve input value generation.

System Startup

The System Startup external event is initiated by the Unix system when the system is booted up.

No software is delivered under a System Startup CSC. Instead, script files are installed into the Unix system directories by the System Generation and MIDB Installation CSCs to be run at system startup.

The processing required by MIDB 2.0 at system startup includes: starting the Sybase data servers, starting the MIDB daemon processes, and (if required) starting the TAMPS MIDB RTM daemon (to watch for changes to data that may affect RTMs or Range Rings, and send alerts.

Requirements

Requirements Section�Requirements Sub-section�Requirements

Keywords:�Satisfied by:��3.2.1�2.1.3�install startup scripts���

HMI

Not applicable to this event.

Data Flow

Control Flow

For systems that have not installed the MIDB, the only change will be to start the BLTS server as part of system startup (after Sybase has been started, but before any TAMPS servers that will use the database are started). For systems that have installed the MIDB, additional startup scripts will be installed to start the DEX server and the new TAMPS RTM server. The DEX server can be started any time, but will be started at the same time the BLTS server is started. The new TAMPS RTM server should be started after the TAMPS network and WSE servers have been started.

All existing functionality in this CSC will be left unchanged by this SOR.

�

Figure � STYLEREF 4 \n �4.1.1.2�-� SEQ Figure * ARABIC �4� System Startup ControlData Flow

Control Flow

Assumptions

The existing Sybase startup scripts will handle the Sybase server startup.

The startup scripts delivered with the MIDB software will handle the startup of the MIDB and DEX daemon processes.

If any special processing is required at this time regarding Sybase replication, it will be handled by the MP-LAN software.

Concerns / Questions / Issues

All the daemon applications, or the startup scripts used to start them, need to be prepared for Sybase not being ready immediately. The Sybase server will take some time to verify the database consistency and process the transaction log before allowing applications to connect to the databases.

Risks

If the BLTS daemon fails to start, then users would be locked out of MIDB updates, and could be locked out of other database accesses.

If the DEX daemon process fails to start, then no MIDB loads or unloads will be able to be processed. This should not affect MIDB edits or replication from JMCIS, though.

If the TAMPS MIDB RTM daemon process fails to start, then no alerts will be generated if data that could affect an RTM or Range Ring will be generated. There will be an alert generated when the TAMPS MIDB RTM daemon is next successfully started.

Tasks

Verify that the scripts provided with the MIDB software are suitable for starting the BLTS and DEX daemons in the TAMPS environment

Write the startup/shutdown scripts for the TAMPS MIDB RTM daemon.

System Shutdown

The System Shutdown external event is initiated by the Unix system when the system is shut down. Most commonly in a TAMPS environment, this is initiated by the System Administrator selecting the System Admin -> System Shutdown menu item from the TAMPS Workstation Environment (WSE) menu bar. It is important to note that this processing will not occur if the system does not perform an orderly shutdown -- this might happen, for example, if the power is lost or in case of a Unix system crash.

No software is delivered under a System Shutdown CSC. Instead, script files are installed into the Unix system directories by the System Generation and MIDB Installation CSCs to be run at system shutdown.

The processing required by MIDB 2.0 at system shutdown includes: stopping the Sybase data servers, stopping the MIDB daemon processes, and (if required) stopping the TAMPS MIDB RTM daemon.

Requirements

Requirements Section�Requirements Sub-section�Requirements

Keywords:�Satisfied by:��3.2.1�2.1.3�install startup scripts���HMI

Not applicable to this event.

Data Flow

No substantial change is being planned for this processing, so no Data Flow diagram is presented.

Control Flow

For systems that have not installed the MIDB, the only change will be to stop the BLTS server as part of system startup (after any TAMPS servers that will use the database are stopped, but before Sybase has been stopped). For systems that have installed the MIDB, additional startup scripts will be installed to stop the DEX server and the new TAMPS RTM server. The DEX server can be stopped any time, but will be stopped at the same time the BLTS server is stopped. The new TAMPS RTM server should be stopped before the TAMPS network and WSE servers have been stopped.

All existing functionality in this CSC will be left unchanged by this SOR. Processes are normally stopped in the reverse of the order in which they were started at System Startup.

�

Figure � STYLEREF 4 \n �4.1.1.2�-� SEQ Figure * ARABIC �5� System Shutdown Control Flow

No substantial change is being planned for this processing, so no Control Flow diagram is presented.

Assumptions

The existing Sybase shutdown scripts will handle the Sybase server shutdown.

If any special processing is required at this time regarding Sybase replication, it will be handled by the MP-LAN software.

The same startup scripts installed for the System Startup event for the MIDB daemon processes and (if required) the TAMPS MIDB RTM daemon process will also handle system shutdown (distinguishing between startup and shutdown by the argument passed in by the Unix system).

Concerns / Questions / Issues

None

Risks

If any of the daemons need to do any Sybase processing , then we must make sure that there is a reasonable time allowed for this before shutting down the Sybase server.

Tasks

Make sure that the startup files can also handle the system shutdown. The usual way to do this on Unix is to use the same file as the startup file and shutdown file, with the script expecting an argument of “start” for startup and “stop” for shutdown.

User Login

The User Login external event is initiated by the Unix system when a user logs into the system.

No software is delivered under a User Login CSC. Instead, script files are installed into the user’s home directory and the TAMPS environment directory by other CSCs to be run at user login.

The processing required by MIDB 2.0 at user login includes: setting all environment variables as required for MIDB processing, including setting values to direct MIDB queries and edits to the appropriate data server. This will be handled by adding an “tamps_midb.env” file to the TAMPS environment directory.

Requirements

Requirements Section�Requirements Sub-section�Requirements

Keywords:�Satisfied by:��3.2.1�2.1.3�install startup scripts���HMI

Not applicable to this event.

Data Flow

No substantial change is being planned for this processing, so no Data Flow diagram is presented.

Control Flow

No substantial change is being planned for this processing, so no Control Flow diagram is presented.

Assumptions

The only login processing required is setting environment variables.

Concerns / Questions / Issues

Initial testing has indicated that the standard MIDB environment file wants to add a fairly large number of directories to the user’s executable search path. Combined with the number of directories that the existing TAMPS environment places in the search path, the result is too long for the Unix system to process (the error message is “ridiculously long PATH truncated”). We may not want to source the standard MIDB environment file for normal processing; instead, before starting any MIDB applications, we will source the MIDB environment for that application only.

Should we add to (or modify) the existing “tamps.env” file, or create a new file to be sourced by that? Currently the only separate environment files that are included are for the MPMs.

Risks

Merging in the TAMPS and MIDB environments may have unintended side effects on the MIDB processes. In particular, coming up with a combined executable search path may cause application failure if a required directory is left out of the path.

Tasks

User Logoff

The User Login external event is initiated by the Unix system user startup files when a user logs off of the system. Most commonly, this is initiated by the user selecting the Logoff menu item from the TAMPS WSE menu bar. It is important to note that this processing may or may not take place in the event of a TAMPS session crash, and will not take place in the event of a Unix system crash (or power loss).

No software is delivered under a User Logoff CSC. Instead, script files are installed into the user’s home directory and the TAMPS environment directory by other CSCs to be run at user logoff.

No processing is expected to be required by the MIDB 2.0 software for this event.

Requirements

No new requirements. This section has been added to this SOR to document the assumption that no processing is required.

HMI

Not applicable to this event.

Data Flow

No substantial change is being planned for this processing, so no Data Flow diagram is presented.

Control Flow

No substantial change is being planned for this processing, so no Control Flow diagram is presented.

Assumptions

No special processing is required for this event.

Concerns / Questions / Issues

None.

Risks

None.

Tasks

None

MP-LAN workstation connection/disconnection

The MP-LAN workstation connection external event is initiated by the MP-LAN software when a standalone TAMPS workstation becomes a client of a TAMPS server. The MP-LAN workstation disconnection external event is initiated by the MP-LAN software when a client TAMPS workstation becomes a standalone TAMPS system. These are not truly external events from a TAMPS system perspective, but they can be most easily considered as such from the MIDB subsystem perspective. We are dependent on the MP-LAN software to perform most of the processing for this event, and to call the MIDB software for its processing, if required.

The processing (that may affect the MIDB processing) required when a workstation connects to the MP-LAN includes: altering the workstation startup files not to start Sybase or the MIDB daemon processes, creating accounts for users on the workstation not already on the server; directing MIDB queries to the TAMPS server and MIDB edits to JMCIS.

The processing (that may affect the MIDB processing) required when a workstation disconnects from the MP-LAN includes: altering the workstation startup files to start Sybase and the MIDB daemon processes; create accounts for specified users on the workstation; directing MIDB queries and edits to the local database.

Requirements

Requirements Section�Requirements Sub-section�Requirements

Keywords:�Satisfied by:��3.2.3�5.1�standalone edit locally���3.2.3�5.2.1�disable local edit on connect���3.2.3�5.2.2�enable local edit on disconnect���3.2.3�5.3�MP-LAN edit on JMCIS���3.2.3�5.3.2�replication from JMCIS���3.2.3�5.3.3�updates from JMCIS���3.2.4�3.5�MP-LAN edit on JMCIS���3.2.4�3.5.2�replication from JMCIS���3.2.4�3.5.3�updates from JMCIS���HMI

Not applicable to this event, except as described under User Administration CSC.

Data Flow

Data Flow for this event is described in the MP-LAN design.

Control Flow

Control Flow for this event is described in the MP-LAN design.

Assumptions

The MP-LAN SOR will take care of all processing associated with connection and disconnection of workstations from the MP-LAN. This includes at least: updating environment files, updating system startup files, creating user accounts.

MP-LAN will call the User Administration CSC as modified by this SOR (described below) to create accounts as required on the client or on the server. This SOR will provide a function to create an account with access to the MIDB server(s).

Concerns / Questions / Issues

One issue regarding the client workstations connected to the MP-LAN is the MP-LAN requirement that the databases (including MIDB) be updated regularly. However, the client workstations are not going to have enough disk space to store the entire MIDB as kept on the TAMPS server. There will need to be some process to extract a subset of the MIDB data to be downloaded to the client. It is not clear whether MP-LAN will require functionality from the MIDB SOR to accomplish this task.

Risks

There is a risk in having two SORs that must interface with each other being designed at the same time, by different groups, with the designs constantly changing.

Tasks

See below, under User Administration CSC.

JMCIS MIDB server unavailability/availability

The JMCIS MIDB server unavailability external event occurs on the TAMPS server when the JMCIS MIDB server is detected as having become unavailable (due to JMCIS shutdown, crash, or network failure). The JMCIS MIDB server availability external event occurs when the JMCIS MIDB server is again available for use after having been shutdown or crashed. We are dependent on the MP-LAN software to detect this event, and to call the MIDB software for its processing, if required.

A request by a TAMPS user (in a TAMPS-Afloat environment) to edit the MIDB while the JMCIS MIDB server is unavailable must be detected and an error message displayed. If the GMI Editor CSC cannot detect this condition, then the MIDB software must be called on this event to set (or clear) a flag somewhere to indicate that editing the MIDB is not allowed because the JMCIS MIDB server is unavailable.

There may also be processing required to take care of replication. It is assumed this processing, if required, is performed by the MP-LAN software.

There may be some benefit to allowing the System Administrator to alter the TAMPS server configuration so that edits are allowed on the TAMPS server if JMCIS is expected to be unavailable for an extended period. If this change was made, then replication could not be resumed again from JMCIS until the two databases had been brought back into sync. Due to the minimal benefit of this option (and the high cost of the System Administrator selecting this option by mistake), we are not planning to implement this option at this time.

Requirements

Requirements Section�Requirements Sub-section�Requirements

Keywords:�Satisfied by:��3.2.3�5.3�edit against JMCIS MIDB���.

HMI

Not applicable to this event.

Data Flow

Data Flow for this event (if any) is described in the MP-LAN design.

Control Flow

Control Flow for this event (if any) is described in the MP-LAN design.

Assumptions

The MP-LAN SOR can detect these events, and will call the MIDB software if required.

The MP-LAN SOR will take care of any processing required for this event to maintain replication.

Concerns / Questions / Issues

Can the GMI Editor CSC detect that the JMCIS server is unavailable without any processing required by the MIDB software for these events?

If we did implement the option to allow local MIDB edits on the TAMPS server, we would need to work out a detailed CONOPS with JMCIS on how the databases can be resynchronized (especially if the TAMPS edits must be preserved), and with MP-LAN on how to prevent replication until resynchronization is complete.

Risks

The MP-LAN software may not be able to detect these events, or may not be able to detect and process them reliably (for example, if a “JMCIS unavailable” event was processed but the “JMCIS available” event was lost, TAMPS might prevent MIDB edits when it should allow them).

If the option to allow local MIDB edits was implemented, a TAMPS System Administrator could select this option when it was not appropriate -- thus causing a substantial delay while the databases are resynchronized.

Tasks

If the GMI Editor CSC cannot detect that the JMCIS server is unavailable, then we must write scripts and arrange for MP-LAN to call them when these events are detected. These scripts should set (and clear) a flag somewhere (probably in the TAMPS database) indicating that MIDB edits are not allowed. The GMI Editor CSC must then check this flag and, if set, display an error message to the user.

Otherwise, no processing is required by the MIDB software.

TAMPS CVIC server unavailability/availability

The TAMPS CVIC server unavailability external event occurs on the TAMPS client workstations when the TAMPS CVIC server is detected as having become unavailable (due to system shutdown, crash, or network failure). The TAMPS CVIC server availability external event occurs on the TAMPS client workstations when the TAMPS CVIC server is again available for use after having been shutdown or crashed. We are dependent on the MP-LAN software to detect this event, and to call the MIDB software for its processing, if required.

Processing on the TAMPS CVIC server is covered under the System Shutdown and System Startup external events (or under the TAMPS client workstation unavailability/ availability event, below).

No processing is expected by the MIDB software in this case, since no functionality is required of the client workstations when the CVIC server is not available (except the ability to disconnect from the network and become a standalone TAMPS system -- this is covered under MP-LAN disconnection, above).

It is possible, though unlikely, that there will be processing required to maintain replication between JMCIS and TAMPS. It is assumed this processing, if required, is performed by the MP-LAN software.

Requirements

The requirements for this event are assumed to be covered under the MP-LAN SOR. This section was added to this SOR to document this assumption.

HMI

Not applicable to this event.

Data Flow

Data Flow for this event (if any) is described in the MP-LAN design.

Control Flow

Control Flow for this event (if any) is described in the MP-LAN design.

Assumptions

The MP-LAN SOR can detect these events, and will call the MIDB software if required.

The MP-LAN SOR will take care of any processing required for this event to maintain replication.

No functionality is required of the client workstations while the TAMPS CVIC server except the ability to disconnect from the MP-LAN and become a standalone TAMPS system.

Concerns / Questions / Issues

None

Risks

None

Tasks

None

TAMPS client workstation unavailability/availability

The TAMPS client workstation unavailability external event occurs on the TAMPS server when a TAMPS client workstation is detected as having become unavailable (due to system shutdown, crash, or network failure). The TAMPS client workstation availability external event occurs when a known TAMPS client workstation is again available for use after having been shutdown or crashed. We are dependent on the MP-LAN software to detect this event, and to call the MIDB software for its processing, if required.

These events refer only to known clients that become unavailable (presumably temporarily). Clients planning to disconnect from the MP-LAN are covered under the MP-LAN disconnection external event; new client workstations should perform a MP-LAN connection. It should be noted, though, that it is possible for the TAMPS CVIC server to become unavailable, and a client workstation to disconnect while the server is unavailable.

In this case, when the TAMPS CVIC server becomes available it would not see a MP-LAN disconnection event; it may see a TAMPS client workstation unavailable event. Neither of these events, though, are expected to require processing from the MIDB software, and a complete investigation of this sequence of events is left to the MP-LAN design.

No processing is expected to be required for these events by the MIDB software.

Since the workstations are not planned to be involved in database replication, it is not expected that there will be any processing required to maintain replication. It is assumed that if there is any processing required, it will be performed by the MP-LAN software.

Requirements

The requirements for this event are assumed to be covered under the MP-LAN SOR. This section was added to this SOR to document this assumption.

HMI

Not applicable to this event.

Data Flow

Data Flow for this event (if any) is described in the MP-LAN design.

Control Flow

Control Flow for this event (if any) is described in the MP-LAN design.

Assumptions

The MP-LAN SOR can detect these events, and will call the MIDB software if required.

The MP-LAN SOR will take care of any processing required for this event to maintain replication.

Concerns / Questions / Issues

None.

Risks

None.

Tasks

None.

MP-LAN client database update

This event is generated by the user indicating that the databases on the TAMPS client workstation(s) should be updated from the TAMPS server. These databases will be used in case the server becomes unavailable and the clients wish to disconnect. This event may also be referenced from within the MP-LAN client disconnection event, described above. The details of how this event is initiated, and the overall processing of the event, is described in the MP-LAN SOR.

As part of this update, the TAMPS MIDB software must generate a subset of the MIDB GMI database. This database will be copied to the client workstation(s), and loaded into the client Sybase server(s), by the MP-LAN SOR. This subset of the GMI database must be placed within a separate database, which can then be dumped and copied to the clients.

Two methods have been identified for creating this subset.

The TAMPS MIDB software could be called by the MP-LAN software when a client database update is being prepared. The TAMPS MIDB software would then run queries to copy the subset of the GMI data into the separate database.

The TAMPS MIDB software could set up and maintain a replication that would continuously maintain the subset of the GMI data.

At this point we are planning to implement the first option -- having the MP-LAN software call this software to prepare the GMI subset data. Setting up a replication subscription would increase the complexity of the software, and the attendant risks, since all replication issue have been handled by the MP-LAN SOR to date.

We are also planning to implement a tool which will allow the Database Administrator to select which tables should make up this subset. At this point, we are only planning on allowing this subset to be specified by table name. If DIA implements a proposed change to the MIDB schema that will allow all tables to be selected by country code, then we should add functionality to this tool that will allow the subset GMI data to be selected based on country code as well as table name.

Requirements

The requirements for this section are derived requirements from the MP-LAN SOR.

Requirements Section�Requirements Sub-section�Requirements

Keywords:�Satisfied by:��3.2.2�4�generate GMI subset���3.2.2�4.1�user specify GMI subset���HMI

This is a tentative HMI diagram for the tool used to create the subset of the GMI data to be downloaded to the client workstation databases. There are three options for each sub-dataset, All, Some, and None. If the user selects Some, then a second dialog will pop up, containing a list of tables within that dataset (with the tables to be downloaded selected within the list). This HMI will be invoked from a new menu item (on the Database Administrator application), Utilities -> MIDB -> GMI Subset.

�

Figure � STYLEREF 4 \n �4.1.1.2�-� SEQ Figure * ARABIC �6� MIDB GMI Subset Selection HMI

�

Figure � STYLEREF 4 \n �4.1.1.2�-� SEQ Figure * ARABIC �7� MIDB GMI Subset Table Selection HMI

Data Flow

TBD. There will be a new database relation created DD_MIDB_GMI_SUBSET, to save the selected table subset.

Control Flow

TBD

Assumptions

If we create a database containing the subset data, MP-LAN will take care of dumping the database, copying the file to the client, and loading the dump file to the client database.

Concerns / Questions / Issues

What would be involved if we were to use replication?

Could we just create a replication subscription and assume that the existing MP-LAN processing will take care of maintaining the replication?

Are there any issues with doing replication from one table to another within the same server?

What impact would there be on the baseload processing?

What tables should be turned on by default? We have a tentative list of the following tables, along the _TIE table associated with each of these tables.

EQP/EQP_IDX: EQP, EQP_ELINT_MODE, EQP_IDX

FAC: FAC

TGT: TGT_DETAIL

UNIT: UNIT

Should there be any sort of sanity checking to make sure that the selected subset is a usable subset? What rules should be used? Should there be tables that must always be selected regardless of the user’s input?

How long will it take to perform the download? Will the time required have an impact on the MP-LAN processing? Should the MIDB subset processing be a separate operator action from the MP-LAN client data download?

Does the MP-LAN processing run once for each client workstation, and if so, can we avoid creating the subset multiple times?

Will there be a noticeable impact on system performance while the subset is being created?

Is there a better term than “sub-dataset”? That is a rather awkward term. The DIA MIDB software and documentation uses the term “view”, but this might be confusing to a TAMPS user.

Risks

Allowing the user to select the set of tables to download may allow the user to select a set of tables that will not be usable on the client workstation.

The database to be used to store the separate database must be the same size as the database on the client workstation.

Allowing the user to select the set of tables to download may allow the user to select a set of tables that will be too large for the subset database. Can we calculate the size required within the HMI, and warn the user if it may be too big? That would be desirable, but it may take a significant amount of time to calculate.

Tasks

Work out a final CONOPS on this issue with MP-LAN.

Determine the set of tables to be downloaded by default. This is dependent on the final MIDB 2.0 database schema.

Write the HMI to allow the subset to be specified.

Write the software to create the subset database.

JMCIS MIDB baseload

It is TBD how this external event will be generated. A much more detailed CONOPS needs to be worked out with JMCIS and MP-LAN on how processing should proceed when JMCIS does a new MIDB baseload (or a TF update which might overload the replication server). It is probable that this will end up being two (or even three) external events: JMCIS beginning baseload, JMCIS completed baseload, TAMPS completed baseload.

The basic design of what needs to happen in this case is:

JMCIS and TAMPS both disallow MIDB editing.

Replication of the MIDB is stopped between JMCIS and TAMPS.

JMCIS does the MIDB baseload.

JMCIS completes the MIDB baseload.

JMCIS begins queueing up replication updates but these must *not* be processed by TAMPS yet.

JMCIS allows MIDB edits (from JMCIS only).

TAMPS does the MIDB baseload (can be done in parallel with 3-6 if two data tapes are available).

TAMPS completes the MIDB baseload.

TAMPS begins accepting replication updates from JMCIS.

TAMPS allows MIDB edits (directed to JMCIS).

The processing required from the TAMPS MIDB software is:

disallow MIDB edits and stop replication while baseload in progress

do baseload using same source as JMCIS

begin accepting replication updates and allow MIDB edits.

It has been proposed that we get our baseload from JMCIS using Sybase dump / restore. This would require TAMPS to define its MIDB databases to be exactly the same as the JMCIS databases. This would probably lock us in tighter to JMCIS than we want to be, since we do not know at this point what their database configuration will be. It would, however, have the advantage that it might be possible to completely automate the processing on the TAMPS system.

Requirements

Requirements Section�Requirements Sub-section�Requirements

Keywords:�Satisfied by:��3.2.3�3.12�process JMCIS updates���HMI

TBD.

Data Flow

This data flow is based upon the initial design described above, and is subject to change pending a final CONOPS between TAMPS and JMCIS on this issue. Also, the diagram shows both a data path from the MIDB baseload tape to the TAMPS GMI database (through DEX) and a data path from the JMCIS GMI database to the TAMPS GMI database (through dump/restore). Only one of these data paths is expected to be present in the final design. The dump/restore data path will be selected if we can reliably do a dump on the JMCIS system and restore that dump on the TAMPS system, since this can be more fully automated, and ensures that the two GMI database are identical (as required for replication to be started). However, doing a dump/restore across different platforms may not be supported by Sybase.

TBD.

�

Figure � STYLEREF 4 \n �4.1.1.2�-� SEQ Figure * ARABIC �8� MIDB Data Load Data Flow

Control Flow

This control flow is also based on the initial design described above, and is subject to change pending a JMCIS/TAMPS CONOPS. It does not show any error checking or synchronization mechanism between JMCIS and TAMPS; these will be covered in detailed design.

Depending on the time required for TAMPS to load its database, JMCIS may combine the “start queueing updates” and “begin sending updates” steps into one step, with this step and “allow MIDB updates” to be performed after TAMPS completes its baseload. However, it seems likely that the TAMPS baseload will take enough time that JMCIS will not want to wait for TAMPS before beginning its MIDB update process.

The control flow as presented assumes that TAMPS will do an MIDB baseload using DEX. The TAMPS baseload can be started at any time after replication has been stopped. If we will be copying the database by using dump/restore, then there will be an additional step, immediately after JMCIS’s “perform baseload”, of “dump database” (preferably to be performed on the TAMPS system, so the dump file does not need to be copied from JMCIS to TAMPS), and the TAMPS step “perform baseload” will be replaced by “load database dump”.

�

Figure � STYLEREF 4 \n �4.1.1.2�-� SEQ Figure * ARABIC �9� MIDB Data Load Control Flow

TBD.

Assumptions

Concerns / Questions / Issues

This needs to be worked out with JMCIS as soon as possible.

Exactly what is required to be able to reliably do a dump from a database on JMCIS to a database on TAMPS? Is it sufficient for the TAMPS database to be as large as (or larger than) the JMCIS database? We must also look into the issue of user access to the database (the same issues that have caused numerous problems in previous version of TAMPS when restoring a database dumped on a different TAMPS system).

Can we automatically detect these events, or are we going to be dependent on the System Administrator walking up to the TAMPS machine and entering a command indicating that JMCIS is beginning its baseload?

How much of this processing will be driver by external events (and thus processed under a System Administration function), and how much should be placed within the MIDB Load CSC?

Risks

This design and implementation involves rather involved coordination with the JMCIS design and implementation, and with the MP-LAN design and implementation.

This processing may require manual intervention by the TAMPS System Administrator or Database Administrator to indicate that JMCIS is performing a baseload. If this is not done, TAMPS may attempt to edit an MIDB record in the middle of the JMCIS baseload.

If we do not use dump/restore to copy the MIDB baseload, then TAMPS must be sure to load exactly the same baseload version (and DEX filters, if any) used by JMCIS so that the database contents are identical. If TAMPS loads a different baseload, then replication will not be able to update records properly.

Tasks

TBD.

Alerts CSC

The Alerts CSC is used to watch for changes to MIDB data that may affect generated Radar Terrain Mask and Range Ring calculations. When such a change is detected, it will send a warning (yellow) alert to the Mission Planner and Database Administrator alert queues.

The Alerts CSC must watch for changes to DTED data, MIDB GMI data, and NID data.

Several mechanisms have been proposed for watching for the changes. The proposal which seems the most feasible is to create a daemon process (referred to above as the TAMPS MIDB RTM daemon). This daemon process would wake up periodically and query the database to see if any data has changed. This query is not expected to have a significant impact on system performance; however, performance tests will be run to verify this and to estimate proper interval between queries.

To monitor the MIDB GMI data, we cannot add a trigger to the GMI tables directly, since the MIDB database schema makes use of triggers, and a table can only have one trigger of each type (insert, update, delete). We can add a trigger to the history tables, which are updated whenever a record is changed in the GMI database, but that could conflict with future MIDB changes (we would also need to verify what happens in the history tables on an insert or delete). Instead, it seems best to query the data periodically and look for any records with an MIDB_TIMESTAMP since the last query.

To monitor the NID, the best proposal seems to be to add a trigger to the NID tables, which would then add a record to a table. This second table would then be monitored by the daemon process; if one or more records were found, then an alert would be sent and the table cleared. This would be more reliable than querying the contents of the NID, since while most NID tables have a DATE_ROW_CHNG field, it does not appear to have the precision or the reliability required for this purpose, and there are currently no triggers defined on any of the NID tables.

To monitor the DTED, the best proposal seems to be to add triggers to the DTED table, as for the NID tables above. Other possibilities are to query the TAMPS_CATALOG relation for DTED records (and examine the DATE_LAST_CHG field), or to search the map directories for files modified since the last query time.

In each case, the daemon process will check to see whether any records have been modified, and if so then one alert per data type (MIDB GMI, NID, DTED) is sent and, in the case of the MIDB, the query time is stored for use in the next query; in the case of the NID and DTED, the temporary table is cleared.

Requirements

Requirements Section�Requirements Sub-section�Requirements

Keywords:�Satisfied by:��3.2.7�1.1�alert on RTM data change���3.2.7�1.1.1�alert on DTED update���3.2.7�1.1.2�alert on MIDB GMI update���3.2.7�1.1.3�alert on NID update���3.2.7�1.2�alert on Range Ring data change���3.2.7�1.2.1�alert on DTED update���3.2.7�1.2.2�alert on MIDB GMI update���3.2.7�1.2.3�alert on NID update���3.2.7�1.3�support MIDB alerts���3.2.7�1.3.1�use data in MIDB alert���3.2.7�1.3.2�refer user to MIDB alert app���3.2.8�1.3.3�send MIDB alert to DBA���HMI

This will use the existing TAMPS Alerts HMI, except that users may be referred to the MIDB Alerts GOTS application for more details.

Data Flow

TBD.

Control Flow

TBD.

Assumptions

An alert should be sent on any data change, whether that change was part of a TAMPS manual update, or a TAMPS baseload, or, in the case of the MIDB, a change replicated from JMCIS.

Concerns / Questions / Issues

Exactly what tables need to be monitored for changes? Should any MIDB GMI update cause an alert, or only changes to certain tables? Presumably this should be only those tables that could be used by RTM or Range Ring calculation. These include the tables used to specify the “RTM” and “THREAT DENSITY” object actions within the Object Hierarchy, plus NID_RADAR_LAND_ANT_HEIGHT, NID_RADAR_RANGES, NID_SAM, NID_GUN_SYSTEM, DD_SAM_XREF, TAMPS_PLATFORMS, and TAMPS_NID_RANGES (plus the catalog of loaded DTED data). The list of tables referenced in the two object actions will be determined after the existing object data has been converted from MIIDS/IDB to MIDB.

We are planning on sending out Should one alert be sent out per data type (one if MIDB data has changed, one if NID has changed, one if DTED has changed)., Other possibilities that were considered wereor should this be one alert if any data has changed, andor one alert per record that has changed (this could result in a very large number of alerts).?

How often should the daemon process wake up and check to see if an alert needs to be sent? We will need to determine how much time is required for processing each time the query to complete.

The MIDB software has its own alert system included. However, initial investigation has not turned up a way to connect the two alert systems in any useful way. Therefore, we are not planning on using the MIDB alert software at present.

Risks

Under the current alert system, when an alert is sent to (for example) the Database Administrator role, then there will be a visual indication set on all workstations where the logged-on user has the Database Administrator role. However, as soon as any user reads and acknowledges the alert, it will disappear from all the workstations. We may need to come up with a system where the alert is sent to all connected workstations, and is only removed from that workstation when it is acknowledged by a user. That change, though, is beyond the scope of this SOR (it may be related to the MP-LAN SOR).

When connected to a JMCIS MIDB server, edits will be replicated from JMCIS to TAMPS, and an alert generated when the data on the TAMPS server is changed. This could lead to a large number of alerts as changes are made gradually on the JMCIS system (edits made by JMCIS users and TAMPS users). This problem is unlikely to be noticeable in the current environment, but it may become much more noticeable if JMCIS ever begins receiving replication updates from other systems (such as a theater command).

Tasks

Determine exactly what set of data changes should cause alerts to appear.

System Admin -> User Administration -> Accounts

In order for a TAMPS user to use the MIDB production software, the following must be true: The user must have a Sybase login with the same name; the user’s Sybase password must be registered with the BLTS daemon; the user must be a member of the “midbuser” and “midbpadm” groups; and the user must have the appropriate production permissions set (using the utility applications associated with the MIDB Production Subsystem).

It is normal TAMPS procedure to create a Sybase account for each new TAMPS user account that is created, so this should cause no change to the existing procedures.

(Although there might be changes required in the development lab environment.)

In a TAMPS-Afloat environment, each user also needs an account on the JMCIS Sybase server, and that account must have the same password as on the TAMPS Sybase server. We need to check for account name conflicts before actually creating the account. Our current understanding is that we do not need to register the account with the BLTS daemon running on the JMCIS system. We need to verify that JMCIS will allow TAMPS to create users in its Sybase database.

If the MIDB BLTS software is installed, then the user’s Sybase account and password must be registered with the BLTS daemon. If the BLTS software is not installed, then the account will be registered by the MIDB Application CSC calling a routine (provided by the User Administration CSC) to register an account. For this reason, the User Administration CSC code will be simplified if the BLTS software is known to have been installed at System Generation time.

Sybase password changes must be performed through the BLTS software. There is both a command-line interface, and an API should it be desirable to change a user’s Sybase password.

BLTS provides an API to create a Sybase account and register the account with BLTS at the same time. If we use this route, then the BLTS software must be installed and initialized at System Startup (which we might do anyway, for reasons discussed under MIDB Installation, above). It is unclear whether BLTS provides an API for managing which databases a Sybase user has access to.

It appears to be possible to register an account with the BLTS daemon from either a shell script or a program API. Both the account’s Sybase password and the server’s SA password must be known.

Assigning production permissions, though, might be a problem. The standard MIDB method for assigning these permissions is through a HMI. There is no known method for assigning these permissions outside of this application. It might be possible to come up with one; it is possible, though unlikely, that a future MIDB release could invalidate our method of assigning permissions. The permissions that need to be set also depend on the outcome of the “Local Record” proposal, and the CONOPS of editing records. Permissions will need to be set on both the TAMPS and JMCIS servers (in a TAMPS-Afloat environment); the permissions on the TAMPS server will normally allow read-only access in this environment.

It is also TBD whether we should:

provide the System Administrator with a button within the User Administration application which will display the MIDB Production Permissions application. This is the easiest to implement, and gives the System Administrator the most flexibility in assigning permissions. It does require the most knowledge by the System Administrator of the MIDB database and the associated software.

provide the Database Administrator with a menu item on the TAMPS WSE menu bar which will display the MIDB Production Permissions application. This is similar to the previous item, but shifts the responsibility to the Database Administrator rather than the System Administrator. It also requires substantial knowledge by the Database Administrator of the MIDB database and the associated software.

automatically assign MIDB permissions such that all users have MIDB permissions allowing them to create and modify MIDB records (and rely on role/privilege checking within the TAMPS WSE and DBA applications to control who will be able to access the MIDB editors). In this case, the MIDB permissions are set when the account is created, and will not need to be changed.

automatically assign MIDB permissions so that users who are authorized to have the TAMPS “Modify MIDB” privilege have MIDB permissions allowing them to create and modify MIDB records (and rely on role/privilege checking within the TAMPS WSE and DBA applications to verify that the user has the privilege active before allowing access to the MIDB editors). In this case, the MIDB permissions are set when the account is created and when the list of authorized roles and privileges for the account is changed.

automatically assign MIDB permissions so that users who have the TAMPS “Modify MIDB” privilege active have MIDB permissions allowing them to create and modify MIDB records. In this case, the MIDB permissions are set when the account is created, when the list of authorized roles and privileges for the account is changed, and when the list of active roles and privileges for the account is changed.

This choice depends on whether it is feasible to automatically assign MIDB permissions (and how difficult it is to do that). It may also depend on the final CONOPS for local record creation.

Currently, the only method supported by DIA for assigning MIDB permissions is through the MIDB Production Permissions application. In addition, the MIDB Production Permissions application allows permissions to be set by table or, in some cases, by country code within a table. It does require the System Administrator (or Database Administrator) to understand the basic structure of the MIDB.

It appearsmay be possible to automatically assign MIDB permissions based on TAMPS roles and privileges. This is done by writing records to the ZP_USER_PERM_TYPE and ZP_USER_PERM_RESPROD tables in the GMI database. In this case, the three latter items on the list above may be feasible. These would require little or no knowledge of the MIDB structure, and would allow integrating MIDB permissions with the TAMPS roles and privileges. However, it should be again noted that writing directly to these tables is not supported by DIA.

We feel that the best option, based on our current understanding of the MIDB production permissions, is to assign all TAMPS users permission (in the MIDB permission tables) to update the MIDB tables using the MIDB editors, and to use a new TAMPS privilege to control access to the MIDB editor applications. The new privilege will be called “Modify MIDB”, and will be associated with the Database Administrator role.

Requirements

Requirements Section�Requirements Sub-section�Requirements

Keywords:�Satisfied by:��3.2.2�1�accts need MIDB permissions���3.2.2�2�accts need JMCIS permissions���3.2.2�3�restrict maint access to DBA���3.2.2�3.4�restrict maint ops to DBA���HMI

This will use the existing TAMPS User Administration HMI, with possibly minor additions (such as the addition of a new DBA privilege, Modify MIDB).

Data Flow

�

Figure � STYLEREF 4 \n �4.1.1.2�-� SEQ Figure * ARABIC �10� User Administration Data Flow

Control Flow

TBD.

Assumptions

JMCIS will allow TAMPS to create user logins to its Sybase server.

TAMPS will be provided with the password of the “sa” username on the JMCIS MIDB server (or some other username with privilege to create logins).

Potential conflicts with JMCIS users can be checked for by querying the “syslogins” table of the JMCIS master database.

We do not need to perform any BLTS registration or permission assignments on the JMCIS machine.

Concerns / Questions / Issues

What method should be used to assign MIDB permissions to the users? Should we just give the System Administrator access to the MIDB Production Permissions application, or should we attempt to automatically assign permissions? (See the discussion under Design, above).

Need to coordinate with JMCIS that they have no problems with TAMPS creating users in their database (also that they need to check for username conflicts against TAMPS users). Is there ever a need to create the same username on both JMCIS and TAMPS?

Will the BLTS software be installed at System Generation? If not, we need to delay registering new TAMPS user accounts with BLTS if BLTS has not yet been installed.

Is there a method other than the isql procedure “sp_adduser” that we should use to specify that a user has access to a database?

Risks

If we attempt to automatically assign MIDB permissions, there is a risk that we might not properly set all the required values (or that a future MIDB release might change the storage method of the permissions), and MIDB editing would not work properly.

Both TAMPS and JMCIS must check for username conflicts, since both systems will need to create Sybase accounts on the JMCIS MIDB server. There is a risk that one system or the other will not correctly implement the conflict checking,

If a user uses the isql procedure “sp_password” to change an SQL password, it could lock that user out due to the new password not being stored in the BLTS daemon. If this is done for the “sa” account, then there could be more serious problems (including locking out all users).

When a workstation is being connected to the MP-LAN, the check for conflicting user names on JMCIS may require a TAMPS user account that is being copied from the workstation to be renamed even when there is no conflicting TAMPS account. This does not introduce new risks (these risks are covered under the MP-LAN scenario for connecting a workstation to the MP-LAN), but increases the number of cases that will be subject to these risks.

Tasks

Determine how the MIDB permissions should be assigned (manually or automatically, as discussed under Design, above). If assigning permissions automatically, determine how to set permissions without user interaction.

Write a function that other Core CSCs can use to create a Sybase account and register it with the BLTS server, and (if feasible) a function that other Core CSCs can use to create a complete TAMPS account (including Unix account, Sybase account, and BLTS server registration).

System Admin -> System Shutdown

This event is discussed under the external event “System Shutdown”, above. It is considered as an external event to emphasize that the processing (if any) will take place in the system startup/shutdown files (in the /etc/rc2.d directory), or some other system file rather than in the immediate callbacks of the “System Shutdown” menu item. Performing the logout processing at this point allows the processing (if any) to be performed not only for a normal TAMPS shutdown, but for other cases in which a System Administrator initiates an orderly shutdown through a shell window.

System Utilities -> User Roles

The processing to be performed under this HMI item depends on the MIDB permissions implementation chosen from the options described under the User Administration CSC, above. If the MIDB permissions are automatically set based on the user’s active roles and privileges, then we must update the MIDB permissions whenever these privileges change. The processing required for updating these permissions will be described under the User Administration CSC, above. Otherwise, there will be no processing required for this SOR for this HMI item.

Logoff

This event is discussed under the external event “User Logout”, above. It is considered as an external event to emphasize that the processing (if any) will take place in the user’s .xinitrc file, or .logout file, or some other system file rather than in the immediate callbacks of the “Logout” menu item. Performing the logout processing at this point allows the processing (if any) to be performed not only for a normal TAMPS logout, but for many cases in which the X session crashes and logs the user out.

��Database Administrator Functions

Design Overview

This section describes how the MIDB 2.0 Products affect the major DBA functions.

The following table shows the DBA functions affected by each of the MIDB 2.0 products, services and roles. The DBA role involves the following primary functions: Load MIDB Data, Edit MIDB, Object Editor, Archive/Restore. (Load MIDB Data refers to loading MIDB data from a distribution tape or other external source; Edit MIDB refers to displaying MIDB records for a TAMPS user to update, and storing the updated records.)

MIDB 2.0 Products,

Services and Roles�DBA Function

affected by MIDB 2.0 ��Database Schema�Load MIDB Data, Edit MIDB, Object Editor, Archive/Restore��Application Software��� Installation��� Loader�Load MIDB Data, Edit MIDB�� Production Editors�Edit MIDB�� Query Processing�Edit MIDB�� COTS���System Services��� BLTS daemon�Load MIDB Data, Edit MIDB, Object Editor�� DEX daemon�Load MIDB Data�� RPCs���MIDB Roles��� Producer�Load MIDB Data, Edit MIDB�� Analyst�Load MIDB Data, Edit MIDB�� User���

All DBA functions associated with threat/intel processing are affected by the MIDB 2.0 database schema. The DBA query and display functions are supported by integration into the Object Hierarchy. However, since the dependence of these functions on database schema is captured within the Object Hierarchy, integration of the MIDB 2.0 database schema into the TAMPS object hierarchy will provide the required functionality. Our design insures that the affect of the MIDB 2.0 database schema on DBA functions will be defined and controlled by the new object hierarchy, and the integration of each design component with the object hierarchy.

The MIDB 2.0 Application Software being integrated into TAMPS affects the DBA functions of Load MIDB Data and Edit MIDB. The DBA functions of Load MIDB Data and Edit MIDB are dependent on the MIDB 2.0 Loader. The MIDB 2.0 Production Editors and Query Processing affect the DBA function of Edit MIDB, since TAMPS will use the Production Editors to edit the data. The MIDB 2.0 Production Editors require the MIDB 2.0 Query Processing - when the editor is used, it first starts the Query Processing to query for the data records the user is requesting to edit. Our design will tailor each use of the MIDB 2.0 Production Editors to the specific type of data being edited, and where possible, to the specific record(s) of data being edited. In our design, this is accomplished by initiating the Production Editor with the appropriate options (command line arguments) to limit the type of data (i.e. facility, unit, equipment) and/or the specific data records. The MIDB 2.0 Production Editor can be initiated to edit a single data record, or a list of multiple records.

Below is a list of all HMI paths to MIDB edits or queries. The list is an indication of the system-wide effect of MIDB integration. Our design integrates the MIDB 2.0 Production Editor into those portions of TAMPS core that perform edits on the MIDB. Portions of TAMPS core that query the MIDB will be modified to use an Accessor function or will access the data through the supplied Object Hierarchy objects. The Accessor function provides a general application interface for performing standard queries on the MIDB. As part of our design, the Accessor function will access the MIDB through an ODBC interface; therefore, any application using the Accessor function will be using an ODBC layer for MIDB queries.

DBA main application

 menu item:�Edit or Query�How Affected by MIDB 2.0 ��Display -> Database Search�Query�integrate GMI (non-TGT) tables into OH ODBC;

build queries

multiple databases;

multiple servers��Threat/Intel -> Targets�Query�integrate GMI TGT tables into OH;

uses MIDB Interfacebuild queries;

multiple databases;

ODBCmultiple servers��Threat/Intel -> OOB�Query�integrate GMI (non-TGT) tables into OH;

uses MIDB Interface multiple databases;

ODBCmultiple servers��Threat/Intel -> Planner OOB�Query�uses new tables, columns��Threat/Intel -> Range Rings�Query�integrate GMI (non-TGT) tables into OH;

uses MIDB Interface;

ODBC��Threat/Intel -> Radar Terrain Mask�Query�integrate GMI (non-TGT) tables into OH;

uses MIDB Interface;

ODBC��Threat/Intel -> Threat Density Shading�Query�uses new tables, columns��Update -> Targets�Edit�integrate GMI TGT tables into OH;

uses MIDB Target Editor��Update -> Threats -> OOB�Edit�integrate GMI (non-TGT) tables into OH;

 uses MIDB GMI Editor��Update -> Threats -> Merge Planner OOB�Edit�integrate GMI (non-TGT) tables into OH;

uses MIDB GMI Editor use new dit functions to copy interim threats to MIDB database��Update -> Data Dictionary�???���Output -> Reports�Query�integrate all GMI tables into OH;

 integrate TGT tables into OH uses MIDB Interface;

ODBC��Output -> Messages�Query�integrate all GMI tables into OH;

 integrate TGT tables into OH uses MIDB Interface;

ODBC��

The MIDB 2.0 System Services affecting DBA functions include the Brokered Login Trusted Service (BLTS) daemon and the Data Exchange (DEX) daemon. Since all queries of MIDB data that use the MIDB software require the BLTS daemon, then all DBA functions requiring MIDB query capability also require the BLTS daemon. The DBA functions of Load MIDB Data, Edit MIDB, and Object Editor are affected by the MIDB BLTS daemon for this reason. One affect of the BLTS is that each user will require a separate account and password on each MIDB server. This affects ownership of data records, since ownership is designated by username. In the past, “tamps” was the owner of almost everything that was not owned by “system”. When DBAs are tagged as the owners of data records, now do we tag the owner as “username” or as “DBA”. Defining who will own what, under what circumstances needs to be well-defined. The DBA Load MIDB Data function will use the MIDB 2.0 DEX service. Note that the DBA role involves loading many different datasets (about 14). In terms of loading data, the only dataset affected by this design is the MIDB dataset, and only the MIDB dataset will be loaded using the DEX software. As part of this design, we considered using the DEX software to perform Archive/Restore MIDB functions. Since MIDB is only one of the 14 datasets that can be archived/restored, and since the DEX software only applies to MIDB dataset, we determined that the effort required to integrate the DEX software into the Archive/Restore function was not justified for this one dataset.

MIDB 2.0 offers access control through the use of Unix account groups, and through its own Production Permissions utility. However, we do not plan to use the MIDB access control facilities, because they do not interface with the existing TAMPS roles and privileges, and the only supported interface to these controls is though an HMI (no programmatic access). Instead, we plan to set up all TAMPS users with full MIDB permissions, and use a new TAMPS privilege, “Modify MIDB”, to control access to the MIDB production software (editors).The MIDB 2.0 Roles affect the DBA functions of Load MIDB Data and Edit MIDB. MIDB user accounts require that a user be a member of the midbuser group and midbpadm user group. Using the MIDB 2.0 editor requires MIDB Producer role, and using the MIDB 2.0 query processor requires Analyst role. The User Accounts CSC, described under System Administration CSC design of the user accounts functions, includes these details.

Design Summary

This section describes how the DBA functionality will be affected by MIDB 2.0 integration as viewed by the HMI paths.

The following table shows how the functionality behind the WSE menu items is affected by the MIDB 2.0 integration. Only WSE main application menu items associated with the DBA role that are affected by this design are listed.

WSE menu items

 affected by MIDB 2.0:�How Affected by MIDB 2.0 ��DBA -> DBA Module�see detailed chart below��DBA -> Object Editor�new OH, multiple DBs, multiple servers��DBA -> Threat Scenarios�REMOVED��

The following table shows how the functionality behind the DBA application’s (ddt_mmi) menu items is affected by the MIDB 2.0 integration. Only ddt_mmi menu items that are affected by this design are listed.

DBA menu items

affected by MIDB 2.0:�How Affected by MIDB 2.0 ��Display -> Database Search�new OH, ODBC, multiple DBs, multiple servers��Threat/Intel -> Targets�uses MIDB Interface, ODBC��Threat/Intel -> OOB�uses MIDB Interface, ODBC��Threat/Intel -> Planner OOB�uses MIDB Interface, ODBC��Threat/Intel -> Range Rings���Threat/Intel -> Radar Terrain Mask���Utilities -> Load -> MIDB�uses MIDB Loader��Utilities -> Remote Updates -> JMCIS to TAMPS Threats�REMOVE (automatic)��Utilities -> Remote Updates -> RAAP to TAMPS Threats�REMOVE��Utilities -> Remote Updates -> JMCIS to TAMPS Weather�moved to Util->Load->Envir��Utilities -> Remote Updates -> TAMPS to RAAP Threats�REMOVE��Utilities -> Archive/Restore�IDB dataset changed to MIDB dataset, new support tables��Utilities -> Data Removal -> Dataset�IDB dataset changed to MIDB dataset, new support tables��Utilities -> Tactical Data Backup -> Backup�use GMI dataset��Utilities -> Tactical Data Backup -> Restore�use GMI dataset��Utilities -> IDB -> Rebuild TIDB Indices�REMOVE��Utilities -> IDB -> Extension Tables Initialization�REMOVE��Utilities -> IDB -> Hitlist Values Initialization�REMOVE��Update -> Targets�uses MIDB Target Editor��Update -> Threats -> OOB�uses MIDB GMI Editor��Update -> Threats -> Merge Planner OOB�uses MIDB Interfaceuse new dit functions��Update -> Threats -> Elint -> EPL�now Update->Threats->EPL��Update -> Threats -> Elint -> NERF�REMOVE���Output -> Reports�uses MIDB Interface��Output -> Messages�uses MIDB Interface��

The following tables map HMI paths associated with affected functionality to CSCs. Only DBA application menu items that are affected by this design are listed.

WSE menu items

affected by MIDB 2.0:�CSC��DBA -> DBA Module�see detailed table below��DBA -> Object Editor�Object Editor, Data Query��DBA -> Threat Scenarios���

DBA menu items

affected by MIDB 2.0:�CSC��Display -> Database Search�Data Query, Query Tool��Threat/Intel -> Targets�Targets��Threat/Intel -> OOB�Interim Threat��Threat/Intel -> Planner OOB�Interim Threat��Threat/Intel -> Range Rings���Threat/Intel -> Radar Terrain Mask���Utilities -> Load -> MIDB�MIDB Load��Utilities -> Remote Updates -> JMCIS to TAMPS Weather�MP LAN SOR��Utilities -> Archive/Restore�Archive/Restore��Utilities -> Data Removal -> Dataset�MIDB Load��Utilities -> Tactical Data Backup -> Backup�Archive/Restore ?��Utilities -> Tactical Data Backup -> Restore�Archive/Restore ?��Update -> Targets�Targets��Update -> Threats -> OOB�MIDB GMI Data��Update -> Threats -> Merge Planner OOB�Interim Threat��Output -> Reports���Output -> Messages���

Any query is executed using the MIDB database on the TAMPS Server. Changes to records, either updates or deletion, are executed using the MIDB database on the JMCIS Server. The TAMPS Server MIDB database receives the same updates by the replication server. The synchronization of the two MIDB databases, TAMPS and JMCIS, is handled by MP-LAN.

Database Schema Changes

Table Name�Action�Description��DD_DATABASES�new�contains the available databases��DD_SCENARIOS�new�contains information about the DBA defined scenarios��DD_MIDB_GMI_SUBSET�new�contains definition of subset of GMI data to download from server to client��DD_DATASET�modify�add columns database_name and archivable; also, may now contain more than one FILE_PREFIX value for a dataset.��RTM_COVERED_RADARS�modify�change EQUIP_CODE to from char(5) to varchar(7).��IDB tables�delete�no longer used��MIDB tables�new�per DIA-defined MIDB schema��

Design

DBA -> Display -> Database Search

The database search functionality within TAMPS will not undergo significant major changes under this SOR. There are no HMI changes to the Database Search menu items or to the Query Tool Dialog. Query Processing will be simplified by eliminating stored procedures, thus providing one centralized method of query processing. Currently, ad hoc queries are performed by constructing a new stored procedure, then the newly created stored procedure is executed. Our design eliminates this method, and performs all queries “on-the-fly”. The code modifications are straight forward, and it is estimated that the operational speed of the target hardware will more than compensate for any small loss in query execution time due to lack of a compiled and optimized stored procedure. The centralized connection point from the Query Processing to the database server will provide ODBC functionality.

During the design process, we considered integrating the DIA Query Tool into TAMPS to satisfy the query requirement. The justification for integrating the DIA-provided Query Tool is that it is always used by the DIA Production System Editors to query the required data prior to editing; therefore, we are partially migrating to the DIA-provided Query Tool by integrating the DIA Production System Editors. Since the DIA Query Tool provides capabilities that are equivalent to TAMPS Query Tool capabilities, migration to the GOTS Query Tool is the obvious, preferred path for TAMPS 2000. However, a complete migration to the DIA Query Tool requires migration to the DIA-provided map tools, layer tools, and report tools because these tools are intimately linked with the TAMPS Query Tool. The trade reduces to the medium-high cost and risk of full migration of TAMPS query, object hierarchy, maps, layers, reports to DIA-provided products versus the desirability to maximize the usage of GOTS products while achieving TAMPS goals.

The DIA Query Tool will still be required when using the DIA Production System Editors, and it will be available to users with appropriate TAMPS privileges. While this may result in some confusion for users who must use both tools, this is unavoidable. The confusion is expected to be minimized by limiting access to the DIA Query Tool to users who are authorized to edit MIDB records (and are therefore expected to be at least somewhat familiar with the MIDB structure). The DIA Query Tool can also be a troubleshooting tool for the Database Administrator.

The elimination of stored procedures in this CSC does not imply that the use of stored procedures is entirely eliminated from TAMPS.

Requirements

The following requirements are currently met by the TAMPS Database Search capability.

Requirements Section�Requirements

Sub-section�Requirements

Keywords:�Satisfied by:��3.2.5.1�7�save as�dmt_query_save_callback()��3.2.5.1�8�select and execute pre-defined�dmt_query_browse_callback()��3.2.5.1�8.1�DBA add queries�dmt_query_new_callback()��3.2.5.1�8.2�DBA remove queries�dmt_query_delete_callback()��3.2.5.1�8.3�select by object�dmt_query_browse_callback()��3.2.5.1�9�retrieve���3.2.5.1�9.1�execute�dmt_query_execute_callback()

dmt_qfq_execute_callback()��3.2.5.1�9.2�add to user list�dmt_qfq_add_callback()��3.2.5.1�9.3�select from user list���3.2.5.1�9.4�remove from user list�dmt_qfq_delete_callback()��3.2.5.1�10�edit�dmt_query_edit_callback()��3.2.5.1�11�delete�dmt_query_delete_callback()��3.2.5.1�11.1�delete�dmt_query_delete_callback()��3.2.5.1�11.1.1�planner query deletion�dmt_query_delete_callback()��3.2.5.1�11.1.2�DBA query deletion�dmt_query_delete_callback()��3.2.5.1�11.2�inhibit query deletion�dmt_query_delete_callback()��3.2.5.1�12�sub-query�dmt_query_sub_convert_callback()

dmt_query_sub_delete_callback()��

HMI

The following illustration shows a representation of the requirements listed above related to the specific HMI component shown. The requirements sub-section number from the chart above is shown in a box next to the HMI component that satisfies the requirement. Also shown is the significant functional component that satisfies each requirement. The illustration is a graphical representation of the information presented in the chart above.

���������������������

Figure � STYLEREF 4 \n �4.1.2.3�-� SEQ Figure * ARABIC \r 1 �1� Database Search HMI

Data Flow

The Data Query CSC data flow shows that it receives requests from a DBA to edit objects (forwarded to the Object Editor CSC) and it receives requests from a DBA or planner to perform queries (forwarded to the Query Processing CSC). The database schema from the MIDB database and other TAMPS tactical databases are used by the DBA to create Object Definitions. Both DBA and MPM send requests for Query Processing and receive results and status. The Data Query CSC uses the MIDB database that is on the TAMPS server in a stand-alone environment or when connected to JMCIS.

�

Figure � STYLEREF 4 \n �4.1.2.3�-� SEQ Figure * ARABIC �2� Data Query Data Flow

Control Flow

The Data Query control flow shows that the DBA is given the capability to use the object editor and the query processing capabilities. Planners only have the capability to use the query processing capability.

�

�

Figure � STYLEREF 4 \n �4.1.2.3�-� SEQ Figure * ARABIC �3� Data Query Control Flow

Assumptions

None

Concerns / Questions / Issues

None

Risks

We determined that full migration to the DIA-provided Query Tool under this SOR would involve the following risks:

The complexity of a full migration to the DIA-provided Query Tool leads to increased cost and technical risk, because the TAMPS software functionality related to maps, layers, object hierarchy, reports would all have to be migrated along with the Query Tool. Note that this complete migrationmigraton could be done in steps where one functional component is migrated in each step, keeping the total migration plan in mind during the entire process. This process would be costly and time-consuming.

The complexity of connecting TAMPS map to the DIA Query Tool

our geo layer information would have to be input to the DIA Query Tool

the query results would need to be sent to TAMPS map, layers, buckets, symbols, amp info, etc.

Complete integration would require that all TAMPS canned queries be translated and stored in the MIDB Query Tool stored procedures.

Partial integration beyond the minimal amount required by the DIA Editor leads to the promotion of two (2) query tools

Tasks

modify to use ODBC - since access is localized to a few functions

not using stored procedures - so modify code, modify load scripts

WSE -> DBA -> Object Editor

Requirements

The following requirements are currently met by the TAMPS Object Editor.

Requirements Section�Requirements Sub-section�Requirements

Keywords:�Satisfied by:�������3.2.5.2�1�create�oet_createObjectCallback ()��3.2.5.2�2�filter condition�oet_det*.c��3.2.5.2�2.1�single column�oet_det*.c��3.2.5.2�2.2�one or more Object Determinators�oet_det*.c��3.2.5.2�2.2.1�use data record of object type�oet_det*.c��3.2.5.2�3�wildcards�oet_det*.c��3.2.5.2�4�store�OH��3.2.5.2�5�retrieve�OH��3.2.5.2�6�delete�oet_deleteObject ()��3.2.5.2�7�modify�oet_editObject ()��3.2.5.2�8�different symbols�oet_invokeSymbolMapping ()��3.2.5.2�8.1�one active symbol�oet_invokeSymbolMapping ()��3.2.5.2�8.2�default to TAMPS symbol set�oet_invokeSymbolMapping ()��3.2.5.2�9�review�obt_getBrowserForm ()��3.2.5.2�9.1�inhibit updates during review�obt_getBrowserForm ()��3.2.5.2�10�any GMI tables�obt_getBrowserForm ()��3.2.5.2�11�any Target tables�obt_getBrowserForm ()��3.2.5.2�12�multiple tables�oet_tab*.c

oet_col*.c��3.2.5.2�13�multiple databases�oet_tab*.c (with mods)

oet_col*.c (with mods)��

HMI

The following illustration shows a representation of the requirements listed above related to the specific HMI component shown. The requirements sub-section number from the chart above is shown in a box next to the HMI component that satisfies the requirement. Also shown is the significant functional component that satisfies each requirement. The illustration is a graphical representation of the information presented in the chart above.

�������������

Figure � STYLEREF 4 \n �4.1.2.3�-� SEQ Figure * ARABIC �4� Object Editor HMI

Edit Dialog

��������������

Figure � STYLEREF 4 \n �4.1.2.3�-� SEQ Figure * ARABIC �5� Edit Dialog HMI

Data Flow

The Object Editor data flow shows that only a DBA can create, modify or delete objects. The Object Editor is integrated with the database schema of the MIDB database and with other TAMPS databases allowing the DBA to create or modify object definitions stored in the object hierarchy database.

�

Figure � STYLEREF 4 \n �4.1.2.3�-� SEQ Figure * ARABIC �6� Object Editor Data Flow

Control Flow

The Object Editor control flow shows that once an object is selected, then the DBA can delete or edit the object. The delete and edit conditions represent the action to be performed after the corresponding button has been pressed. If the object exists, then the database schema, existing object definition, and the parent object definition are retrieved. If the object is new, then an initial object definition is created. Once the initial object definition is displayed in the Object Editor, the DBA can edit object components. If the DBA chooses to save the modified object definition, then the object is saved to the Object Hierarchy, and the new object definition is retrieved and displayed in the Object Editor.

�

�

Figure � STYLEREF 4 \n �4.1.2.3�-� SEQ Figure * ARABIC �7� Object Editor Control Flow (1 of 2)

�

�

Figure � STYLEREF 4 \n �4.1.2.3�-� SEQ Figure * ARABIC �8� Object Editor Control Flow (2 of 2)

Assumptions

None

Concerns / Questions / Issues

None

Risks

None

Tasks

Object Editor - top level tasks

modify to handle multiple databases

modify to handle multiple servers

integrate MIDB, GMI, TGT data into Object Hierarchy

modify to use ODBC

Object Editor - Edit object detailed tasks

map old IDB tables, columns, object determinators to new MIDB 2.0 tables, columns, determinators. If we can not map (i.e. if there is no new column that is an appropriate match for the old column), then modify object definition by dropping columns from the object definition. We believe that ALL columns that are currently required have an equivalent column in MIDB 2.0.

modify object action columns, tables, attributes

modify values for object determinators - some have changed.

add to list of lat/lon tables (where is this derived from?)

DBA -> Database Search -> New, Edit (Query Tool)

There will be no visible changes to the user in the TAMPS Query Tool, except that the IDB-based columns in the lists of available columns will be replaced with MIDB-based columns.

There will be some changes made within the query processing, though, to accommodate the fact that not all of the TAMPS data will be stored within the same Sybase database, as had been the case in the past.

When creating the SQL for any query, it will be necessary to be sure that the correct database is being referenced. In the case of the object-based queries, the database being referenced will vary, depending on the object being queried, and there will be cases where a join will need to be done between tables located in different databases. As long as the databases are located on the same Sybase server, this can be accomplished by including the database name in all references to the table name (i.e., instead of “TABLE”, we would use “DATABASE..TABLE”).

If the databases to be joined are located on different Sybase servers, though, then the join is much more difficult. In that case, we would need to run one query on the appropriate Sybase server, and then running a query on the other Sybase server, and matching up the results. Depending on the data being processed, it might be better to run the second query once for each record returned from the first query -- although there is overhead involved in running the query multiple times, much less data would be returned and matching the records would be far easier.

Fortunately, our current understanding of the MP-LAN and Trusted TAMPS designs is that only a limited amount of data will not be stored on the same Sybase server as the MIDB data, and that this data will not be referenced by the Object Hierarchy objects. Therefore, we do not plan to support multi-server queries at this time.

Another consequence of the fact that the data will be spread across multiple databases is that the object-based queries will no longer use stored procedures. The current TAMPS procedure is to create a stored procedure when an object-based query is saved, and then to reference that stored procedure when running the query. For a temporary query, a stored procedure is created, immediately executed, and not used again (it is deleted when the user runs a new temporary query).

Instead, we will generate SQL text from the data stored in the DD_QUERY, DD_CONDITIONS, and DD_USER_FIELDS tables, and execute that directly. No stored procedures will be used for object-based queries. This is expected to have a small negative impact on the execution speed of pre-defined queries, but the impact is not expected to be noticeable to the user. The impact on user-defined queries is harder to predict, but is expected to be even smaller than that for pre-defined queries (and may be positive for temporary queries). This will also increase maintainability, since all the information for the pre-defined queries will now be stored in the DD_QUERY and related database tables (previously it was also stored in the dbt_procedures.sql file).

It should be noted that the removal of stored procedures only applies to queries based on objects in the TAMPS Object Hierarchy. Other application queries will not be affected.

One additional change, required by the design of the MIDB, is that the object-based queries will now use “outer joins” whenever possible. Tables containing data which is required for TAMPS to process the object will be considered “required tables” (This data includes the object determinator for the object, and the latitude and longitude columns for spatial objects.) All other tables will be considered “optional tables”, and will be referenced in the SQL query text using an “outer join”. If no data record is found in an optional table, then the object instance will still be retrieved, processed, and displayed -- however, the data columns that referenced that table will contain NULL.

An example of how this would benefit the TAMPS user would be a radar facility. Most of the columns for that radar might be stored in the MIDB table “FAC”. However, we could get parametric data from a NID table. Suppose the user performs a query against this object, and for some reason there is no record in the NID for one of the facilities. Under the current TAMPS implementation, the facility without the NID data would not be retrieved by the database query, and would not appear on the user’s screen. Using the “outer join”, the facility would still be retrieved, and would appear on the user’s screen (although some data columns would not be filled in).

Requirements

The following requirements are currently met by the TAMPS Query Tool.

Requirements Section�Requirements Sub-section�Requirements

Keywords:�Satisfied by:��3.2.3�4.4�pre-defined queries���3.2.3�4.5�spatial objects���3.2.3�4.6�textual objects���3.2.3�4.7�retrieve “best” data���3.2.3�4.8�retrieve historical data���3.2.3.5�3.1�TAMPS server processes queries���3.2.5�1.1�location of spatial object���3.2.5�1.1.1�use ilat/ilon���3.2.5�1.1.2�use WGS-84 lat/lon���3.2.5�1.1.3�use lat_radian/lon_radian���3.2.5�1.2�use active geo filter���3.2.5�1.3�spatial object display symbol���3.2.5�1.3.1�display symbol into���3.2.5�1.4�textual display���3.2.5�1.5�query results in text and symbol���3.2.5�1.6�text object���3.2.5.3�1�filter condition�dmt_qnecond.c��3.2.5.3�1.1�comparisons: equal to, etc.�dmt_qnebtw*.c

dmt_qnein*.c��3.2.5.3�1.2�and, or , etc.�dmt_qneopcb.c��3.2.5.3�1.3�value�dmt_qnev*.c��3.2.5.3�1.4�user inputs value�dmt_qnev*.c��3.2.5.3�1.5�default value�dmt_qnev*.c��3.2.5.3�1.6�wildcard�dmt_qnev*.c��3.2.5.3�3�additional elements�dmt_qneres.c��3.2.5.3�4�more than 1 table or database���3.2.5.3�4.1�database joins���3.2.5.3�5�exec and display w/o saving�dmt_qne_execute_callback()��3.2.5.3�5.1�edit�dmt_qne_edit_callback()��3.2.5.3�5.2�save�dmt_qne_save_callback()��3.2.5.3�6�save as�dmt_qne_save_callback()��3.2.5.3�6.1�prevent replacing existing query�dmt_qne_save_callback()��3.2.5.3�6.2�prevent replacing pre-defined queries�dmt_qne_save_callback()��3.2.5.3�6.3�save as new query�dmt_qne_save_callback()��

HMI

The following illustration shows a representation of the requirements listed above related to the specific HMI component shown. The requirements sub-section number from the chart above is shown in a box next to the HMI component that satisfies the requirement. Also shown is the significant functional component that satisfies each requirement. The illustration is a graphical representation of the information presented in the chart above.

���

Figure � STYLEREF 4 \n �4.1.2.3�-� SEQ Figure * ARABIC �9� Query Tool HMI

Data Flow

�

Figure � STYLEREF 4 \n �4.1.2.3�-� SEQ Figure * ARABIC �10� Query Tool Data Flow

Control Flow

�

Figure � STYLEREF 4 \n �4.1.2.3�-� SEQ Figure * ARABIC �11� Query Tool Control Flow

Assumptions

NoneThe queries executed on the client workstations will use the MIDB database on the TAMPS Server.

The current processing for symbol sets will be used.

Concerns / Questions / Issues

NoneWill need to add the database name to the query in order to resolve multiple database query. This only handles the cases when the databases are on the same server. Will there be a need to handle queries across multiple servers?

Risks

None

Tasks

no more stored procedures, modify query execution - currently generates a stored procedure for temp queries, then execs the stored procedure

update existing object queries to use MIDB schema objects

no need to load stored procedures

must review existing stored procedures and remove object-based procs.

change DD_DATASETS, must add columns for database_name and dbserver_name

Threat/Intel -> Planner Merge Planner OOB

The Planner Merge OOB dialog is initiated from the DBA->Update->Threat/Intel menu item. This dialog provides the capability for the DBA to apply the planner threat data to the MIDB database. The TAMPS_INTERIM_THREAT database table contains the planner threat data to be added to the MIDB database. Once the data has been added to the MIDB database, the interim threat data is deleted from the TAMPS_INTERIM_THREAT database table.

The current functionality for the DBA add, delete, edit and display interim threats will not be affected by this change.

Requirements

The following requirements are currently met by the Interim Threat capability (not just the Merge Planner OOB capability).

Requirements Section�Requirements Sub-section�Requirements

Keywords:�Satisfied by:��3.2.3.2�1�create�dil_AddInterimThreat.c��3.2.3.2�2�storage�TAMPS_INTERIM_THREAT��3.2.3.2�3�display�dil_DisplayInterimThreats.c��3.2.3.2�3.1�graphic display�dil_DisplayInterimThreats.c��3.2.3.2�3.2�textual display�dil_DisplayInterimThreats.c��3.2.3.2�4�modify�dil_EditThreats.c��3.2.3.2�5�delete�dil_DeleteThreats.c��3.2.3.2�6�ownership�dil_EditThreats.c��3.2.3.2�7�range rings�edt_mera_cb()��3.2.3.2�8�radar terrain mask�ert_int_rtm_init()��3.2.3.2�9�DBA delete interim threat�dil_DeleteThreat.c��3.2.3.2�10�DBA update MIDB�modify dil_DbaAddInterimThreatToIdb.c��3.2.3.2�11�auto delete after update MIDB�dil_DbaAddInterimThreatToIdb.c��

HMI

The following illustration shows a representation of the requirements listed above related to the specific HMI component shown, which will not be changing. The requirements sub-section number from the chart above is shown in a box next to the HMI component that satisfies the requirement. Also shown is the significant functional component that satisfies each requirement. The illustration is a graphical representation of the information presented in the chart above.

��

Figure � STYLEREF 4 \n �4.1.2.3�-� SEQ Figure * ARABIC �12� Planner Merge OOB

��Data Flow

The data flow diagram shows the additional processing that occurs to save the interim threat data in the MIDB database. Steps 1 and 3 are currently implemented in the dil_DbaAddInterimThreatToIdb.c source file. Step 2 is the change to be implemented.

�

Control Flow

The control flow remains the same except for writing the interim threats to the MIDB database instead of the TAMPS database.

Assumptions

Current interim threat capability meets all requirements

Continue to delete interim threats from TAMPS db when threats are added to MIDB database.

Concerns/Questions/Issues

None

Risks

None

Tasks

Modify dil_DbaAddInterimThreatToIdb.c to add threats to MIDB database.

Target Query

The Targets Query dialog is initiated from the DBA->Threat/Intel->Targets menu item. This capability is identical to how targets queries are performed by the mission planner. This capability is discussed in the Mission Planner section of this document.

Threat OOB Query

The Threat OOB Query dialog is initiated from an DBA->Threat/Intel->OOB menu item. This capability is identical to how threat order of battle queries are performed by the mission planner. This capability is discussed in the Mission Planner section of this document.

Range Rings

The Range Rings dialog is initiated from DBA->Threat/Intel->Range Rings menu item. This capability is discussed in the Mission Planner Functions section of this document.

Radar Terrain Mask

The Radar Terrain Mask dialog is initiated from DBA->Threat/Intel->Radar Terrain Mask menu item. This capability is discussed in the Mission Planner Functions section of this document.

Target Editor

The Target dialog is initiated from DBA->Update->Targets menu item. The current dialog for updating targets will be replaced with the DIA Production Software.

Currently, when the DBA uses the TAMPS target editor the map display is not updated when the target editor has been exited. The DBA must initiate a re-query sequence in order to display the target changes that were made while using the editor. This sequence being (1) using the clutter/declutter feature to delete the current target data from the map display and (2) querying for the target data a second time.

When implementing the MIDB target editor, the desire is to perform the re-query of the target data and re-display the updated target data on the map after using the MIDB editor for the DBA. The original query that has populated the map display will be saved in the target object in the bucket. The saved query will be executed after the MIDB editor has been exited to retrieve target data that was on the map display. Any target that was changed while using the MIDB editor will now be redisplayed (with all corresponding edits).

In a JMCIS environment, the DBA will be editing the target records from the MIDB database which is on the JMCIS Server. The updated target data will be replicated back to the TAMPS Server MIDB database.

Requirements

The following requirements are met by the Target Editor (which is the editor supplied by the DIA Production Software.)

Requirements Section�Requirements Sub-section�Requirements

Keywords:�Satisfied by:��3.2.4�3.1�maintain target���3.2.4�3.3�create targets�DIA Editor��3.2.4�3.3.1�create target�DIA Editor��3.2.4�3.3.4�create target from map point�DIA Editor��3.2.4�3.3.5�create target�DIA Editor��3.2.4�3.4�modify target�DIA Editor��3.2.4�3.4.1�modify target�DIA Editor��3.2.4�3.5�delete target�DIA Editor��3.2.4�3.5.1�delete target�DIA Editor��3.2.4�3.6�JMCIS database�MP LAN��HMI

The Target dialog is initiated from DBA->Update->Targets menu item. The current dialog for updating targets will be replaced. The target editor supplied as part of the DIA Production Software will be used by the DBA to add, delete, and modify targets in the MIDB database. Our design includes a context-sensitive popup menu (right mouse button press in map area) that will allow planner or DBA to modify a target or delete a target directly from the popup menu. This option is equivalent to DBA->Update->Targets menu item selection. A picture of the context-sensitive popup menu is shown below.

�

Figure � STYLEREF 4 \n �4.1.2.3�-� SEQ Figure * ARABIC \r 1 �1� Target Context-Sensitive Pop-up Menu HMI

The Delete menu item would launch the corresponding DIA Target Editor for the selected target object to be deleted for each context-sensitive pop-up menu.

The Modify menu item would launch the corresponding DIA Target Editor for the selected target object to be modified for each context-sensitive pop-up menu.

The Define Target menu item would launch the DIA Target Editor based on the selected target object for each context-sensitive pop-up menu.

Data Flow

The Target Editor data flow shows that the target data in the MIDB database is accessed by using the DIA Production Editor.

�

Figure � STYLEREF 4 \n �4.1.2.3�-� SEQ Figure * ARABIC �2� Target Editor Data Flow

Control Flow

The Target Editor control flow shows that the displayed targets are saved before the MIDB target editor is called and that the map display is updated after the MIDB target editor has completed. This control flow starts from the point where the DBA has already selected a target to edit. When an object has been hooked from the map display, the bucket contains information about the objects and it will include the query which was used. After the Target editor has completed, the query for the active bucket will be re-executed and the data re-displayed on the map. If the Target Editor was initiated with-out hooking an object, there is no query to re-execute.

�

Figure � STYLEREF 4 \n �4.1.2.3�-� SEQ Figure * ARABIC �3� Target Editor Control Flow (1 of 2)

�

Figure � STYLEREF 4 \n �4.1.2.3�-� SEQ Figure * ARABIC �4� Target Editor Control Flow (2 of 2)

Assumptions

We plan to move this functionality from aircraft mission planning corelib to the database corelib. NOTE: Target functions related to aircraft and munitions mission planning will remain in mission tools corelib (see Planner Role section of this document).

If the bucket object does not exist for the target, create it.

Concerns/Questions/Issues

One affect of the BLTS is that each user will require a separate account and password on each MIDB server. This affects ownership of data records, since ownership is designated by username. In the past, “tamps” was the owner of almost everything that was not owned by “system”. When DBAs are tagged as the owners of data records, now do we tag the owner as “username” or as “DBA”. Defining who will own what, under what circumstances needs to be well-defined.

What is the exact command line to launch each specific instance of an MIDB editor? i.e. threat type, record number (object number)?

What do we type to edit 1 record from the command line?

How do we just query MIDB, what is the command line?

Can we execute the MIDB software without the GUI, i.e. get text only results from a query?

Need to talk about stored (pre-generated) RTMs?

How will this affect above description about requerying the database ?

Risks

Using the DIA Target Editor

Tasks

 integrate MIDB Target Editor

design wrapper code to call the MIDB editor

develop the HMI for this

list all adt_t*.c functions and files that might be useable

OOB Editor

The OOB Editor is initiated from DBA->Update->Threats->OOB menu item. The current dialog for updating threats will be replaced. The threat editor supplied by the DIA Production Software will be used by the DBA to add, delete, and modify threats in the MIDB database.

When a scenario has been activated, the threat records editededitted are uniquely tagged in the record_status field for that scenario.

In a JMCIS environment, the DBA will be editing the threat records from the MIDB database which is on the JMCIS Server. The updated threat data will be replicated back to the TAMPS Server MIDB database.

In an MP LAN environment

In a workstation environment, the DBA will be editing the threat record from the MIDB database which is on the TAMPS Server. No replication will be taking place.

Requirements

The following requirements are met by the OOB Editor (which is the editor supplied by the DIA Production Software.)

Requirements Section�Requirements Sub-section�Requirements

Keywords:�Satisfied by:��3.2.3�1.2.7�add scenario data�DIA Editor��3.2.3�1.2.8�remove scenario data�DIA Editor��3.2.3�1.3�maintain threat data�DIA Editor��3.2.3�1.3.1�equipment data�DIA Editor��3.2.3�1.3.2�equipment index data�DIA Editor��3.2.3�1.3.3�unit�DIA Editor��3.2.3�1.3.4�facility�DIA Editor��3.2.3�5.3�JMCIS environment�MP LAN<<?>>��3.2.3�5.4�create�DIA Editor��3.2.3�5.5�modify�DIA Editor��3.2.3�5.6�delete�DIA Editor��HMI

The threat editor supplied by the DIA Production Software will be used by the DBA to add, delete, and modify threats in the MIDB database.

OOB HMI Overview

Our design includes a context-sensitive popup menu displayed when the user’s right mouse button is pressed over the map. Similar to other popup menus in TAMPS, it will provide quick access to identical functionality available from the main application menu tree. The type of object selected (which is saved in the bucket information) determines the menu items displayed in the popup menu, as follows:

If a Facility object is selected, then popup menu contains Define Target, Modify Facility, Delete Facility menu items.

If a Unit object is selected, then popup menu contains Define Target, Modify Unit, Delete Unit menu items.

If a Target is selected, then popup menu contains Modify Target, Delete Target menu items.

If any other type of object is selected, then no popup menu will appear.

Proposed context-sensitive popup menu HMIs are shown below.

�

Figure � STYLEREF 4 \n �4.1.2.3�-� SEQ Figure * ARABIC �5� OOB Facility Context-Sensitive Pop-up Menu HMI

�

Figure � STYLEREF 4 \n �4.1.2.3�-� SEQ Figure * ARABIC �6� OOB Unit Context-Sensitive Pop-up Menu HMI

�

Figure � STYLEREF 4 \n �000�-� SEQ Figure * ARABIC �777� Target Pop-up Menu HMI

The Delete menu item would launch the corresponding DIA Editor for the selected object to be deleted for each context-sensitive pop-up menu.

The Modify menu item would launch the corresponding DIA Editor for the selected object to be modified for each context-sensitive pop-up menu.

The Define Target menu item would launch the DIA Target Editor based on the selected object for each context-sensitive pop-up menu.

The DIA Production System Editor uses data from the MIDB SUPPORT database to determine where to find data for a particular type of “thing” in the MIDB GMI database. For a TAMPS user to be able to select a TAMPS object off a map and edit data associated with that object using the DIA Production System Editor, then the SUPPORT tables (which the Editor uses) must be in line with TAMPS’ Object Hierarchy for that particular type of “thing”.

As part of our preliminary design, we investigated the need for the creation, modification, and deletion of views in order to support TAMPS requirements. The design options can be summarized as follows:

1) Do nothing

	Accept the DIA-provided views

	TAMPS users must learn to use DIA products as is

2) Create additional TAMPS views

	TAMPS views added to DIA-provided views

	TAMPS users get instant access to data they have needed in the past

	More convenientconvienient for TAMPS users

	No changes to DIA-provided views

3) Modify DIA-provided views

	A lot of work

	Defeats the purpose of COTS/GOTS

	TAMPS users gain customization, but would be using DIA products in a way that 			is not compatible with external C4I systems

4) Drop all DIA-provided views and create new TAMPS custom views.

	A lot of work

	Defeats the purpose of COTS/GOTS

	TAMPS users gain customization, but would be using DIA products in a way that 			is not compatible with external C4I systems

Our preliminary design choice is option 1 - Do Nothing. We plan to use the DIA-provided views. We will not modify nor add to the provided views.

As part of this preliminary design activity, we generated a preliminary design for option 2. This design addressed the creation and maintenance of new TAMPS views to be provided as an extension of the DIA views. This preliminary design for option 1 was generated early in the design process in anticipation of the need to provide TAMPS users with editor screens that display the data in the manner TAMPS users are accustomedaccustommed to seeing. The preliminaryprelimianry design for option 2 is presented here to document work performed under this SOR. We are NOT currently planning to implement design option 2.

TAMPS requires views be created for each family of objects that can be edited from specific TAMPS menu items. This is because the DIA provided views do not correlate well with the TAMPS definition of Threat->OOBs or Threat->Targets. For example, editing an AOB in the DIA editor requires the user select “Unit” View, click “Zip Query” tab, click “AOB Query” tab. In other words, DIA has created a view into the MIDB database that defines an AOB as part of the “Unit” View. But TAMPS users consider AOBs as part of a “Facility” view. As part of our detailed design, we are determining the relationship between the TAMPS object hierarchy and the DIA Views. The details of this relationship will determine the level of design complexity. One trade-off to consider during the detailed design process will be the work required to create and maintain TAMPS custom views (formally called Production Subsystem Extensions) versus the effort required to retrain TAMPS users to become accustomedaccustommed to the new editors. Since TAMPS users will require training on the new DIA products, then they may become accustomedaccustommed to the DIA provided views. During the detailed design process for this SOR, results of design studies and results of trade studies will be presented to the TAMPS FUIWG to make users aware of design issues, choices, limitations, impacts on mission planning.

Our preliminary design is to create views for each family of objects that can be edited from specific TAMPS menu items. Subviews will be created for each child object within a family of objects. For our design, we will create views for the following items:

Update -> Threat -> OOB -> Air

Update -> Threat -> OOB -> SAM

Update -> Threat -> OOB -> Electronic

Update -> Threat -> OOB -> AAA

Update -> Threat -> OOB -> Naval

Update -> Threat -> OOB -> Ground

Update -> Targets

The possibility of creating one (1) TAMPS view containing all required subviews is being considered in this design. The editor would be initialized to the TAMPS view, and all subviews (i.e. AOB, EOB, GOB, NOB, AAA, SAM, TGT) will be available to the user by clicking on a tab. The DIA Editor dialog first presented to the user would be initialized to the appropriate subview, as determined by menu options the user selected prior to launching the editor. If the user wishes to change to any of the DIA provided views, then those views would be available on the View pulldown menu in the DIA editor. As part of this design, we may limit the user to the one (1) particular subview he/she preselected. Again, these issues, along with design choices and limitations, will be presented to fleet users for input and approval.

Currently, the preliminary design for integrating the DIA Production System Editor does NOT involve:

1) modifying any GOTS source code

2) modifying any DIA-provided SUPPORT table data (Views)

3) modifying any DIA-provided HMI

Our design involves creation of new views, and the creation of new views is supported by the DIA Production System. Detailed design activities include defining new HMI dialogs, defining new SUPPORT table data, defining GMI stored procedures used to query a given view window, defining the reuse of existing view functions. Any new HMI dialogs added to the DIA Production editor must follow DIA’s existing HMI design (look and feel).

Examples of DIA Production Editor screens are shown below for “Create New Unit”, “Equipment Maintenance”, “Create New Installation/Facility”.

�

Figure � STYLEREF 4 \n �4.1.2.3�-� SEQ Figure * ARABIC �8� DIA Editor for Create New Unit HMI

�

Figure � STYLEREF 4 \n �4.1.2.3�-� SEQ Figure * ARABIC �9� DIA Editor for Equipment Maintenance HMI

�

Figure � STYLEREF 4 \n �4.1.2.3�-� SEQ Figure * ARABIC �10� DIA Editor for Create New Installation/Facility HMI

DIA Production Subsystem Extensions

The TAMPS specific Production Subsystem Extensions will require updating if specific portions of the Object Hierarchy are modified. Therefore, we are designing a Production Subsystem Extensions Updater, to be integrated into TAMPS core along with the Production Subsystem Extensions we will provide.

Modified components of the Object Hierarchy must be processed for TAMPS specific Production Subsystem Extensions which are editable from the map selections. If a DBA modifies the object definition of an object in the object hierarchy, then the modified components of the Object Hierarchy will be processed to determine the required updates to specific TAMPS Views in the MIDB SUPPORT tables. The Production Subsystem Extensions High-Level Data Flow Diagram below shows the relationship between the TAMPS Object Editor, the new TAMPS Production Subsystem Extensions Updater we are providing as part of this SOR, and the MIDB databases. The diagram also shows that the DIA Production Editor uses data from the MIDB databases to determine where to find GMI data, and how to present the GMI data to the TAMPS user when instantiated from the new MIDB Editor API.

�

Figure � STYLEREF 4 \n �4.1.2.3�-� SEQ Figure * ARABIC �11� TAMPS-DIA Production Data Flow

�

Figure � STYLEREF 4 \n �4.1.2.3�-� SEQ Figure * ARABIC �12� DIA Query HMI

Data Flow

The Threat OOB Editor data flow shows the threat data in the MIDB database is accessed by using the DIA Production Editor.

�

Figure � STYLEREF 4 \n �4.1.2.3�-� SEQ Figure * ARABIC �13� Threat OOB Editor Data Flow

Control Flow

The Threat OOB Editor control flow shows that the threat query used to create the map display is saved in the threat definition before the MIDB threat editor is called. After the MIDB threat editor has completed, any saved query will be re-executed to update the map display. When an object has been hooked from the map display, the bucket contains information about the objects and it will include the query which was used. After the Threat editor has completed, the query for the active bucket will be re-executed and the data re-displayed on the map. If the Threat Editor was initiated with-out hooking an object, there is no query to re-execute.

�

Figure � STYLEREF 4 \n �4.1.2.3�-� SEQ Figure * ARABIC �14� Threat OOB Editor Control Flow (1 of 2)

�

Figure � STYLEREF 4 \n �4.1.2.3�-� SEQ Figure * ARABIC �15� Threat OOB Editor Control Flow (2 of 2)

Assumptions

Each DIA Threat Editor will be callable from code

The API is callable by specifying various views of the data

use the “-view” argument to launch to the editor

Concerns/Questions/Issues

Since the DIA Facility editor allows the DBA to switch between Air, SAM, AAA records, do we need to provide the OOB sub-menu (Air, SAM, AAA ...) ?

Why try to limit the DIA facility editor to only to one type of facility record?

How does the editor know to assignassgin a unique tag in the record_status field for a scenario?

Other Design Considerations

DIA Production Subsystem Extensions

The following is the design analysis to shows what would need to be implemented to modify the MIDB views.

The TAMPS specific Production Subsystem Extensions will require updating if specific portions of the Object Hierarchy are modified. Therefore, we are designing a Production Subsystem Extensions Updater, to be integrated into TAMPS core along with the Production Subsystem Extensions we will provide.

Modified components of the Object Hierarchy must be processed for TAMPS specific Production Subsystem Extensions which are editable from the map selections. If a DBA modifies the object definition of an object in the object hierarchy, then the modified components of the Object Hierarchy will be processed to determine the required updates to specific TAMPS Views in the MIDB SUPPORT tables. The Production Subsystem Extensions High-Level Data Flow Diagram below shows the relationship between the TAMPS Object Editor, the new TAMPS Production Subsystem Extensions Updater we are providing as part of this SOR, and the MIDB databases. The diagram also shows that the DIA Production Editor uses data from the MIDB databases to determine where to find GMI data, and how to present the GMI data to the TAMPS user when instantiated from the new MIDB Editor API.

�

Figure � STYLEREF 4 \n �4.1.2.3�-� SEQ Figure * ARABIC �16� TAMPS-DIA Production Data Flow

Risks

Using the DIA Threat Editor

Using the API interface to initiate the editor

Tasks

Integrate MIDB Editor

Design wrapper code to call the MIDB editor

Develop the HMI for this

Utilities -> Remote Updates

The Utilities -> Remote Updates menu item and all sub-menu items will be removed because the functionality is no longer supported, or because the functionality is handled automatically by JMCIS. JMCIS to TAMPS Weather will be processed under the Utilities -> Load -> Environment menu item. JMCIS to TAMPS Weather processing is the responsibility of the MP-LAN SOR.

The actual task of updating the menu item is under the MP LAN SOR, SOR 95-47.

Menu Item�Reason for removal��Utilities -> Remote Updates -> JMCIS to TAMPS Threats�Not supported (automatic)��Utilities -> Remote Updates -> RAAP to TAMPS Threats�Not supported��Utilities -> Remote Updates -> JMCIS to TAMPS Weather�moved to Util->Load->Envir��Utilities -> Remote Updates -> TAMPS to RAAP Threats�Not supported��Utilities -> IDB

The Utilities -> IDB menu item and all sub-menu items will be removed because the functionality is not required due to MIDB 2.0 capabilities.

Requirements

All requirements relating to the Utilities -> Remote Updates are the responsibility of MP LAN SOR, SOR 95-47.

HMI

The picture below shows how the Database Administration Utilities Menu has been modified to delete the Remote Updates and IDB menu item selections and all their submenus.

�

Figure � STYLEREF 4 \n �4.1.2.3�-� SEQ Figure * ARABIC �17� Utilities Menu HMI

Data Flow

No new DFD data flow is needed.

Control Flow

No new DFD control flow is needed.

Assumptions

MP LAN SOR is responsible for JMCIS to TAMPS weather updates.

MP LAN SOR will process JMCIS to TAMPS weather updates under Utilities -> Load -> Environment.

Concerns / Questions / Issues

None

Risks

None

Tasks

Implement new utilities menu

Utilities -> Archive/Restore

The Archive/Restore functionality within TAMPS will not undergo significant major changes under this SOR. There are no HMI changes to the Archive/Restore Dialog. Archive/Restore relies upon the DD_DATASET table to determine which database tables to process. We will add database name and server name and archivable columns to the DD_DATASET table to meet requirements relating to multiple databases and servers. The GMI data will be considered to be one dataset and archive/restore will be performed on the entire GMI dataset. The GMI data can be archived, but only as an entire entity and therefore only in dump format. In a JMCIS environment, the capability to archive/restore the TAMPS database will be prohibited and the menu items will be de-sensitized. The archivable setting for MIDB would be set to off in the JMCIS environment.

Requirements

Requirements Section�Requirements Sub-section�Requirements

Keywords:�Satisfied by:��3.2.6.1�1�archive to BCP���3.2.6.1�2�restore from file���3.2.6.1�3�archive MIDB data���3.2.6.1�4�restore MIDB data���

HMI

There are no HMI changes for the Archive/Restore Dialog.

Data Flow

TBDNo data flow is needed.

Control Flow

TBD No control flow is needed.

Assumptions

Current functionality satisfies all requirements.

Concerns / Questions / Issues

None

Risks

None

Tasks

add MIDB dataset processing code

remove IDB processing code

DD_DATASET is used by archive/restore - it must now include database name and server name

Utilities -> Load -> MIDB

The Database Load MMI is initiated from the DBA->Utilitiy->Load menu. Choosing to load MIDB from the main load dialog will directly launch the DIA DEX (Data Exchange) application.

Requirements

The following requirements are satisfied by the Load capability.

Requirements Section�Requirements Sub-section�Requirements

Keywords:�Satisfied by:��3.2.3.3�1�load GMI into empty db�DIA DEX��3.2.3.3�2�load GMI overwrite�DIA DEX��3.2.3.3�3�GMI bulk updates�DIA DEX��3.2.3.3�4�operational GMI data�DIA DEX��3.2.3.3�5�exercise/scenario GMI data�DIA DEX��3.2.3.3�6�process BCP files�DIA DEX��3.2.3.3�7�process SEF files�DIA DEX��3.2.3.3�8�process IDBTFs�DIA DEX��3.2.3.3�9�load GMI mass storage�DIA DEX��3.2.3.3�10�load to clients from MPLAN�DIA DEX��3.2.3.3�11�update to clients from MPLAN�DIA DEX��3.2.3.3�12�process updates from JMCIS�DIA DEXReplication Server��3.2.3.3�13�report cannot load�DIA DEX��3.2.3.3�14�report replication failures�DIA DEX��3.2.3.3�15�selective extraction of data�DIA DEX��3.2.3.3�16�selective insertion of data�DIA DEX��3.2.3.3�17�define new data profiles�DIA DEX��3.2.3.3�18�default profile - server�DIA DEX��3.2.3.3�19�default profile - workstation�DIA DEX��3.2.4.2�1�load target records�DIA_DEX��3.2.4.2�2�load targets only�DIA DEX��3.2.4.2�3�use external mass storage �DIA DEX��3.2.4.2�4�load client workstation from TAMPS server�DIA DEX��3.2.4.2�5�N/A���3.2.4.2�6�accept C4 I data�DIA DEX��3.2.4.2�7�process BCP files�DIA DEX��3.2.4.2�8�process SEF files�DIA DEX��3.2.4.2�9�process bulk updates�DIA DEX��3.2.4.2�10�verify duplication of targets�DIA DEX��3.2.4.2�11����

HMI

There are no HMI changes to the Utilities -> Load HMI.

Data Flow

TBDThe data flow for the Data Load shows that the DIA DEX (Data Exchange) application will be invoked when MIDB data is to be processed.

�

Figure � STYLEREF 4 \n �4.1.2.3�-� SEQ Figure * ARABIC �� DBA/MPM Threat Scenarios MenuData Load Data Flow

Control Flow

TBDThe control flow for data load shows the additional processing that will be done to call the DIA DEX loader which will be used to load GMI data into the MIDB database.

�

Figure � STYLEREF 4 \n �4.1.2.3�-� SEQ Figure * ARABIC �19� Data Load Control Flow

Assumptions

DIA will provide a method for loading by country code in the near future.

DEX will function as advertised.

DEX is suitable for the requirements of this SOR.

Concerns / Questions / Issues

Can DEX load from a tape? If not, then we could tar from tape to a file, then process the file with DEX.

Does DEX truncate tables? If not, then it won’t support requirement 3.2.3.3.3.

Is DEX HMI too complicated for TAMPS users?. If so, can we launch DEX and bypass the initial HMI?

Will DIA provide a DEX that can process by country code? If so, when?

We have not been able to make the DEX loader work. (BIG !!)

 Risks

DIA designed DEX for theater level producers. It is not intended to be used for re-baseload. Some requirements may not be met if DEX cannot re-baseload.

We have not been able to make the DEX loader work. (BIG !!)

Does DEX truncate tables? If not, then it won’t support requirement 3.2.3.3.3.

Tasks

define integration methods and tasks for MIDB Loader

identify functions in dut_ar*.c that are affected

Utilities -> Data Removal -> Dataset -> MIDB

The changes under this menu item are relatively minor. Dataset removal uses DD_DATASET table from the database. DD_DATASET will be modified to include database_name and database_server_name and archivable columns. The new columns will be needed for data removal processing. In a JMCIS environment, the capability to remove MIDB data will be prohibited and the menu item will be de-sensitized. The archivable setting for MIDB would be set to off in the JMCIS environment.

Requirements

Requirements Section�Requirements Sub-section�Requirements

Keywords:�Satisfied by:��3.2.6.2�6�delete GMI data���3.2.6.2�7�delete Target data���3.2.6.2�8�removal of reference data���

HMI

There are no HMI changes for MIDB dataset removal, except that the option button “IDB” will be replaced with “MIDB” as a result of DD_DATASETS being updated.

Data Flow

There are no data flow changes for this menu item.

Control Flow

There are no control flow changes for this menu item.

Assumptions

Data removal of the MIDB is not allowed in a JMCIS environment due to the replication issue.

Concerns / Questions / Issues

should we allow dataset removal of the MIDB dataset ?

does dataset removal remove data from the JMCIS server MIDB database?

Risks

None

Tasks

modify code to support new tables, including support tables for GMI and targets update to DD_DATASET table

add GMI dataset as a row in table

add MIDB menu item to Utilities->Removal->Dataset pull-down menu

Utilities -> Tactical Data Backup

The menu items under this menu are intended to give the TAMPS Database Administrator a method to save tactical updates that been made to the MIDB data, and to re-apply those changes after a new baseload has been performed. The exact method of selecting those updates that should be backed up will depend on the resolution of the “Local Record” issue, but is expected to be selecting records based on the RECORD_STATUS value. (For the MIIDS/IDB database, this was done using values placed in the HITLIST field by TAMPS.) The Tactical Data Backup menu items only apply to the MIDB database (and probably only the GMI tables, including the TGT tables, within the MIDB).

Requirements

Requirements Section�Requirements Sub-section�Requirements

Keywords:�Satisfied by:��3.2.6.2�1�backup tactical updates���3.2.6.2�2�restore tactical updates���

HMI

There is no HMI associated with the Tactical Data Backup backup and restore operations beyond the DBA application menu items (which will not be affected).

Data Flow

TBD

Control Flow

TBD

Assumptions

None

Concerns / Questions / Issues

In a JMCIS-connected environment:

Does JMCIS have their own tool for saving/restoring local updates, and if so, is there a conflict with the TAMPS tool?

Does JMCIS have a problem with us re-applying the tactical updates?

Do we need to distinguish updates made by TAMPS users from those made by JMCIS users, and if so, how do we do that?

What is the best way to determine whether the “best” record is the saved local update, or the newly loaded external record? For the MIIDS/IDB, this was done by selecting the record withwitht the latest DATE_LAST_CHG value.

Do we need to save any TIE table records? This also depends on the “Local Record” resolution, but we probably will need to save these records.

Would it be better to use the Transaction File generation facility provided by DEX to save the local records, and then DEX to re-apply them? This has several problems associated with it (it depends on the MIDB history tables, which may not be populated by JMCIS, and which can be erased by the MIDB administrator, and there may be difficulties if DEX sets any field values when loading the record), but it would provide a way to save the local updates in a way that can be loaded not only back onto the same TAMPS system they were generated on, but any other MIDB-using system.

Do we need to be able to save tactical data from a standalone system, and then re-apply the updates after the system has connected to the LAN? To do this, every standalone TAMPS must have a unique MIDB server ID -- otherwise, we run the risk of applying two updates which have the same surrogate key values. Currently, we are not planning on supporting this operation because of this risk.

Risks

The “Local Record” concept has still not been fully worked out by DIA, and this part of the code is dependent on it.

It may not be possible to examine the RECORD_STATUS field in every MIDB table, particularly the TIE tables, and we may need to write special queries to locate the proper records.

Modifying the MIDB through direct access requires care not to violate the integrity of the MIDB, and may be subject to restrictions in a future MIDB release.

If tactical records are saved, and then the TAMPS system is re-installed without taking steps to maintain the MIDB Surrogate Key counters, then the saved tactical records could have the same SK values as newly generated tactical records.

If tactical records are saved, and then copied to another TAMPS system that used the same MIDB Server ID value, then the saved tactical records could have the same SK values as records generated on the new system.

Tasks

Determine method to identify tactical records in a TAMPS MIDB database.

Modify existing code to extract these tactical records, and store them where they can be accessed after an MIDB baseload.

Modify existing code to read the saved tactical records, and apply them to the MIDB database.

The MIDB Interface CSC routines should be used whenever feasible.

Output -> Messages

The modifications to messages functionality will include changing table names and column names to the MIDB table and column names. Message generation that requires MIDB data will use Accessor functions to query MIDB. There are no HMI changes under this menu item. There are no significant design changes under this menu item.

Requirements

Requirements Section�Requirements Sub-section�Requirements

Keywords:�Satisfied by:��CC0410��OBREP ���CC0870��TACELINT�����TACREP���

HMI

The HMI for the Output->Message dialog will not be changed.

Data Flow

There are no data flow changes for this menu item.

Control Flow

There are no control flow changes for this menu item.

Assumptions

Message formats are not changing.

Concerns / Questions / Issues

Whatwhich other parts of this SOR are affected by dqt_genJoinCond (), dqt_genUserCond ()

Risks

None

Tasks

modify dqt_genJoinCond (), dqt_genUserCond ()

pml_*_title_defs.h files (3 total) (* is obrep, tacrep, tacelint)

must be modified to change hard-coded Table.Column names in obrep_title_array to new MIDB 2.0 Table.Column names.

pml_*_data_defs.h files (3 total) (* is obrep, tacrep, tacelint)

must be modified to change hard-coded Table.Column names in *_data_array to new MIDB 2.0 Table.Column names.

must be modified to change hard-coded Table.Column data lengths in *_data_array to new MIDB 2.0 Table.Column names lengths.

pml_assign_*_table () (* is OBREP, TACREP, TACELINT)

insure that *_TABLE_DEFS array elements match OUT_ACTION_DATA values (Table.Column) from Object Hierarchy for new MIDB 2.0 tables and columns

pml_*_bind() (* is obrep, tacrep, tacelint)

uses OBREP_DATA_DEFS for data lengths - no changes needed

use ODBC function for binds

pml_*_sql.c (3 files)

modify to use MIDB Accessor Function

pml_sybase.c

pml_query_* () will be modified to use new MIDB Accessor Function

pml_format_*.c

probably no modifications necessary, however, check to see if any required fields are no longer available

Output -> Reports

The modifications to reports functionality will include changing table names and column names to the MIDB table and column names. Report generation that requires MIDB data will use Accessor functions to query MIDB. The reports affected by this SOR are System -> Order of Battle, Aircrew -> Target Attack, and Aircrew -> Threat Assessment. The System->Order of Battle report will be deleted.

Requirements

TBDThe following requirements are met by the Output Reports dialog.

Requirements Section�Requirements Sub-section�Requirements

Keywords:�Satisfied by:��3.2.6.2�3�size of GMI data���3.2.6.2�4�size of target data���3.2.6.2�5�size of reference data���

HMI

The HMI for the Output->Reports dialog will not be changed.

Data Flow

There are no changes in data flow for this menu item.

Control Flow

There are no changes in data flow for this menu item.

Assumptions

We are rRemoving the System -> Order of Battle report?

We are providing a low level Accessor Function for ODBC connectivity?

Concerns / Questions / Issues

None

Risks

None

Tasks

completely rewrite the following files using new MIDB Accessor Functions:

(System -> Order of Battle) prl_obrpt_sql.c - uses new MIDB tables, columns

(System -> Targets) prl_target_sql.c - uses new TAMPS target tables with MIDB 2.0 Target table schema

prl_sybase.c

modify prl_Initialize (),prl_exec_cmd (), prl_beginTrans (), prl_*_bind (), prl_query () to use ODBC connectivity for MIDB queries or Target queries (possibly provided by low level Accessor Function)

prl_format_target_*.c, prl_format_threat_*.c

modify column headings, if needed, to match new MIDB 2.0 column names

provide additional column headings and formatting for any new fields

Threat Scenarios

The Threat Scenarios is activated and deactivated from the WSE->DBA->Threat Scenarios menu item. This allows the DBA the capability to establish threat scenarios from which mission planners can execute against.

The Threat Scenarios dialog is initiated from the DBA->Setup->Defaults menu item. This dialog allows the DBA the capability to establish threat scenarios from which mission planners can execute against. When a scenario is selected, from the Threat Scenario dialog, only the threat data defined for that scenario will be used. The DBA activities will not be changed but the activities will be based upon the scenario that has been selected. In a JMCIS environment, threat scenario data can be updated through replication.

The dialog allows the DBA to add and delete scenarios from the available list of scenarios.

The DBA will use the DIA threat editor to add, delete, modify individual threat records associated with a scenario.

The selection of a specific scenario will be initiated from the DBA and MPM Setup->Defaults. The Threat Scenarios menu item will be added to the Defaults pull down menu.

When a scenario is selected, only the threat data defined for that scenario will be used. The DBA and planner activities will not be changed but the activities will be based upon the scenario that has been selected.

In a JMCIS environment, threat scenario data can be updated through replication.

The Threat Scenarios menu item will be added to the Defaults pull down menu by modifying source file dmt_menu.c.

The Threat Scenario selection from the WSE->DBA pull-down menu will be deleted because there is no longer a need to activate and deactivate the scenario capability.

Requirements

The following requirements are met by the Threat Scenarios dialog.

Requirements Section�Requirements Sub-section�Requirements

Keywords:�Satisfied by:��3.2.3�1.1�using operational data���3.2.3�1.2�mission planning���3.2.3�1.2.1�storage for 17 scenarios���3.2.3�1.2.2�query access to 1 scenario���3.2.3�1.2.3�create access to 1 scenario���3.2.3�1.2.4�modify access to 1 scenario���3.2.3�1.2.5�delete access to 1 scenario���3.2.3�1.2.6�scenario size of 5 MB���3.2.3�1.2.9�access to 1 scenario data���3.2.3�1.2.10�stop access to 1 scenario data���3.2.3�4.3.1�query operational data���3.2.3�4.3.2�query scenario data���3.2.3�4.3.3�query using 1 scenario dataset���3.2.3�4.3.4�select scenario dataset���3.2.3�4.3.5�default to operational data���3.2.5�1.13�specify scenario queries���3.2.5�1.13.1�use scenario queries���3.2.5�1.14�use operational data���3.2.5�1.14.1�default to operational data���HMI

From WSE menu bar:

The Threat Scenarios menu item from the DBA pull-down menu will be deleted. is initiated from the WSE->DBA->Threat Scenarios menu item. Currently, there are three menu items which the DBA uses to implement the threat scenarios capability: (1) Activate, (2) Deactivate and (3) Install Sample Records. The recommendation is to delete the Install Sample Records menu item which allowed dummy records to be added to the IDB tables. The following diagram shows the recommended menu changes.

�

Figure � STYLEREF 4 \n �000�-� SEQ Figure * ARABIC \r 1 �111� WSE Threat Scenarios Menu

The “Activate” menu item enables specific scenario data to be used during DBA and mission planning activities.

The “Deactivate” menu item disables the scenario capability.

From DBA menu bar and MPM menu bar:

The DBA will initiate the Threat Scenarios dialog from the Setup->Defaults pull-down menu. For the DBA and the mission planner, threat scenarios will be initiated from Setup->Defaults->Threat Scenarios. This menu item will display a pop-up list dialog which allows the DBAuser to select a scenario to use. The following diagram shows the pull down menu where the Threat Scenarios menu item will be added.

�

Figure � STYLEREF 4 \n �4.1.2.4�-� SEQ Figure * ARABIC �2� DBA/MPM Threat Scenarios Menu

When the DBA selects a scenario from the pop-up list dialog, any activities that are

performed (add, update and modify threats) make changes to that scenario.

The scrolled list displays the current list of available scenarios. The default selection will be set to “Operational”.

The “Selected scenario” field provides the DBA with the capability to add a new scenario or to change the name of an existing scenario. When 17 scenarios are already defined and the DBA attempt to create a new scenario, a warning message will be displayed indicating the maximum number of scenarios have been defined. A warning message will be displayed if the new scenario to be added/name modified to already exists.

The “OK” push button is used by the DBA when an item has been selected from the list or a new scenario name has been entered in the add field. The scenario selected becomes the repository for the subsequent activities performed by the DBA and the Threat Scenario dialog is removed from the display.

The “Apply” push button is used by the DBA to continuously create scenario names. The Threat Scenario dialog remains on the display.

The “Delete” push button is used by the DBA to delete the selected scenario in the list. A warning message is displayed when (1) no scenario is selected or (2) the highlighted selection is Operational. A confirmation pop-up message is displayed when a scenario has been selected. The Threat Scenario dialog remains on the display.

The “Cancel” push button is used by the DBA to leave this dialog with out changing the current data selection. The Threat Scenario dialog is removed from the display.

The “Help” push button is used to display the help text for this dialog.

The following is the pop-up list dialog displayed to the DBA to perform scenario operations. When the dialog is displayed the actual names of the scenarios would appear. If no scenarios have been defined the only item in the select list would be “Operational”.

�

Correspondingly, when the mission planner selects a scenario from the pop-up list dialog, any mission planning activities are based only upon the data that has been established for that scenario.

Data Flow

Currently, the threat scenario support data is loaded into the IDB table using shell scripts, database scripts and bcp files. For each scenario, there is a set of stored procedures which are used during the DBA and mission planner activities. The scenario stored procedures will be deleted and a single set of queries will be used to retrieve threat data will be implemented. Data for a specific scenario will be retrieved by specifying unique scenario key which will be a valid value in the record_status field for the MIDB threat objects.

The names of the scenario and the record_status value will be saved in the TAMPS DD_SCENARIOS table. This table will also contain the date and time the scenario was created (in one field).

�

�

Figure � STYLEREF 4 \n �4.1.2.4�-� SEQ Figure * ARABIC �3� Threat Scenarios Data Flow

Control Flow

The following diagram descibes the control flow for when the DBA selects threat scenarios from the WSE menu bar.

�

Figure � STYLEREF 4 \n �000�-� SEQ Figure * ARABIC �444� WSE Threat Scenarios Control Flow

The following diagram describes the control flow when the DBA or the mission planner selects threat scenarios from the Setup menu item onfrom the application toolbar. When the scenario is added to DD_SCENARIO the next available record_status value is determined. The scenario name, record_status and date/time of the create is added to this table.

�

Figure � STYLEREF 4 \n �000�-� SEQ Figure * ARABIC �555� DBA/MPM Threat Scenarios Control Flow

�

�

�

�

Assumptions

A threat record is uniquely tagged within record_status field as being assigned to a scenario.

The record_status value is determined from a valid values list for this field.

If a planner selects a scenario for which the DBA has not created data, any subsequent queries requested by the planner will result in no data being returned.

query tool

queries during processing

Concerns/Questions/Issues

Limiting the scenario to 5 megabytes, where is the size check going to be done?Deleting the requirement for 5 megabyte size restriction.

Other design considerations

On the one server for MIDB create a GMI database for each scenario. As each scenario is created by the DBA, another GMI database would be created on the same server. This design was rejected because the MIDB software expects only one GMI database to be resident on the server.

Another design option would be to create one server and database for each scenario. This would remove the processing overhead off the MIDB server. This design was rejected because it requires too much overhead just to enable 5 megabytes of scenario data to execute. It would require more disk space to duplicate the MIDB GMI and support databases, more memory to have multiple databases assessable and more processing time to have multiple databases up and running.

Risks

Uniquely tagging scenario threat records with in record_status is not currently supported by MIDB.

Tasks

Define the unique tagging of a threat record assigned to a scenario.

Update menu on WSE toolbar to delete Install Sample Records menu item.Delete the Threat Scenarios menu item from the WSE->DBA pull-down menu.

Update menu on DBA and MPM toolbar to include Threat Scenario menu item.

Provide function to return scenario access.

Provide function to return scenario selection.

Delete existing scenario stored procedures

Build Threat Scenario dialog

Add DD_SCENARIOS table to TAMPS database

Add record_status to all queries

Utilities -> MIDB

This new sub-menu, available on the Database Administrator application menu, contains utility function unique to the MIDB. These include defining the subset of GMI data to be downloaded to the client workstations, and accessing several MIDB utility applications that could be useful to the Database Administrator.

The exact set of MIDB utility applications to be made available is TBD. These utility applications will be run as delivered by DIA. We do not plan to extensively test these utility functions, nor will we provide documentation on them beyond what is provided by the DIA MIDB software.

This sub-menu replaces the previous Utilities -> IDB sub-menu, which will be removed.

Requirements

See also the “MP-LAN client data download” event, described above under “System Administrator Functions”.

Requirements Section�Requirements Sub-section�Requirements

Keywords:�Satisfied by:��3.2.6.2�5�size of reference data���

HMI

�

Figure � STYLEREF 4 \n �4.1.2.4�-� SEQ Figure * ARABIC �6� MIDB Utility HMI

Data Flow

For the GMI Subset utility, see the “MP-LAN client data download” event, described above under “System Administrator Functions”.

For the DIA utility applications, these are GOTS applications and no internal design is available.

Control Flow

For the GMI Subset utility, see the “MP-LAN client data download” event, described above under “System Administrator Functions”.

For the DIA utility applications, these are GOTS applications and no internal design is available.

Assumptions

None

Concerns/Questions/Issues

Which DIA utilities are suitable for a TAMPS database administrator to use?

What documentation is available on these utilities beyond the help screens?

Do any of the help screens require special support (such as a Web browser)?

Risks

While we will select applications which will not update the database, there might be unexpected interactions between some of the utilities and other applications..

Tasks

Determine which DIA MIDB utilities are suitable for use, and how they can be invoked from outside the DIA menus.

��Archive/Restore

Requirements

Requirements Section�Requirements Sub-section�Requirements

Keywords:�Satisfied by:���������������������������

HMI

The Archive/Restore HMI is initiated from DBA->Utilities->Archive/Restore menu item.

Data Flow

Control Flow

This control flow shows that the DBA can archive data from the MIDB database or restore data to the MIDB database. When archiving, the DBA can select the entire MIDB database or select individual datasets to archive. Any problems that occur during the archive are reported back to the DBA. When restoring, the DBA can select the entire MIDB data or select individual dataset to restore. Any problems that occur during the restore are reported back to the DBA. The DBA is able to specify the format of the archive output data as Sybase BCP or database dump file.

�

Figure � STYLEREF 4 \n �4.1.2.4�-� SEQ Figure * ARABIC �7� Archive/Restore Control Flow (1 of 4)

�

Figure � STYLEREF 4 \n �4.1.2.4�-� SEQ Figure * ARABIC �8� Archive/Restore Control Flow (2 of 4)

�

Figure � STYLEREF 4 \n �4.1.2.4�-� SEQ Figure * ARABIC �9� Archive/Restore Control Flow (3 of 4)

�

Figure � STYLEREF 4 \n �4.1.2.4�-� SEQ Figure * ARABIC �10� Archive/Restore Control Flow (4 of 4)

Assumptions

Concerns / Questions / Issues

None

 Risks

None

Tasks

add MIDB dataset processing code

remove IDB processing code

DD_DATASET is used by archive/restore - it must now include database name and server name

Database Load

The Database Load operation will be modified to support loading the MIDB data into the database. When the user selects MIDB GMI from the list of options, the DIA DEX HMI will be called and all control is turned over to DEX at this time.

Requirements

HMI

The Database Load HMI is initiated from the DBA->Utility->Load menu. This HMI will not change except for adding a list item to select MIDB GMI Data Load. The dialog below shows an example of the Database Load HMI.

�

Figure � STYLEREF 4 \n �4.1.2.4�-� SEQ Figure * ARABIC �11� Load Databases HMI

Tasks

integrate DIA DEX software

identify functions in dut_ar*.c that are affected

modify code to accommodate new tables, including support tables for GMI and targets

�Mission Planner Functions

Design Overview

This section describes how the MIDB 2.0 Products affect the major Mission Planner functions.

The mission planner will not be significantly affected by the migration to the MIDB 2.0 products. The planner will continue to use the “Threat/Intel” menu to display threat data. The mission planner will notice changes to the AMP info displays which define fields pertaining to the threat data object selected, due to the corresponding MIDB definition changes. The mission planner functionality remains the same and there will be no loss of TAMPS data with the usage of the MIDB software.

Product Summary

Below is a list of all HMI paths to MIDB edits or queries as performed by an MPM planner.

MPM main application

 menu item:�Edit or Query�How Affected by MIDB 2.0 ��Threat/Intel -> Targets�Query�integrate MIDB TGT tables into Object Hierarchy

ODBC��Threat/Intel->Planner Target Updates�Edit���Threat/Intel -> OOB�Query�integrate GMI (non-TGT) tables into Object Hierarchy

ODBCbuild queries

multiple databases

multiple servers��Threat/Intel -> Range Rings�Query�uses GMI (non-TGT) tables integrated into Object Hierarchy��Threat/Intel -> Radar Terrain Mask�Query�uses GMI (non-TGT) tables integrated into Object hierarchy��Output -> Reports�Query�integrate all GMI tables into Object Hierarchy

integrate MIDB TGT tables into Object Hierarchy

uses MIDB Interface

ODBC�� Output -> Messages�Query�integrate all GMI tables into Object Hierarchy

integrate MIDB TGT tables into Object Hierarchy

uses MIDB Interface

ODBC��

Design Summary

The mission planner processing to be implemented falls into two categories:

(1) usage of the MIDB data and (2) usage of the planner target. The TAMPS_Target database table will be replaced by a new table called Planner Targets. The specific areas where the MIDB data affect the mission planner is the following:

Open Mission 	Obsolete data checks are performed on the target data (referenced in a route) with the target data in the MIDB database.

Save Mission	The target data referenced in a route is saved in the Planner Targets table.

Target Query	The target data available for query is found in the Planner Targets table orand the MIDB database.

Threat Query	The threat data available for query is found in the MIDB database.

Planner Target Updates	A new HMI provides the planner the capability to define and modify target data.

Range Rings 	The threat data will also becomes from the MIDB database.

Radar Terrain Mask	The threat data will also becomes from the MIDB database.

Edit Flight Parameters	The target data will use MIDB schema.

There will also be minor HMI changes which reflect the new schema definitions of the objects, such as targets, in the MIDB database.

The following table shows how the functionality of the MPM main application menu items are affected by the MIDB 2.0 integration. Only MPM main application menu items that are affected by this design are listed.

MPM Module menu items

affected by MIDB 2.0:�How Affected by MIDB 2.0 ��File-> Open Mission�uses MIDB Target Interface��File-> Save Mission�uses MIDB Target Interface��Threat/Intel -> Targets�uses MIDB Interface, ODBC��Threat/Intel -> Planner Target Updates�uses new target table, ODBC��Threat/Intel -> OOB�uses MIDB Interface, ODBC��Threat/Intel -> Range Rings�new OH table definitions��Threat/Intel -> Radar Terrain Mask�new OH table definitions��Output -> Reports�uses new MIDB Interface��Output -> Messages�uses new MIDB Interface��

For any MPM, queries are executed using the MIDB database on the TAMPS Server.

Database Changes

Table Name�Action�Description��TAMPS_TARGET�delete���PLANNER_TARGETS�new�maps to the MIDB TGT_DETAIL table��

Specific MPMs

TERPES

This MPM accessed and modified the IDB facility and equipment data. Public functions will be developed to provide the capability to modify MIDB facility and equipment records.

HARM

This MPM accessed the IDB data by using embedded SQL calls to stored procedures. The IDB stored procedures will be converted to use the MIDB database tables. Public functions will be created for this MPM to execute the stored procedures.

JSOW/SLAM

Design

This section describes how the MPM planner functionality will be affected by the MIDB 2.0 migration as viewed by the HMI paths where there is MIDB database access.

Open Mission

The Open Mission dialog is initiated from MPM->File->Open Mission menu item. The current open mission processing will not be changed, except to add validity checks which will verify the targets used by the mission exist in the MIDB database and have not been modified. When all targets have been checked the planner is notified with an error message pop-up window if the mission contains obsolete or deleted targets.

The planner is responsible for resolving the obsolete target references within the mission.

The obsolete or deleted MIDB targets will not be automatically removed from the mission.

The TAMPS target schema, Planner Target table, will be changing to correspond to the schema of the MIDB target. The TAMPS Planner Target database table will contain a surrogate key column which will defined whether the target was created by a planner or is defined in the MIDB database. It will also be defined with a column which identifies the date and time of the MIDB target. This will be used to determine if the MIDB target has changed.

Requirements

The following requirements are met by the Open Mission dialog.

Requirements Section�Requirements Sub-section�Requirements

Keywords:�Satisfied by:��3.2.4�1.5�retrieve target data�modify adt_retrieveTargets()��3.2.4�5.8�retrieve target�modify adt_retrieveTargets()��3.2.4�5.9�alert message���HMI

The HMI dialog to open a mission will not be changed. New pop-up message windows will be displayed when the mission is referencing target data which does not exist in the MIDB database or if the target data is different than that stored locally.

Data Flow

When a mission is opened, the target data for that mission is retrieved from the Planner Target database. The Open Mission processing queries the database for all targets associated with the mission. Each target referenced by the mission is either a target created by the planner or a target defined in the MIDB database. All targets that are not planner targets will be checked against the MIDB database to verify that the target still exists. The planner will receive obsolete target message for targets that have been modified or that are not defined in the MIDB database. After verification of the target information, the display is updated with the target symbols for targets that do exist and are not obsolete.

�

Figure � STYLEREF 4 \n �4.1.3.2�-� SEQ Figure * ARABIC \r 1 �1� Open Mission Data Flow

Control Flow

The Open Mission control flow shows the additional work to be done to verify the target data referenced in a mission. If the mission contains obsolete or obsolete targets an error message is displayed to the planner about the target inconsistencies. Once the error message has been responded to, it is the planner’s responsibility to resolve the target inconsistencies. The workstation log will contain message which identify which targets were found to be obsolete or deleted.

�

Figure � STYLEREF 4 \n �4.1.3.2�-� SEQ Figure * ARABIC �2� Open Mission Control Flow (1 of 3)

�

Figure � STYLEREF 4 \n �4.1.3.2�-� SEQ Figure * ARABIC �3� Open Mission Control Flow (2 of 3)

�

�

Figure � STYLEREF 4 \n �4.1.3.2�-� SEQ Figure * ARABIC �4� Open Mission Control Flow (3 of 3)

Assumptions

The TAMPS Planner Target database table is identical (field by field) to the MIDB target database table.

There will be extra columns to added to the Planner Target table to contain the surrogatesurragate key, owner and timestamp of the reference target record.

A log message will be sent for each obsolete or modified target in the mission.

Concerns/Questions/Issues

In addition to sending messages to the logger, would a dialog with a scrollable list that contained all the obsolete or modified targets provide the planner with an easier mechanism to address the target changes?

Risks

Converting to new TAMPS Planner Target table

Resolving obsolete targets within MIDB database

Tasks

Implement new TAMPS Planner Target database table

Loop through each target defined in mission and check for existence in MIDB database

Send message to logger for individual targets which are obsolete or undefined

Define new pop-up message for missing or modified target data

Save Mission

The Save mission dialog is initiated from MPM->File->Save menu item. The current save mission processing remains the same except for saving the target information in the Planner Target database table.

Requirements

The following requirements are met by the Save mission (and Save As mission) dialog.

Requirements Section�Requirements Sub-section�Requirements

Keywords:�Satisfied by:��3.2.4�1.4�storage for target�modify adt_insertTargets()��3.2.4�5.7�save target�modify adt_insertTargets()��Data Flow

The Save mission data flow shows that the Planner Target database table is updated with the targets referenced in the mission.

�

Figure � STYLEREF 4 \n �4.1.3.2�-� SEQ Figure * ARABIC �5� Save Mission Data Flow

Control Flow

The Save mission control flow outlines the additional processing that occurs to save the referenced targets in the route to the Planner Targets database table.

�

Figure � STYLEREF 4 \n �4.1.3.2�-� SEQ Figure * ARABIC �6� Save Mission Control Flow

Assumptions

None

Concerns/Questions/Issues

None

Risks

None

Tasks

Write save target function to Planner Target database table

Targets Query

The Targets Query dialog is initiated from the MPM->Threat/Intel->Targets menu item. This dialog provides a list of available target queries and is used by the planner to perform queries on planner targets in the Planner Target database table and/or queries on DBA targets in the MIDB database. The map display is updated with the results of the target queries selected by the planner. The functionality of the dialog control buttons (OK, Cancel, Help) will not be changing.

The Object Hierarchy will be changed to map to the schema of the new TAMPS Planner Target database table which is the data store for the targets defined by MPM planners. The old TAMPS target database table will be deleted.

Requirements

The following requirements are met by the Targets dialog.

Requirements Section�Requirements Sub-section�Requirements

Keywords:�Satisfied by:��3.2.4�1.1�display query results�mmt_featOKCallback()��3.2.4�1.2�textual display�mmt_featOKCallback()��3.2.4�1.3�use Object Hierarchy�mmt_featOKCallback()��3.2.4�1.5�retrieve target�mmt_featOKCallback()��3.2.4�1.10�display in horizontal datum���3.2.4�1.13�retrieve location coordinates�mmt_featOKCallback()��3.2.4�1.14�display location coordinates���3.2.4�1.16�retrieve horizontal datum�mmt_featOKCallback()��3.2.4�1.18�retrieve horizontal location accuracy�mmt_featOKCallback()��3.2.4�1.20�retrieve vertical location accuracy�mmt_featOKCallback()��3.2.4�1.21�display horizontal accuracy value and unit of measurement���3.2.4�1.22�display vertical accuracy value and unit of measurement���3.2.4�1.24�retrieve confidence data�mmt_featOKCallback()��3.2.4�1.25�display confidence data���3.2.4�1.26�store JTIM targets���3.2.4�1.27�retrieve JTIM target���3.2.4�1.28�display JTIM target���3.2.4�1.29�TAMPS targets vs others���HMI

The HMI for the target query dialog will not be changed. The OK, Apply, Cancel and Help button functionality will not be changed.

Data Flow

When the planner selects the targets menu item, three object hierarchy tables, DD_QUERY, DD_CONDITIONS and DD_USER_COLUMNS are queried for the list of available target queries. From the list of target queries, the planner selects a query to execute. There are three types of target queries that the planner can select, and the type of query determines the source of the target data. The three types of queries are (1) Planner only targets - the targets are retrieved from the TAMPS Planner Target Data; (2) DBA only target - the targets are retrieved from the MIDB Target Data; (3) All targets - the targets are retrieved from both the TAMPS Planner Target Data and the MIDB Target Data. When the planner selects the targets menu item, the data dictionary table DD_MENU is queried for the list of available target queries. From the list of target queries, the planner selects a query to execute. There are two types of target queries that the planner can select, and the type of query determines the source of the target data. The two types of queries are (1) Planner only targets - the targets are retrieved from the TAMPS Planner Target Data; (2) DBA only target - the targets are retrieved from the MIDB Target Data.(The “all targets” capability will no longer be supported, since the target data will be residing in two different databases (MIDB and TAMPS).

The query is constructed from DD_USER_FIELDSCOLUMNS and DD_CONDITIONS and the query is executed against the database for which the data is to be retrieved. The overlay manager updates the bucket with the target data retrieved from the database(s). Lastly, the map display is updated with the target symbols using the objects in the bucket.

The same data flow processing occurs when the DBA queries for target data.

�

�

Figure � STYLEREF 4 \n �4.1.3.2�-� SEQ Figure * ARABIC �7� Target Query Data Flow

Control Flow

The Targets Query dialog control flow shows the processing that occurs once the planner selects a specific target query to display. The planner is provided with a list of target queries to execute, and this information is retrieved from the Object Hierarchy. The planner has the option to select a target query or to not perform any queries. When a target query is selected, the target data is retrieved from the Planner Target database table and/or MIDB Target database table, and each target is added to the overlay bucket. The display is updated by using the overlay bucket object(s). The Targets Query dialog control flow shows the processing that occurs once the planner selects a specific target query to display. The planner is provided with a list of target queries to execute, and the target query list information is retrieved from the Data Dictionary. The planner has the option to select a target query or to not perform any queries. When a target query is selected, the query is constructed and the target data is retrieved from the Planner Target database table or the MIDB Target database table. Each target is added to the overlay bucket and the display is updated by using the overlay bucket object(s).

�

�

Figure � STYLEREF 4 \n �4.1.3.2�-� SEQ Figure * ARABIC �8� Target Query Control Flow (1 of 3)

�

�

Figure � STYLEREF 4 \n �4.1.3.2�-� SEQ Figure * ARABIC �9� Target Query Control Flow (2 of 3)

�

�

Figure � STYLEREF 4 \n �4.1.3.2�-� SEQ Figure * ARABIC �10� Target Query Control Flow (3 of 3)

Assumptions

The Object Hierarchy will be updated to map the schema of the MIDB target tables.

Queries have been created and added to the menus.

Concerns/Questions/Issues

How are the JTIM targets to be differentiated from TAMPS targets ? Is there a condition setting to know the originator of the target data? and what field is it?

Risks

None

Tasks

Update Object Hierarchy to map to the schema of the new Planner Target database table

Create new Planner Target queries

Implement accesseraccessor functions to Target data

Planner Target Updates

The Planner Target Updates dialog is initiated from the MPM->Threat/Intel->Planner Target Updates menu item. This is a modification to the current “Define User Target” dialog used by the planner to create, modify and delete targets. The target data is saved in the Planner Target table in the TAMPS database.

Requirements

The following requirements are met by the Planner Target Updates dialog.

Requirements Section�Requirements Sub-section�Requirements

Keywords:�Satisfied by:��3.2.4�1.4�store target�modify btt_deftgt.c

modify btt_deftgtcb.c��3.2.4�1.5�retrieve target�modify btt_deftgt.c

modify btt_deftgtcb.c��3.2.4�1.6�modify target�modify btt_deftgt.c

modify btt_deftgtcb.c��3.2.4�1.7�define target by geo coordinates and unique id�modify btt_deftgt.c

modify btt_deftgtcb.c��3.2.4�1.8�convert datum�modify btt_deftgt.c

modify btt_deftgtcb.c��3.2.4�1.9�< 1% conversion error�modify btt_deftgt.c

modify btt_deftgtcb.c��3.2.4�1.11�location coordinates�modify btt_deftgt.c

modify btt_deftgtcb.c��3.2.4�1.12�save location coordinate precision�modify btt_deftgt.c

modify btt_deftgtcb.c��3.2.4�1.13�retrieve location coordinate precision�modify btt_deftgt.c

modify btt_deftgtcb.c��3.2.4�1.14�display loc coordinates�modify btt_deftgt.c

modify btt_deftgtcb.c��3.2.4�1.15�save horizontal datum�modify btt_deftgt.c

modify btt_deftgtcb.c��3.2.4�1.16�retrieve horizontal datum�modify btt_deftgt.c

modify btt_deftgtcb.c��3.2.4�1.17�save horizontal location accuracy and unit of measurement�modify btt_deftgt.c

modify btt_deftgtcb.c��3.2.4�1.18�retrieve horizontal location accuracy and unit of measurement�modify btt_deftgt.c

modify btt_deftgtcb.c��3.2.4�1.19�save vertical location accuracy and unit of measurement�modify btt_deftgt.c

modify btt_deftgtcb.c��3.2.4�1.20�retrieve vertical location accuracy and unit of measurement�modify btt_deftgt.c

modify btt_deftgtcb.c��3.2.4�1.23�save confidence data�modify btt_deftgt.c

modify btt_deftgtcb.c��3.2.4�1.24�retrieve confidence data�modify btt_deftgt.c

modify btt_deftgtcb.c��3.2.4�1.25�display target confidence�modify btt_deftgt.c

modify btt_deftgtcb.c��3.2.4�1.26�store target (JTIM)�modify btt_deftgt.c

modify btt_deftgtcb.c��3.2.4�1.29�differentiate between TAMPS targets and external targets�modify btt_deftgt.c

modify btt_deftgtcb.c��3.2.4�1.30�planner target vs DBA target�modify btt_deftgt.c

modify btt_deftgtcb.c��3.2.4�3.1�maintain targets���3.2.4�3.2�create target���3.2.4�3.2.2�new db target record�modify btt_deftgt.c

modify btt_deftgtcb.c��3.2.4�3.2.3�create OH target from object�modify btt_deftgt.c

modify btt_deftgtcb.c��3.2.4�3.2.4�create target from map point target�modify btt_deftgt.c

modify btt_deftgtcb.c��3.2.4�3.2.5�create text target�modify btt_deftgt.c

modify btt_deftgtcb.c��3.2.4�3.3�modify target�modify btt_deftgt.c

modify btt_deftgtcb.c��3.2.4�3.3.2�modify target�modify btt_deftgt.c

modify btt_deftgtcb.c��3.2.4�3.3.3�planner modifies own targets�modify btt_deftgt.c

modify btt_deftgtcb.c��3.2.4�3.4�delete target�modify btt_deftgt.c

modify btt_deftgtcb.c��3.2.4�3.4.2�planner deletes own targets �modify btt_deftgt.c

modify btt_deftgtcb.c��HMI

The Planner Target Updates dialog is used by the mission planner to create, modify, and delete targets. Targets created through this dialog will be linked to the currently open mission and will be stored in the local TAMPS Planner Target data table. This dialog will be modeled after the current “Define User Target” dialog, and will use the new data fields defined in the MIDB TGT_DETAIL table to support target definition.

The following diagram shows the currently dialog which will be replaced by the Define User Target dialog.

�

The new fields on the Planner Target Updates dialog are as follows:

HMI Change�Purpose��Details button�displays more information about the target (if available)

- minimally this will contain correspond to the Amp Info capability but probably will be more detailed��Target Name field�defined the name of the target��Width field�width of the target value between 0 and 100,00��Width option menu�values are feet, meters (default: feet)��Height field�height of the target value between 0 and 100,000��Height option menu�values are feet, meters (default: feet)��Length field�length of the target value between 0 and 100,000��Length option menu�values are feet, meters (default: feet)��Orientation Horiz field�horizontal orientation of the target (value between 0 and 360)��Orientation Horiz option menu �values degrees true, degrees mag (default: user’s default for bearingdegrees true)��Orientation Vert field�vertical orientation of the target (value between 0 and 360)��Orientation Vert option menu�values degrees true, degrees mag (default: user’s default for bearingdegrees true)��Hardness option menu�values are hard, medium, soft (default: hard)��Shape field�shape of the target��Horiz Confidence field�horizontal confidence of the target (value between 0 and 99)��Vert Confidence field�vertical confidence of the target (values between 0 and 99)��

The high precision toggle button had been deleted. The high precision toggle button has been deleted because the MIDB target object does not support this field.

The target is defined in terms of geospatial coordinates and a unique identifier. The location coordinates can be specified to 1/100th of an arc-second. A target will retain the accuracy of the horizontal/vertical location values, the unit of measurement for the horizontal/vertical location values, horizontal datum and confidence data when it is stored and retrieved from the database.

�

Figure � STYLEREF 4 \n �4.1.3.2�-� SEQ Figure * ARABIC �11� Planner Target Updates Dialog

Data Flow

When the planner selects the Planner Target Updates menu item, the Planner Target Updates dialog is displayed. When the planner defines a new target, the Planner Target database is updated with the new target data, the overlay manager updates the bucket object with the new target, and the display is updated with the new target.

When the planner modifies an existing target, the Planner Target database is updated with the modified target data, the overlay manager updates the bucket with the modified target, and the display is updated with the modified target.

When the planner deletes an existing target, he is given the option to (1) delete the target from the display or (2) to delete the target from the database. When the planner chooses to delete the target from the display, the overlay manager deletes the target from the bucket and the display is updated to remove the target. When the planner chooses to delete the target from the database, the target is deleted from the Planner Target database, the overlay manager deletes the target from the bucket and the display is updated to remove the target.

The Planner Target Updates data flow shows the Planner Target Data is updated with the targets defined by the planner.

�

Figure � STYLEREF 4 \n �4.1.3.2�-� SEQ Figure * ARABIC �12� Planner Target Updates Data Flow

Control Flow

The Planner Target Updates control flow shows that the dialog is waiting in the Main XT event loop. This event loop is exited when the planner uses one of the control buttons (OK, Cancel, Apply, Help).

When the planner presses the OK button, the target data is added/modified to the Planner Target database, the database is queried again to retrieve the target data, and the map display is updated with the new target. The Planner Target Updates dialog is removed from the display.

When the planner presses the Apply button, the target data is added/modified to the Planner Target database, the database is queried again to retrieve the target data and the map display is updated with the new target. The Planner Target Updates dialog remains on the display.

When the planner presses the Delete button, a confirmation pop-up window is displayed to the user, where a “no” response will return the planner to the target dialog. When the planner selects the yes on the delete confirmation window, the target data is deleted from the Planner Target database, the database is queried again to retrieve the target data and the map display is updated with only the targets return from the last query. When the planner presses the Delete button, the target data is deleted from the Planner Target database, the database is queried again to retrieve the target data and the map display is updated with only the targets return from the last query. The Planner Target Updates dialog remains on the display.

When the planner presses the Cancel button, any modifications made by are planner on the dialog are not updated in the Planner Target database and the map display is also not updated. The Planner Target Updates dialog is removed from the display.

When the planner presses the Help button, the help window for this dialog is displayed.

This HMI uses the Planner Target database table to store/retrieve the target information.

The map display will be updated when a target is added, deleted, or modified when using this HMI.

�

�

Figure � STYLEREF 4 \n �4.1.3.2�-� SEQ Figure * ARABIC �13� Planner Target Updates Control Flow (1 of 4)

�

�

Figure � STYLEREF 4 \n �4.1.3.2�-� SEQ Figure * ARABIC �14� Planner Target Updates Control Flow (2 of 4)

�

Figure � STYLEREF 4 \n �4.1.3.2�-� SEQ Figure * ARABIC �15� Planner Target Updates Control Flow (3 of 4)

�

Figure � STYLEREF 4 \n �4.1.3.2�-� SEQ Figure * ARABIC �16� Planner Target Updates Control Flow (4 of 4)

Assumptions

The current functionality to define targets will be used as a starting point.

Concerns/Questions/Issues

None

Risks

None

Tasks

Delete old target table from TAMPS database

Create new Planner Target table which matches the MIDB target table

Callbacks for new HMI dialog

target confidence

horizontal accuracy

vertical accuracy

location coordinates

Threat OOB Query

The Threat OOB Query dialog is initiated from an MPM->Threat/Intel->OOB menu item. The Threat OOB Query dialog functionality for the control buttons (OK, Apply, Cancel, Help) for Air, Ground, Naval, Electronic, SAM, AAA, and Other will not change, but the queries which retrieve the order of battle information will use the MIDB database. The map display is updated with the threat data requested by the planner.

Requirements

The following requirements are met by the Threat OOB queries dialog.

Requirements Section�Requirements Sub-section�Requirements

Keywords:�Satisfied by:��3.2.3�1.3�query threat data�modify iot*.c��3.2.3�1.3.1�equipment data�modify iot*.c��3.2.3�1.3.2�equipment index data�modify iot*.c��3.2.3�1.3.3�unit�modify iot*.c��3.2.3�1.3.4�facility�modify iot*.c��3.2.3�4.1�display query results���3.2.3�4.2�textual display���3.2.3�4.3�query using Object Hierarchy�iot*.c��3.2.3�4.4�pre-defined queries�Object Hierarchy��3.2.3�4.5�query for spatial objects�Object Hierarchy��HMI

Several changes are being implemented for the Threat OOB menu and sub-menus which will coincide with the MIDB data.

Air Query

Currently, the “Select” push-button is a pull down menu with sub-query options. The “Select” push-button will be deleted from the Air sub-menu and the menu options moved to the Threat OOB menu as cascading options for the Air menu item. The following two diagrams show the current dialog and the recommended change to the Threat OOB menu.

�

Figure � STYLEREF 4 \n �4.1.3.2�-� SEQ Figure * ARABIC �17� Old OOB Air Query Selection

�

�

Figure � STYLEREF 4 \n �4.1.3.2�-� SEQ Figure * ARABIC �18� New OOB Air Query Menu Selection

This diagram shows the individual Air Order of Battle Query list dialogs where the mission planner would select a specific query to execute.

�

Figure � STYLEREF 4 \n �4.1.3.2�-� SEQ Figure * ARABIC �19� OOB Air Query List Dialog HMIs

SAM Query

Currently, the planner uses a set of three dialogs to select the query to be executed. Since the MIDB data does not separate Fixed, Tactical, and Unit, the dialog which has push buttons for theses choices will be deleted. When the planner selects the SAM menu item from the MPM->Threat/Intel->OOB menu, a scrolled list dialog will be displayed which provides the planner with all the available SAM queries. The following dialog will be deleted. The FIXED and TACTICAL categories are planned to be replaced with a single category in the near future. This is a DIA production issue over which we have no control. Eliminating these categories from the dialog will merge the queries into a single list, which should be acceptable to the planners. Also, in order to provide a simpler list of SAM queries to be more consistent with the other OOB dialogs, a separate menu to provide a list of Unit SAM queries will no longer be provided. Access to Unit SAMs will still be provided, but it will be through the SAM menu list.

The three SAM menus will be replaced by a scrolled list dialog containing the queries to retrieve individual SAM types, as well as all SAMs. This will be displayed when the planner selects the SAM menu item from the MPM->Threat/Intel->OOB menu. There will be no loss of functionality for the planner. The following dialog will be deleted.

�

Figure � STYLEREF 4 \n �4.1.3.2�-� SEQ Figure * ARABIC �20� Deleted OOB SAM Query Selection

AAA Query

The AAA sequence of selecting a query is the same as the SAM query selection and the same type of change will be implemented. The dialog which specifies Facility, Unit Equipment, and Fire Control Radars will be deleted. When the planner selects the AAA menu item from the MPM->Threat/Intel->OOB menu, a scrolled list dialog will be displayed which provides the planner with all the available AAA queries.

Data Flow

When the planner selects an OOB menu item, three object hierarchy tables, DD_QUERY, DD_CONDITIONS and DD_USER_COLUMNS are queried for the list of available threat queries for that menu item. From the list of threat queries, the planner selects a query to execute. The query is constructed from DD_USER_COLUMNS and DD_CONDITIONS and the query is executed against the MIDB Database. When the planner selects an OOB menu item, the data dictionary table DD_MENU is queried for the list of available threat queries for that menu item. From the list of threat queries, the planner selects a query to execute. The query is constructed from DD_USER_FIELDS and DD_CONDITIONS and the query is executed against the MIDB Database. The overlay manager updates the bucket with the threat data retrieved from the MIDB Database. Lastly, the map display is updated with the threat symbols using the bucket object(s).

The data flow diagram outlines the processing of the Air menu item selection. The same processing is used for each OOB menu item selection.

�

�

Figure � STYLEREF 4 \n �4.1.3.2�-� SEQ Figure * ARABIC �21� OOB Query Data Flow

Control Flow

The OOB Query control flow shows the processing that occurs once the planner selects a specific OOB type to display. The planner is provided with a list of threat queries to execute, this information is retrieved from the Data DictionaryObject Hierarchy. When the planner selects a query to execute, the query is constructed and the threat data is retrieved from the MIDB database. The retrieved data is added to the overlay bucket and the bucket object(s) are used to update the map display.

�

�

Figure � STYLEREF 4 \n �4.1.3.2�-� SEQ Figure * ARABIC �22� OOB Query Control Flow (1 of 2)

�

�

Figure � STYLEREF 4 \n �4.1.3.2�-� SEQ Figure * ARABIC �23� OOB Query Control Flow (2 of 2)

Assumptions

The Object Hierarchy will be updated to map the schema of the MIDB threat tables.

Queries have been created and added to the menus.

Concerns/Questions/Issues

None

Risks

None

Tasks

Update Object Hierarchy to use the MIDB threat table structure

Modify current list of threat queries to coordinate with MIDB threat table structure

Range Rings Dialog

The Range Rings dialog is initiated from MPM->Threat/Intel->Range Rings menu item. The Range Rings menu item dialogs (Display Threats and Selected Threats) processing will not be changed. The range rings will be created using threat data which has been retrieved from the MIDB database or threat data retrieved from TAMPS_Interim_Threat table.

The range ring algorithm processing which includes accessing the elevation data from the DTED database and the SAM/AAA equipment site data from the NID database will not be changed.

Requirements

The following requirements are met by the Range Ring dialog.

Requirements Section�Requirements Sub-section�Requirements

Keywords:�Satisfied by:��3.2.3�2.7�use interim threat data�edt_mera_cb()��3.2.3�1.5�use SAM threats�edt_mera_cb()��3.2.3�1.6�use AAA threats�edt_mera_cb()��HMI

The HMI for the range rings dialog will not be changed.

Data Flow

The threat data is selected by using the query capability which is described in the section for MPM->Threat/Intel->OOB. The threat data is retrieved from the MIDB database by a query based upon the OOB menu item selection. The threat data from the query is added to the bucket, and using the bucket object(s) the threat data is displayed on the map. The planner selects which threat objects to generate the range ring information. The range ring polygon information is saved with the threat object in a new bucket. The map display is updated with the bucket object(s).

The same processing sequence applies when interim threat data is selected for display from MPM->Threat/Intel->Planner OOB->Planner Only. The same is true for interim threat data that is selected from MPM->Threat/Intel->Planner OOB->Planner Only for display. The interim threat data is retrieved from TAMPS_Interim_Threat table.

�

�

Figure � STYLEREF 4 \n �4.1.3.2�-� SEQ Figure * ARABIC �24� Range Rings Using SAM Objects Data Flow

Control Flow

An individual control flow for range rings is not provided since the range ring processing is not affected by the MIDB migration. The control flow for the update of the display with threat data is described in the MPM->Threat/Intel->OOB query section.

Assumptions

The range ring processing uses threat data which is currently being displayed on the map.

The range rings dialog will not be changed.

The mission planner will be sent an alert message as notification when the MIDB data has changed upon completion of a load or update operation.

Range Ring object action needs to exist on appropriate object

Concerns/Questions/Issues

Does the range ring access/retrieval code have a dependence on the MIDB data elements?

Risks

None

Tasks

No tasks required for range rings processing but there is a dependence upon the tasks described in OOB Query section.

Determine if the processing needs to handle the 7 character EQP_CODE.

Radar Terrain Mask Dialog

The Radar Terrain Mask dialog is initiated from MPM->Threat/Intel->Radar Terrain Mask menu item. The radar terrain mask dialog processing will not be changed. The radar terrain masks will be created using threat data which has been retrieved from the MIDB database or threat data retrieved from TAMPS_Interim_Threat table.

The radar terrain mask processing which includes accessing the RTM server and the radar parameter data in the NID database will not be changed. The RTM Server is responsible to checking the polygon values against DTED.

Requirements

The following requirements are met by the Radar Terrain Mask dialog.

Requirements Section�Requirements Sub-section�Requirements

Keywords:�Satisfied by:��3.2.3�2.8�use interim threat data�ert_int_rtm_init()��3.2.3�1.4�use equipment data�ert_ini_rtm_init()��HMI

The HMI for the radar terrain mask dialog will not be changed.

Data Flow

The threat data is selected by using the query capability which is described in the section for MPM->Threat/Intel->OOB. The threat data is retrieved from the MIDB database by a query based upon the OOB menu item selection The threat data from the query is added to the bucket, and using the bucket object(s) the threat data is displayed on the map. The planner selects which threat objects to generate the range ring information. The range ring polygon information is saved with the threat object in a new bucket. The map display is updated with the bucket object(s).

The same processing sequence applies when interim threat data is selected for display from MPM->Threat/Intel->Planner OOB->Planner OnlyThe same is true for interim threat data that is selected from MPM->Threat/Intel->Planner OOB->Planner Only for display. The interim threat data is retrieved from the TAMPS_Interim_Threat table.

The data flow diagram outlines the processing when Electronic objects are used to generate radar terrain mask. The same processing applies when interim threat objects are used to generate radar terrain masks.

�

Figure � STYLEREF 4 \n �4.1.3.2�-� SEQ Figure * ARABIC �25� Radar Terrain Mask Data Flow

Control Flow

An individual control flow for range rings is not provided since the range ring processing is not affected by the MIDB migration. The control flow for the update of the display is described in the MPM->Threat/Intel->OOB query section. An individual control flow for radar terrain mask is not provided since the radar terrain mask processing is not affected by the MIDB migration. The control flow for the update of the display with threat data is described in the MPM->Threat/Intel->OOB query section.

Assumptions

The radar terrain mask processing uses threat data which is currently being displayed on the map.

The radar terrain mask dialog will not be changed.

The mission planner will be sent an alert message as a notification when the MIDB data has changed upon completion of a load or update operation.

Radar Terrain Mask object action needs to exist on appropriate object

Concerns/Questions/Issues

Determine if the processing needs to handle the 7 character EQP_CODE.None

Risks

None

Tasks

No tasks required for radar terrain mask but there is a dependence upon the tasks described in OOB Query section.

Edit Flight Parameters

The Edit Flight Parameters dialog is initiated from MPM->Route->Edit Flight Parameters menu item. This provides the capability for the planner to create, modify, and delete points in the mission. On this dialog the planner has the option to reference a target in the mission by using the Attack Target selection. No changes will be made to this processing.

Requirements

Requirements Section�Requirements Sub-section�Requirements

Keywords:�Satisfied by:��3.2.3�5.1�create multiple target references�adt_target.c��3.2.3�5.2�remove target reference�adt_target.c��3.2.3�5.3�modify target reference�adt_target.c��3.2.3�5.4�create offset aimpoint�aet_CreateRefOAPDialog()��3.2.3�5.5�select pre-defined target�adt_target.c

adt_tgData.c��3.2.3�5.6�create new target as route point�adt_target.c

adt_tgData.c��3.2.3�5.7�store target relationship�adt_target.c��3.2.3�5.8�retrieve target relationship�modify adt_retrieveTarget()��3.2.4�1.31�associate targets and missions�adt_target.c��HMI

There are no HMI changes for Edit Flight Parameters.

Data Flow

There are no data flow changes for Edit Flight Parameters.

Control Flow

There are no control flow changes for Edit Flight Parameters.

Assumptions

None

Concerns/Questions/Issues

None

Risks

None

Tasks

None

Threat Scenarios

The Threat Scenarios dialog is initiated from the MPM->Setup->Defaults menu item. The planner activities will not be changed but the activities will be based upon the scenario that has been selected. Even though a scenario is defined in the list does not imply that the DBA has created data records associated for that scenario. In this instance, queries performed on this type of scenario will return no data.

Requirements

The following requirements are met by the Threat Scenarios.

Requirements Section�Requirements Sub-section�Requirements

Keywords:�Satisfied by:��3.2.3�1.1�using operational data���3.2.3�1.2�mission planning���3.2.3�4.3.1�query operational data���3.2.3�4.3.2�query scenario data���3.2.3�4.3.3�query using 1 scenario dataset���3.2.3�4.3.4�select scenario dataset���3.2.3�4.3.5�default to operational data���3.2.5�1.13�specify scenario queries���3.2.5�1.13.1�use scenario queries���3.2.5�1.14�use operational data���3.2.5�1.14.1�default to operational data���

HMI

The scrolled list displays the current list of available scenarios. The default selection will be set to “Operational”.

The “OK” push button is used by the planner when an item has been selected from the list or a new scenario name has been entered in the add field. The scenario selected becomes the repository for the subsequent activities perform by the planner and the Threat Scenario dialog is removed from the display.

The “Cancel” push button is used by the planner to leave this dialog with out changing the current data selection. The Threat Scenario dialog is removed from the display.

The “Help” push button is used to display the help text for this dialog.

The following is the pop-up list dialog displayed to the DBA to perform scenario operations. When the dialog is displayed the actual names of the scenarios would appear. If no scenarios have been defined the only item in the select list would be “Operational”.

If the planner has already selected a scenario during a previous selection of the Threat Scenario menu item (during the same session), that scenario is highlighted.

�

Data Flow

This data flow shows that the data displayed in the scrolled list is retrieved from the TAMPS DD_SCENARIOS table.

�

Control Flow

The control flow shows the processing that occurs when the planner uses the Threat Scenario dialog. A selection of a scenario defines the threat data that will be used for all subsequent queries.

�

�

Assumptions

If a planner selects a scenario for which the DBA has not created data, any subsequent queries requested by the planner will result in no data being returned.

query tool

queries during processing

The scenario selected remains the same when the mission is changed.

Concerns/Questions/Issues

See DBA section

Risks

See risks defined in DBA section

Tasks

See tasks defined in DBA section

Application Interface CSC

The GMI Application Interface encapsulates the function to access the MIDB database tables programmatically. The calling program will have query access to the facility, equipment, unit and remarks data. A discrete set of fields from each table will be available for query access. Users will be shielded from changes to the MIDB database tables which do not affect their application.

The MIDB schema objects that will be supported includes the following:

Equipment

Equipment Index

Units

Facility

Remarks

Targets

Observation

Requirements

The following requirements are met by the Application Interface.

Requirements Section�Requirements Sub-section�Requirements

Keywords:�Satisfied by:��3.2.3�6.1�query facility data�new dit_getMidbData()��3.2.3�6.2�query equipment data�new dit_getMidbData()��3.2.3�6.3�query unit data�new dit_getMidbData()��3.2.3�6.4�query using geo bounding box and threat type�new dit_getMidbData()��3.2.3�6.5�request fields to be returned�new dit_getMidbData()��

HMI

There is no HMI for Application Interface CSC.

Data Flow

The dit_getMidbData interface returns a list of UZT_HANDLES where each handle represents a record from the database table or view returned by the query. The user will need to provide the following input parameters:

specify what type of data is to be returned

specify what column data is to be returned

specify any conditional data which will be used to limit the amount of data to be returned

provide a pointer to a list structure where the data to be returned

The dit_getMidbData interface will build a database query from the user inputs and it will use the pointer to the list structure provided by the user to return the queried data. Also, a status indicator will be returned to provide the user with increased error handling diagnostics.

�

Control Flow

�

Assumptions

Defaults will be provided for the data server name and the database name.

Concerns/Questions/Issues

Will the calling program need to specify the data server name and/or the database name?

Risks

Using ODBC

Tasks

Write dit_getMidbData

Provide handle functions for the user to call dit_getMidbData

Target Application Interface CSC

The Target Application Interface encapsulates the functions to access the planner target database table programmatically. The calling program will have access to the target data. The functions provided to access the target data are: create, modify, delete and query. A discrete set of columns from the table will be available for planner access.

The Target Application Interface functions will use TAMPS PLANNER_TARGETS database object.

Requirements

The following requirements are met by the Target Application Interface.

Requirements Section�Requirements Sub-section�Requirements

Keywords:�Satisfied by:��3.2.4�4.1�create target�new dit_createTarget()��3.2.4�4.2�query target�new dit_getTargets()��3.2.4�4.2.1�request target fields to be returned�new dit_getTargets()��3.2.4�4.2.2�specify query conditions�new dit_getTargets()��3.2.4�4.3�modify target�new dit_modifyTarget()��3.2.4�4.4�delete target�new dit_deleteTarget()��3.2.4�4.4.1�delete target from display���3.2.4�4.4.2�delete target�new dit_deleteTarget()��HMI

There is no HMI for Target Application Interface CSC.

Data Flow

The Target Application Interface data flow is split into the four requirement areas for targets: create, modify, delete and query.

Create Target

The dit_createTarget interface provides the capability for the planner to programmatically create targets in the PLANNER_TARGET database table. This function uses the input parameter to build a sql query to insert a target record. This function returns a status indicator to provide the user with error handling diagnostics.

�

Modify Target

The dit_modifyTarget interface provides the capability for the planner to programmatically modify targets in the PLANNER_TARGETS database table. The user will need to provide the following two input parameters:

specify the field values of the target to be modified

specify the surrogate key for the target to be modified

This function returns a status indicator to provide the user with error handling diagnostics.

�

Delete Target

The dit_deleteTarget interface provides the capability for the planner to programmatically delete targets from the PLANNER_TARGETS database table. This function uses the input parameter to build a sql query to delete a target record. This function returns a status indicator to provide the user with error handling diagnostics.

�

Get Targets

The dit_getTargets interface returns a list of UZT_HANDLES, where each handle represents a record from the database table or view returned by the query. The user will need to provide the following input parameters:

specify what field data is to be returned

specify any conditional field data which will be used to limit the target data to be returned

if no conditional field data is provided, the sql query will not be constrained

provide a pointer to a list structure where the data to be returned

The dit_getTargets interface will build a database query from the user inputs and it will use the pointer to the list structure provided by the user to return the queried data. Also, a status indicator will be returned to provide the user with increased error handling diagnostics.

�

Control Flow

Create Target

The dit_createTarget control flow describes the steps to create a target from the TAMPS PLANNER_TARGETS database table. The sql create command is built from the input parameter. This function will return status of the sql create command.

�

Modify Target

The dit_modifyTarget control flow describes the steps to modify a target from the TAMPS PLANNER_TARGETS database table. The sql modify command is built from the input parameters. This function will return status of the sql modify command.

�

Delete Target

The dit_deleteTarget control flow describes the steps to delete a target from the TAMPS PLANNER_TARGETS database table. The sql delete command is built from the input parameter. This function will return status of the sql delete command.

�

Get Targets

The dit_getTargets control flow describes the steps to query the TAMPS PLANNER_TARGETS database table for planner targets. The sql query is built from the input parameters. This function will return status of query and any records found by the query.

�

Assumptions

Only mission planners will need the Target Application Interface functions. The DBA will use the MIDB Target Editor for target edits.

Concerns/Questions/Issues

What are the required fields in order to create a target?

What is the format for the surrogate key?

Is there sufficient need to also supply a Merge Planner Target capability for the DBA to move planner targets to MIDB database?

Risks

Using ODBC

Tasks

Write dit_createTarget

Write dit_modifyTarget

Write dit_deleteTarget

Write dit_getTarget

Provide handle functions for the user to call the Target Application Interface functions

��DETAILED DESIGN

System Generation CSC

High-Level Design Updates

The RTM/Range Ring alert daemon process has been removed from the design.

The installation and use of ODBC has been removed from the design.

TAMPS users will not be created on the JMCIS Sybase server until the TAMPS user is granted the Network DBA privilege.

The MIDB software will be installed on the system during TAMPS installation, although the databases will not be created unless the MIDB Installation CSC is run.

Control Flows

�

Figure � STYLEREF 4 \n �4.2.1.2�-� SEQ Figure * ARABIC \r 1 �1� System Generation Control Flow (MIDB activities only)

Algorithms

No new algorithms will be used.

Design Description

Create System Settings

Note that in each case, we will create all of these values at System Generation. Some of the settings will not be required until MIDB Installation is complete. It is possible that some may not be used in a TAMPS environment at all. However, it simplifies the design if all system settings are done at once, and the cost in system resources is minimal.

Each of these settings will require root (or, in some cases, NIS+ administrator) access.

The following groups are required for MIDB:

midb

midbuser

midbpadm

midbdba

http

Any group ID can be used for these groups, but they must be assigned distinct group ID values.

The following users are required for MIDB:

midb

http

Any user ID can be used for these users, but they must be assigned distinct user ID values.

Neither of these accounts is required to allow interactive logins.

Neither of these accounts require separate home directories (although if the MIDB daemons will be run as the midb user, there may be some benefit to setting up a home directory for that user).

The midb user should have midbuser as its primary group, and midbpadm and midbdba as secondary groups.

The http user should have http as its primary group, with no secondary groups.

The following services are required for MIDB:

postman

prt_server

audit_server

sa_server

sun_aserver

csp_server

npe_server

http

Any ID can be used for these services, but they must be assigned distinct ID values. The values will be fixed values determined during development.

All of these services should use tcp as the protocol.

None of these service names conflict with existing (as of 6.1) or planned (as far as we know) TAMPS service names.

The following RPC identifiers are required for MIDB:

DexSyncSrvM2.1 (alias dexsyncsrv2.1)

BltsDaemonM2.1 (alias bltsdaemon2.1)

The 2.1 in each RPC name and alias may need to be updated with the current MIDB version number.

Any ID can be used for these RPCs, but they must be assigned distinct values.

The following needs to be added to the /etc/syslog.conf file:

user.notice /var/log/syslog

The exact file referenced by the entry does not matter, as long as a user.notice entry is present. A fixed filename determined during development will be used.

The following host aliases need to be added to the host information table:

SERVR1

loginhost

backup

dynamichost

audithost

csphost

npehost

All of these aliases should be added to the entry for the TAMPS server (or standalone machine).

The system maximum shared memory size must be set to an appropriate value.

The TAMPS default as of 6.1.1 is 56 Mb. This appears to be sufficient to run the MIDB as set up in the prototype installation, and we will continue using this value unless problems become apparent during testing. However, the MIDB SIP specifies a size of at least 128 Mb.

The Sybase database must be initialized as required by MIDB.

The MIDB SIP recommends the following settings for the Sybase server on which the MIDB will be run:

The master device should be at least 28 MB.

The sybsystemprocs database should be at least 19 MB.

The ìRetry countî and ìRetry delayî on the interfaces screen should both be 5.

The default language and character set must be used.

The sort order must be case insensitive, dictionary order (option 7).

The Sybase ìsaî login must have a password set; the current use of an empty password will not work.

The Sybase configuration option ìtotal memoryî must be increased from the Sybase default of 7500. TAMPS 6.1.1 used a value of 20480, and this appears to work for the prototype installation. The MIDB SIP specifies at least 64 Mb (32000), and strongly recommends 128 Mb (64000). We will continue using the TAMPS 6.1.1 value unless problems become apparent during testing.

It is not mentioned in the MIDB SIP, but it has been observed that it is necessary to increase the configuration option ìopen databasesî to run the MIDB applications. A value of 20 would be a minimum for MIDB use; given that there are other TAMPS databases to be run on the system, we suggest a value of 30.

.

The MIDB SIP also recommends adding a line to the Sybase RUN_DSQUERY file to increase the number of Unix connections. The SIP recommends 4 per MIDB user.

The value already used in the TAMPS environment should already be suitable without any changes. If the value must be changed, the SIP specifies adding, after the last comment in the RUN_DSQUERY file, ulimit -Sn number. A possible alternative is to add the ulimit command to the .cshrc file for the sybase user. This does not appear to be necessary for TAMPS, based on the prototype installation, but the possibility should be kept in mind if problems are discovered during testing.

Install BLTS software

Runtime inputs: None.

Development inputs: Directory to install software into.

Requires root access. The following files must be installed at System Generation: MIDB environment file, All Blts executables, the libraries required by them, the output directory, and the Blts password file (empty, or can be pre-filled with sa password if that is a fixed value).

SetMidbEnv.sh

This MIDB file is modified before delivery and installed by the System Generation CSC (since it is needed for BLTS).

Modifications: The following environment variables must be modified:

MIDB_HOME must be set to the directory where the MIDB will be installed

MIDB_OUT must be set to a directory where MIDB output files should be placed

MIDB_FILE_SERVER and MIDB_DB_SERVER should be set to the TAMPS server host name

MIDB_PRODUCER should be set to the RESPROD value to be used for TAMPS-created MIDB records (ëZí is recommended by the SIP; depends on local record issue)

Development inputs: MIDB root directory, MIDB output directory, TAMPS RESPROD value.

Runtime inputs (from environment variables): TAMPS server host name

Install System Startup scripts

Startup scripts for both BLTS and DEX will be installed at System Generation. These scripts (at least DEX, but itís a good idea in general) must check whether the program to be started has been installed, and skip processing if the program is not available.

Runtime inputs: None.

Development inputs: MIDB root directory.

Create BLTS dynamic files

After the BLTS daemon has been started, the command BltsSetPassword -B sa sa_password sa_password must be executed to set the ìsaî password in BLTS (if the sa password is a constant value, this can be included in the file as delivered and this step will be unnecessary).

Unit Test Plans and Procedures

Test Environment

Testing of the System Generation CSC requires a system on which TAMPS has been installed, and a user with access to a shell.

Dependencies

None

Assumptions

Due to the environment in which System Generation is run, and the type of software used during execution (shell scripts, COTS, etc.), tools such as Purify and PureCoverage will not be applicable to these tests. In addition, extensive testing with varied inputs and intentional errors is not practical due to the length of time for each test run, the impact on other system activities, and the fact that this CSC runs in a non-windowed environment.

This test is not a complete test of the System Generation CSC, only of the new software included with this SOR.

Verification

Verify that the NIS+ and other system data has been correctly initialized..

Verify that Sybase has been set up as required by MIDB.

Verify that the BLTS server is up and running, and that it returns the correct ìsaî password..

Test Steps

Do an ìniscat group.org_dirî and verify that the groups specified above are listed.

Repeat the above step, checking the ìpasswdî, ìservicesî, ìrpcî, and ìhostsî files for the information specified above.

Do a ìcat /etc/syslog.confî and verify that the information specified above is present.

Enter isql, and do a ìsp_helpdeviceî to verify the master device size.

Do a ìsp_helpdbî to verify the sybsystemprocs database size.

Do a sp_configure ìtotal memoryî and verify that the ìrun sizeî is the correct value.

Repeat the above step for the ìopen databasesî configuration value.

Do a sp_helpsort to verify that the proper sort order (dictionary order, case insensitive) has been installed.

Do a ìps -ef | grep Bltsî and verify that the BltsDaemon process is running.

While logged in as root, do a ìBltsUtility -gî and verify that the correct ìsaî password is returned. Note that this will not work when ìsuî is used to gain root access ñ the user must be logged in as root, or ìrlogin -l root localhostî can be used to gain root access. If this step is run by a non-root user, it will return the Sybase password for that user (and the ìtampsî user will not be set up in BLTS)

Assumptions from Preliminary Design

Solaris 2.5.1 (or higher) is assumed to be already included in the TAMPS 6.2 delivery. The change to Solaris 2.5.1, and the accompanying Common Desktop Environment, will require other changes to TAMPS (mostly within the System Generation CSC) that are not described within this SOR. Verified. This change is incorporated within SOR 95-43, COTS/OS Upgrade. The CDE will not be used with TAMPS, but this does not affect MIDB processing.

We are generally assuming that no major MIDB processing needs to take place at System Generation on the system being installed. To be verified by detailed design.

We are assuming that MP-LAN will initialize connection to JMCIS (specifically, creating entry in Sybase ìinterfacesî file). To be verified.

We are assuming that we will not need to install or initialize the Apache http daemon delivered with the MIDB. It now appears that the parts of the MIDB that TAMPS will be using will not require an http daemon or an HTML browser. The earlier speculation that JSIPS-N will be providing a Netscape browser that we can use is not correct. The Online Support Tools will be installing a browser, which could be used if required for MIDB purposes.

No MIDB applications or libraries are required for minimal TAMPS operation; specifically, no MIDB libraries are linked into TAMPS applications. False. The BLTS library will be required to be linked into all TAMPS applications (at least those that use the dat library). This library will be installed at System Generation along with the other BLTS software. There should be no impact on applications other that the need to include the new library in the link line.

Concerns/Questions/Issues from Preliminary Design

Exactly what COTS packages need to be installed at System Generation?. The COTS packages required by this SOR are: Solaris 2.5.1; Sybase 11; and Perl 5.002. The Solaris and Sybase installation will be taken care of by SOR 95-43 (but note the Sybase settings listed above). Perl will be installed (at System Generation) with the MIDB software. The environment variable PERL5LIB may need to be defined (or the setting in the SetMidbEnv.sh file changed).

Should we install the BLTS software at System Generation? Yes, we will be installing the BLTS software at System Generation. This gives TAMPS a unified method of accessing the Sybase password. This decision, and the impacts (good and bad) are included in the detailed design.

Can we use the Netscape browser to be installed by JSIPS-N? The MIDB software to be used by TAMPS does not require a browser.��MIDB Installation CSC

High-Level Design Updates

BLTS will be installed at System Generation.

The MIDB software will be installed at System Generation, and the MIDB Installation CSC will always be called from System Generation. This CSC is responsible for creating the databases and initializing the user information.

Database Schema

The MIDB database schema (with the exception of the GAZ database) will be created using the scripts provided by DIA as part of the MIDB delivery.

Control Flow

�

Figure � STYLEREF 4 \n �4.2.2.3�-� SEQ Figure * ARABIC \r 1 �1� MIDB Installation Control Flow

Algorithms

None.

Design Description

The following files will need to be modified before MIDB installation can be performed. Many of these modifications can take place in the TAMPS development lab, with the modified version being delivered.

SetMidbEnv.sh

CreateDevicesAndDatabases.sql (depends on system configuration)

RDB_GEN_SK.sql (depends on MIDB Server ID)

midb_resources.def (maybe; needed for 2.0.1 installation and may need to set CSE flag)

BltsClientResources.def (maybe; needed for 2.0.1 installation)

midb_notify_hosts, midb_notify_issos, midb_notify_isso_hosts, midb_notify_users

The MIDB software and data are assumed to be already installed, and the system information (users, groups, services, etc.) created as described in the System Generation CSC.

The following directories must be created:

$MIDB_OUT/dynamic

$MIDB_OUT/data/out

Set up environment for installation.

The SetMidbEnv.sh file will be sourced (this is a csh file, even though the name indicates it should be used with sh). This file should already have been installed and modified for TAMPS by the System Generation CSC. All of the following steps require that this file have been sourced.\

Put Sybase back at the front of the path with the following command. There is a bug (at least in the 2.0.1 prototype) where the path contained too many directories, and some (including Sybase) would occasionally be dropped off the end.

set path = ($SYBASE/bin $path)

The MIDB_SA_PASSWORD environment file must be set to the sa password.

Runtime inputs: Sybase ìsaî password.

Development inputs: MIDB root directory (including version number) for finding SetMidbEnv.sh.

Perform post-installation setup.

The following files may need to be modified from the versions included in the DIA MIDB delivery. These changes can be made in the development environment, and included in the TAMPS delivery, or the changes can be made after the files have been installed on the fielded TAMPS system. These changes are based on the MIDB 2.0.1 prototype installation, and may change when new MIDB releases are recevied.

The midb_resources.def file will need to be modified for the following reasons.

The VERSION value should be verified to make sure it matches the MIDB_VERSION set in the SetMidbEnv.sh file.

The CSE flag should be verified to be set to False (this was the default in 2.0.1, so it should not need changing by TAMPS, but should be verified).

The file BltsClientResources.def may need to have the VERSION setting changed to match the MIDB_VERSION set in the SetMidbEnv.sh file.

The files midb_notify_hosts, midb_notify_isso_hosts, midb_notify_issos, and midb_notify_users may need to be modified to comment out entries present in the delivered files.

Set MIDB server ID

To set the MIDB server ID, the file $MIDB_DB_DIR/SUPPORT/procedures/RDB_GEN_SK.sql must be edited, replacing the string ë11111í with the server ID value to be used on this TAMPS system. If all TAMPS systems will use the same server ID, this could be done in the development environment; otherwise, it must be done during MIDB Installation execution. This can be done with the following commands:

cd $MIDB_DB_DIR/SUPPORT/procedures

cp RDB_GEN_SK.sql RDB_GEN_SK.sql.orig

sed ës/11111/server ID/í < RDB_GEN_SK.sql.orig > RDB_GEN_SK.sql

Update ownership and permissions on MIDB files.

Run the MIDB script ìset_protectionî.

Requires root access.

Create MIDB dynamic files.

Run the MIDB script ìCreateDynamic.shî

Requires root access.

Create MIDB databases

Runtime input: Installation type (full/subset)

This step will run one of two pre-modified versions of the MIDB ìCreateDevicesAndDatabases.sqlî files. These files must be modified to replace the existing dummy device and database locations and sizes with the values to be used for TAMPS. Note: Not all databases are listed in the dummy entries; make sure that

all MIDB databases (except GAZ) are listed after editing the file.

Create MIDB datatypes

Within the $MIDB_DB_DIR directory, there is a directory for each MIDB database.

Within each of these databases is a directory for each type of file (datatypes, tables, procedures, etc.).

Note: ìFor each MIDB databaseî in the following steps does not include GAZ unless noted. It does include ìmodelî and ìmasterî (before the MIDB databases) and ìsybsystemprocsî (after the MIDB databases), so the final list looks like ìmodel master ALERTS ASUP_DB CNP CONSTRAINTS DB_SUPPORT GMI MDUIQU OBSCON SA SIR SR_DB SUPPORT TAPE_TOC UEW WORK_DB sybsystemprocsî.

For each MIDB database, cd to the $MIDB_DB_DIR/database/datatypes directory and run this command:

ls | fgrep ë.sqlí | DBLoad.pl $DSQUERY database sa_password

Create MIDB tables

For each MIDB database, cd to the $MIDB_DB_DIR/database/tables directory and run this command:

ls | fgrep ë.sqlí | DBLoad.pl $DSQUERY database sa_password

Create MIDB defaults

For each MIDB database, cd to the $MIDB_DB_DIR/database/defaults directory and run this command:

ls | fgrep ë.sqlí | DBLoad.pl $DSQUERY database sa_password

Create MIDB rules

For each MIDB database, cd to the $MIDB_DB_DIR/database/rules directory and run this command:

ls | fgrep ë.sqlí | DBLoad.pl $DSQUERY database sa_password

Load CONSTRAINTS data and indexes

Due to a bug in the MIDB 2.0.1 installation procedures, it was necessary (at least for the 2.0.1 delivery) to load the CONSTRAINTS data at this point in the installation, rather than with the rest of the data as indicated by the SIP.

Run the command:

BcpLoad.pl $DSQUERY CONSTRAINTS sa_password $MIDB_DB_DIR/CONSTRAINTS/bcp

Cd to $MIDB_DB_DIR/CONSTRAINTS/indexes and run the command:

ls | fgrep ë.sqlí | DBLoad.pl $DSQUERY database sa_password

Create MIDB stored procedures

For each MIDB database, cd to the $MIDB_DB_DIR/database/procedures directory and run this command:

ls | fgrep ë.sqlí | DBLoad.pl $DSQUERY database sa_password

After running the command once for each MIDB database, re-run this step for the ìMDUIQUî, ìGMIî, and ìALERTSî databases only (and in that order).

Load MIDB static data (part 1)

For each MIDB database, except CONSTRAINTS, do the following:

If the directory $MIDB_DB_DIR/database/fmt exists and is not empty, run the command:

BcpLoad.pl $DSQUERY database sa_password $MIDB_DB_DIR/database/bcp $MIDB_DB_DIR/database/fmt

Otherwise, run the command:

BcpLoad.pl $DSQUERY database sa_password $MIDB_DB_DIR/database/bcp

Dump the transaction log in database

Create MIDB triggers

For each MIDB database, cd to the $MIDB_DB_DIR/database/triggers directory and run this command:

ls | fgrep ë.sqlí | DBLoad.pl $DSQUERY database sa_password

Create MIDB indices

For each MIDB database, cd to the $MIDB_DB_DIR/database/triggers directory and run this command:

ls | fgrep ëNC_*.sqlí | DBLoad.pl $DSQUERY database sa_password

ls | fgrep ëC_*.sqlí | DBLoad.pl $DSQUERY database sa_password

Create MIDB views

For each MIDB database, cd to the $MIDB_DB_DIR/database/views directory and run this command:

ls | fgrep ë.sqlí | DBLoad.pl $DSQUERY database sa_password

Load MIDB static data (part 2)

For each MIDB database, cd to the $MIDB_DB_DIR/database/isql directory and run this command:

ls | fgrep ë.sqlí | DBLoad.pl $DSQUERY database sa_password

Set database permissions

Run the ìGrantDbObjectsPermission.shî MIDB script. This will not need modification by TAMPS. The script expects the MIDB sa password on its input, so run the script like this:

	echo sa_password | GrantDbObjectsPermission.sh $DSQUERY

Load accession numbers

Run the ìLoadAccession.plî MIDB script. This will not need modification by TAMPS. This will need review with regard to the local record issue. This script expects two lists of input, each one item on a line, terminated by a blank line: The RESPROD values that might be used to generate new records, and the tables to generate accession numbers for. The list of tables should be left empty, which means that all tables will be used. The script can be run like this:

(echo ì$MIDB_PRODUCERî; echo ìî; echo ìî) | LoadAccession.pl $DSQUERY sa_password

Run the DEX startup script

Run the command ìStartDexSyncSrv&î. This should start the Data Exchange daemon.

Initialize access to MIDB for existing users.

Since we are now assuming that MIDB will be installed at System Generation time, there will be no existing users aside from ìtampsî and ìrootî, neither of whom will be allowed to access the MIDB.

Therefore, this step is no longer required.

Perform JMCIS-specific actions:

If this system is a TAMPS server to be connected to a JMCIS system, then several other installation steps must be performed:

The DD_DATASETS relation must be updated to indicate that MIDB is not allowed to be unloaded:

update DD_DATASETS set REMOVE_OK = ëNí where DATASET = ëMIDBí

The DD_DATABASES relation must be updated to indicate that the MIDB GMI database is being replicated from an outside source:

update DD_DATABASES set REPLICATE_FM = ëJMCISí where DATA_BASE = ëGMIí

The existing GMI data from JMCIS must be copied over. To be filled in later.

Replication from JMCIS must be initialized. Work with MPLAN, fill in later.

Interface Description

The following inputs are required from the System Generation CSC:

The MIDB server ID to be used

The type of installation (full or subset)

Whether this system will be replicating MIDB data from JMCIS.

The Sybase ìsaî password.

Unit Test Plans and Procedures

Testing of this CSC will consist of examining the installed parts of the MIDB, and verifying that the data has been placed in the appropriate directories and databases, that the MIDB software can run, and that TAMPS users can access the MIDB data and software. Exhaustive testing of an installation CSC is usually not feasible due to the time involved in each test case, the impact to system operations, and the difficulty in simulating various errors. Since the MIDB installation scripts are a mixture of csh scripts, perl scripts, sql input files, and COTS applications, using tools such as a debugger, Purify, or PureCoverage will not be applicable to this CSC.

�� EMBED Excel.Sheet.5 ����Test Environment

This test requires that TAMPS be installed with the MIDB, and that at least one TAMPS user has been created and granted the Network DBA privilege.

For some tests, it will be required that the test system be configured as a TAMPS server connected to a JMCIS system.

Dependencies

See Test Environment, above.

Assumptions

Other CSCs are dependent on this one for proper installation of the MIDB software and data. Full testing of these CSCs will be described in the Design Notebook section for those CSCs. For example, complete testing of the MIDB applications will be performed by the MIDB Utilities and Threat Editor CSCs. See also the User Administration CSC, where it will be verified that a user can be created with access to the MIDB.

Because this CSC is composed of COTS software and Shell/Perl scripts, tools such as Purify and PureCoverage are not applicable to this CSC.

Verification

Verify that the BLTS and DEX daemons are running.

Verify that each of the MIDB databases has been created, that tables have been created in them, and that data (if any) has been stored.

Verify that the MIDB stored procedures have been created.

Test coverage is not applicable to these tests.

Test Steps

Do a ìps -ef | grep Bltsî and verify that the BltsDaemon is running.

Do a ìps -ef | grep Dexî and verify that the DexSyncSrv is running (and that it started just after the StartDexSyncSrv script; a possible failure is for the DexSyncSrv to start, do some initialization, and exit, then StartDexSyncSrv will start a new DexSyncSrv, which will do the same thing).

Enter isql, and do a ìsp_helpdbî to verify that all the MIDB databases have been created.

For each MIDB database, do a ìuse databaseî and then a ìsp_helpî to list all the tables, views, triggers, and stored procedures that have been created.

Select one or more MIDB tables that have data loaded at installation (most GMI tables do not have data loaded until an MIDB baseload is performed), and do a ìselect count(*) from database..tableî and verify that the count matches the number of lines in the bcp file.

�Functional Test Plans and Procedures

SOR 96-01a MIDB 2.0 Function and Unit Test Matrix������3.2.1 TAMPS MIDB Installation CSC, CS0037 (Ref. TAMPS 6.2 Design Notebook, 6 Aug. 1997)������

Reference�Requirements (Condensed Text)�Test Steps (Ref.)�Purify Results�Pure Coverage Percentage�Pass/Fail Criteria�Test Environment and Applicable (Function)������3.2.1.1�Using TAMPS MIDB Installation CSC to install MIDB system.�1-5 (4.2.2.7.4.1)�N/A�N/A�Installs the MIDB system.�TAMPS installed with MIDB; user granted Network DBA privilege. (dut_install_MIDB.pl)������3.2.1.2�Installing TAMPS subset of MIDB software.�1-10 (4.2.1.5.5)�N/A�N/A�Installs the TAMPS subset.�TAMPS installed on system; user access to a shell. (dut_install_MIDB.pl)������3.2.1.2.1�Installing MIDB BLTS software.�1-10 (4.2.1.5.5)�N/A�N/A�Installs the MIDB BLTS software.�TAMPS installed on system; user access to a shell. (dut_install_MIDB.pl)������3.2.1.2.1.1�Installing BLTS server software.�1-10 (4.2.1.5.5)�N/A�N/A�Installs the BLTS server software.�TAMPS installed on system; user access to a shell. (dut_install_MIDB.pl)������3.2.1.2.1.2�Installing BLTS client software.�1-10 (4.2.1.5.5)�N/A�N/A�Installs the BLTS client software.�TAMPS installed on system; user access to a shell. (dut_install_MIDB.pl)������3.2.1.2.1.3�Installing BLTS required "start-up" scripts.�1-10 (4.2.1.5.5)�N/A�N/A�Installs required "start-up" scripts on the system.�TAMPS installed on system; user access to a shell. (dut_install_MIDB.pl)������3.2.1.2.2�Installing MIDB Production System software.�1-5 (4.2.2.7.4.1)�N/A�N/A�Installs the MIDB Production System software.�TAMPS installed with MIDB; user granted Network DBA privilege. (dut_install_MIDB.pl)������3.2.1.2.3�Installing MIDB Data Exchange System software.�1-5 (4.2.2.7.4.1)�N/A�N/A�Installs the MIDB Production System software.�TAMPS installed with MIDB; user granted Network DBA privilege. (dut_install_MIDB.pl)������3.2.1.2.4�Installing MIDB Data Query System software.�1-5 (4.2.2.7.4.1)�N/A�N/A�Installs the MIDB Data Query System software.�TAMPS installed with MIDB; user granted Network DBA privilege. (dut_install_MIDB.pl)������3.2.1.2.5�Installing MIDB database schema.�1-5 (4.2.2.7.4.1)�N/A�N/A�Installs the MIDB database schema.�TAMPS installed with MIDB; user granted Network DBA privilege. (dut_install_MIDB.pl)������3.2.1.2.5.1�Supporting three types of database installation.�1-5 (4.2.3.7.6)�N/A�N/A�Satisfied requirement.�Completed TAMPS build, installation, data load; MIDB installation, data load. (dut_install_MIDB.pl)�������3.2.1.2.5.1.1�Supporting a "server" MIDB installation.�1-5 (4.2.3.7.6)�N/A�N/A�Satisfied requirement.�Completed TAMPS build, installation, data load; MIDB installation, data load. (dut_install_MIDB.pl)������3.2.1.2.5.1.1.1�"Server" install all MIDB tables.�1-5 (4.2.3.7.6)�N/A�N/A�Installs all MIDB tables.�Completed TAMPS build, installation, data load; MIDB installation, data load. (dut_install_MIDB.pl)������3.2.1.2.5.1.1.2�Supporting a complete load of MIDB data.�1-5 (4.2.3.7.6)�N/A�N/A�Satisfied requirement.�Completed TAMPS build, installation, data load; MIDB installation, data load. (dut_install_MIDB.pl)������3.2.1.2.5.1.1.3�Supporting scenario data.�4.2.21.6�N/A�N/A�Satisfied requirement.�DBA and MPM application. (dut_install_MIDB.pl)������3.2.1.2.5.1.2�Supporting a "workstation" MIDB�1-5 (4.2.3.7.6)�N/A�N/A�Satisfied requirement.�Completed TAMPS build, installation, data load; MIDB installation, data load. (dut_install_MIDB.pl)������3.2.1.2.5.1.2.1�"Workstation" installs all MIDB tables.�1-5 (4.2.2.7.4.1)�N/A�N/A�Correctly installs all MIDB tables.�TAMPS installed with MIDB; user granted Network DBA privilege. (dut_install_MIDB.pl)������3.2.1.2.5.1.2.2�"Workstation" supports a subset of MIDB tables.� �N/A�N/A�Reference statement (4.2.6.1).�(dut_install_MIDB.pl) ������3.2.1.2.5.1.2.3�"Workstation" support scenario data.�4.2.21.6�N/A�N/A�Satisfied requirement.�DBA and MPM application. (dut_install_MIDB.pl)������3.2.1.2.5.1.3�Supporting a "remote" MIDB installation.�1-5 (4.2.3.7.6)�N/A�N/A�Satisfied requirement.�Completed TAMPS build, installation, data load; MIDB installation, data load. (dut_install_MIDB.pl)������3.2.1.2.5.1.3.1�"Remote" installation includes only the application software.�1-5 (4.2.3.7.6)�N/A�N/A�Satisfied requirement.�Completed TAMPS build, installation, data load; MIDB installation, data load. (dut_install_MIDB.pl)������3.2.1.2.5.1.3.2�"Remote" installation requires a connection to a "server."�1-5 (4.2.3.7.6)�N/A�N/A�Satisfied requirement.�Completed TAMPS build, installation, data load; MIDB installation, data load. (dut_install_MIDB.pl)������3.2.1.2.6�Separate system generation and MIDB database installation. (Deleted)�����������3.2.1.2.6.1�Checking required disk space.��N/A�N/A�Reference statement (4.2.1.4.1.7), using 56 Mb.�(dut_install_MIDB.pl) ������3.2.1.2.6.2�Informing user of insufficient disk space.��N/A�N/A�Returns message of insufficient disk space.�Overload disk storage capacity. (dut_install_MIDB.pl)������3.2.1.2.7�Accepting user input to define the installation parameters.�1-5 (4.2.2.7.4.1)�N/A�N/A�Satisfied requirement.�TAMPS installed with MIDB; user granted Network DBA privilege. (dut_install_MIDB.pl)������3.2.1.2.8�Assigning a unique server ID to the system.�1-5 (4.2.3.7.6)�N/A�N/A�Satisfied requirement.�Completed TAMPS build, installation, data load; MIDB installation, data load. (dut_install_MIDB.pl)������3.2.1.2.8.1�Using server ID when generating record's surrogate key.�1-5 (4.2.3.7.6)�N/A�N/A�Satisfied requirement.�Completed TAMPS build, installation, data load; MIDB installation, data load. (dut_install_MIDB.pl)������3.2.1.2.8.2�Newly generated surrogate keys shall not conflict with previously generated key.���� Open issue (4.2.2.8)�(dut_install_MIDB.pl)������3.2.1.2.9�Initializing access to MIDB database stored on JMCIS.�1-5 (4.2.3.7.6)�N/A�N/A�Satisfied requirement.�Completed TAMPS build, installation, data load; MIDB installation, data load. (dut_install_MIDB.pl)������

�Assumptions from Preliminary Design

Input values will depend only on configuration selected, and will not require user input. Required inputs and where the values will be obtained have been clarified in the above design.

Several JMCIS configuration items were expected to be required as inputs. These values will not be needed in the final configuration. Although we will be using the JMCIS Sybase server, we will maintain our own BLTS daemon.

The Manual Installation Procedures from the MIDB SIP are complete. The procedures are not complete, but the missing elements will be worked out during implementation. Known to be missing is the setting of the MIDB Server ID.

A small number of pre-defined MIDB configurations can be determined. Only three have been identified: client/standalone, TAMPS Server, and TAMPS Server with JMCIS available.

Concerns/Questions/Issues from Preliminary Design

How do the MIDB Server ID and RESPROD values get set during a manual installation? The Server ID value is set by modifying the file $MIDB_DB_DIR/SUPPORT/procedures/RDB_GEN_SK.sql, replacing the existing value of ë11111í with the desired value. The RESPROD value is set as the environment variable MIDB_PRODUCER in the SetMidbEnv.sh file.

Do we need a configuration for a client workstation initially connected to the TAMPS CVIC server? No, clients are installed as stand-alone, and then connected to the MP-LAN (see MP-LAN design).

Should we install the MIDB software from the TAMPS installation media, or from the MIDB installation media as delivered by DIA? We will deliver the MIDB software on the TAMPS installation media. While there were several potential advantages in being able to install directly from the DIA media, the potential conflicts between TAMPS and an MIDB version that had not been evaluated led us to conclude that including the MIDB software and data on the TAMPS installation media would lead to a more predictable interaction between the TAMPS and MIDB software.

Do we need a method to upgrade a ìremoteî installation to a ìworkstationî? It appears that there will not be a need for a ìremoteî installation. A client workstation that will be permanently connected to the MP-LAN will not need to have the MIDB software installed on it. If it is later determined that the workstation may need its own MIDB, the MIDB can be installed later on that workstation.

How will the MIDB server ID values be assigned? This is still an open issue. We would very much like to be able to assign values automatically, without needing to ask the user to enter a value. We do not know what range of values will be assigned to TAMPS. For the initial implementation, we may be able to use two values ñ one for the TAMPS servers, and one for client and standalone workstations. This can be justified by noticing that the only supported method from transporting records from one system to another is when the server dumps its records to the client for use when the client disconnects from the MP-LAN, so the server needs a distinct ID from any of its clients. In this case, the data copied from the server to the client will completely replace the existing data on the client, and the data copied will contain (in addition to the MIDB baseload data) only records created on the server (or on JMCIS). To this the client may add its own locally-created records after disconnecting from the MP-LAN. However, if there is any other method in which a TAMPS system can transfer locally-created records to another TAMPS system or any other MIDB-using system, then each TAMPS system will require a distinct MIDB server ID. It would be best to find a way to assign a distinct ID to each TAMPS system now; trying to change the server ID assignments of existing systems may be much more difficult.

How can we prevent re-generating surrogate key values when a TAMPS system (and the MIDB) is reinstalled? This is also an open issue. The MIDB CONOPS indicates that the MIDB should not be reinstalled, so that the counters used to generate the surrogate key values used for newly created MIDB records will not be reset, and the new records will continue to have unique key values. However, the current TAMPS System Generation CONOPS indicates that TAMPS should be installed by completely wiping out the existing system and installing the new system from scratch. These two concepts are not compatible with each other. Changing the TAMPS System Generation CSC to be compatible with the MIDB CONOPS would involve a complete redesign of the CSC, and the time, effort, and risks involved in such a redesign place it outside the scope of this SOR. It should be noted that this issue should be completely satisfied when both TAMPS and MIDB become DII/COE compliant in future releases. Until then, can we satisfy this by requesting that the TAMPS Database Administrator do a dump of the MIDB and restore it after the reinstallation is complete?

What RESPROD value should be used for MIDB records created on a TAMPS system? This is an open issue, and one may require resolution at a higher program level. Will the same RESPROD value be used for all TAMPS systems (including TERPES)? The May 1997 version of the MIDB SIP indicates that a RESPROD of ëZí should be used for sites that are not producer sites. This issue could be affected by the resolution of the ìLocal Recordî issue.

How can we determine MIDB version number when installing from DIA installation media? No longer an issue, since we will not be installing from DIA installation media.

Do we need to match RPC identifiers with JMCIS? Needs to be verified, but since we will be using our own BLTS daemon rather than connecting to the daemon running on JMCIS, we will not need any RPC information from JMCIS.

What happens if TAMPS and JMCIS both create a user with the same name? TAMPS will be checking to see if there already exists a JMCIS user with the same name, and rejecting the account if there is a JMCIS user. We have informed JMCIS of this issue, though I do not know what, if anything, they plan to do in regard to this. TAMPS does not plan to support user accounts with the same name on both TAMPS and JMCIS. The only technical issue regarding this is that TAMPS would have to be informed (probably through user input) of the Sybase password for the user on JMCIS.

Will the classification of the MIDB static data have an impact on the design? The only impact of the classification of the data is that the MIDB root directory will need to be in the classified area of the system. This is a minor implementation point, and will not have a significant effect on the design.

Are the documented manual installation procedures complete and correct? This is an open issue. The documented procedures do not indicate how the MIDB server ID is installed. This will need to be worked, with either TRW ñ Mt. View, or with Sterling Software.

How does the MIDB software work in a two-server (MIDB and JMCIS) environment? Needs to be verified, but it appears that we will be treating both servers as local from a TAMPS perspective, so there are no problems with the MIDB software (running two local Sybase servers is much better understood). What we lose is the ability to easily have a user with the same account name on TAMPS and JMCIS. If we were to support such a user, the user (and Sybase password) would need to be registered with the BLTS daemon on both systems, and any future password changes would also need to be specified on both systems. We do not plan to support such a user in this release.

What is needed to initialize the connection to JMCIS? Since we are planning to access the JMCIS server using the Sybase system, we only need to ensure that the JMCIS Sybase server information is available in the ìinterfacesî file on the TAMPS system. We need to verify whether MP-LAN will set up this information as part of its replication setup. The JMCIS Sybase server name must be available to TAMPS applications. The JMCIS Sybase ìsaî password must be available to selected TAMPS applications (user administration, at least).

What steps are necessary to perform a ìremoteî installation? This is not applicable to the TAMPS installation, since the TAMPS systems will not use the MIDB ìnetworkî user concept. Both the TAMPS and JMCIS Sybase servers will be treated as local servers.��User Administration CSC

High-Level Design Updates

The BLTS Software will always be installed at System Generation.

All TAMPS users will be given full permissions within the MIDB Production Permissions system; the TAMPS roles and privileges will be used to control access to the MIDB editor software.

MIDB Production Permissions can be assigned automatically, although the interface is not supported.

The access to the JMCIS Sybase server will not be granted at the time the TAMPS user is created; instead, this access will be granted when the TAMPS user is first granted the Network DBA privilege..

Database Schema

No schema will be created by this CSC. It will use the MIDB permissions tables included in the MIDB GMI database as delivered by DIA.

Control Flow

�

Figure � STYLEREF 4 \n �4.2.3.3�-� SEQ Figure * ARABIC \r 1 �1� New TAMPS Account Control Flow

�

Figure � STYLEREF 4 \n �4.2.3.3�-� SEQ Figure * ARABIC �2� Network DBA Pre-modification Control Flow (Part 1)

�

Figure � STYLEREF 4 \n �4.2.3.3�-� SEQ Figure * ARABIC �3� Network DBA Pre-modification Control Flow (Part 2)

�

Figure � STYLEREF 4 \n �4.2.3.3�-� SEQ Figure * ARABIC �4� Network DBA Pre-modification Control Flow (Part 3)

�

Figure � STYLEREF 4 \n �4.2.3.3�-� SEQ Figure * ARABIC �5� Network DBA Account Modification Control Flow

Algorithms

None

Design Description

TAMPS User Creation

The existing User Administration code will be used, with some additions. The following changes should be made to the Add User code, to be executed for all users (after the Sybase login has been created). The changes described under User Modification also apply to the User Creation routine.

If the MIDB is installed on TAMPS, the account must be given access to the MIDB databases.

// for each database in (MIDB databases)

//	if ((select count(*) from master..sysdatabases where name = database) != 0) {

//		use database

//		sp_adduser user, user, read_only

//	}

// }

Requires ìsaî access to the TAMPS server.

The accountís Sybase login and password must be registered with the BLTS server.

Runtime inputs: TAMPS ìsaî Sybase password, userís Sybase password.

This can be done with the command ìBltsSetPassword -B user user_password sa_passwordî or with the function BltsBootstrapPassword(user, NULL, user_password, sa_password)

Error conditions: password not set (display error message, exit?)

TAMPS User Modification

These changes need to be made to both the User Creation and User Modification routines, except as noted. If the user has the Network DBA privilege enabled, then the following code must be executed:

Information needed to create the Network DBA privilege must be collected before creating or modifying the user information.

In each of the functions addUser() and modifyUser() in zet_userMMIcb.c, add code at the beginning of each function to:

// if (zrt_userHasPrivPossible(userData, ZRT_DB_NETWORK_DBA) == TRUE) {

//	if ((net_action = getNetDBAInfo()) == FAILURE) {

//		display message ìUser not createdî

//		return

//	}

// }

This references a new private function getNetDBAInfo():

// /* Determine whether connected to JMCIS */

// if (!connected to JMCIS) {

//	/* If not connected to JMCIS, using local TAMPS MIDB for all edits */

//	/* User will always exist in TAMPS BLTS system */

//

//	/* Verify that MIDB has been installed on TAMPS */

//	dbfcmd(ìselect count(*) from master..sysdatabases where name = ëGMIíî)

//	if (count == 0) {

//		display error message(ìMIDB not installedî)

//		return(FAILURE)

//	}

//

//	/* Determine whether user exists in MIDB permissions list */

//	dbfcmd(ìselect count(*) from GMI..ZP_USER_PERM_TYPE

//				where USERID = ë%síî, user_name)

//	if (count > 0)	/* user already all set up */

//		return(DO_NOTHING)

//	else

//		return(TAMPS_MERGE)

// }

//

// /* If we are connected to JMCIS, there are three possibilities: */

// /* 1) User has been set up by TAMPS as an MIDB user on JMCIS */

// /* 2) User has never been set up as an MIDB user on the JMCIS server */

// /* 3) User has been set up by JMCIS as an MIDB user on JMCIS, but */

// /*		has never been set up with TAMPS */

//

// /* first, find out if the user exists in the TAMPS BLTS system ñ if so, */

// /* then we must have case 1 and there is nothing to do */

//

// if (BltsListUsers(dsquery, &user_list) == BLTS_FAIL) {

//	display error message

//	return(FAILURE)

// }

//

// for (i = 0; user_list[i] != NULL; i++) {

//	if (strcmp(user_name, user_list[i]) == 0) {

//		BltsStringTableFree(user_list)

//		return(DO_NOTHING)	/* already has MIDB access */

//	}

// }

// BltsStringTableFree(user_list)

//

// /* To distinguish between cases 2 and 3, we need the JMCIS ìsaî password. */

// /* Save this password for use after the information has been collected. */

//

// if (zet_getPassword(ìTo grant Network DBA access, you must enter the Sybase SA

//			password for the JMCIS MIDB data serverî,

//			&jmcis_sa_pwd) == ST_FAILURE)

// 	return(FAILURE)		/* canceled out of password dialog */

//

// /* Open a connection to the JMCIS server ñ also verifies user-entered password */

// jmcis dbproc = ust_dblogin(jmcis dsquery, ìsaî, jmcis_sa_pwd)

// if (jmcis dbproc == NULL) {

//	display error message (ìCannot login into JMCIS serverî)

//	free(jmcis_sa_pwd)

//	return(ST_FAILURE)

// }

//

// /* Determine whether the user exists on JMCIS */

// dbfcmd(jmcis dbproc, ìselect count(*) from master..syslogins where name = ë%síî, user_name)

// dbclose(jmcis dbproc)

// if (count == 0)

//	return(JMCIS_NEW)	/* Case 2 ñ user not in JMCIS database at all */

//

// /* Since the user already exists on JMCIS, but is not known to the TAMPS BLTS */

// /* system, it must have been created on JMCIS. We cannot assume anything */

// /* about the Sybase password for this user, and we need to register the user */

// /* and password with the TAMPS BLTS system. So ask for the userís password */

// /* and save the password ñ weíll need that later. */

// if (zet_getPassword(ìThis user name already exists on the JMCIS MIDB data server.

//			Please enter the JMCIS Sybase password for this userî,

//			&jmcis_user_pwd) == ST_FAILURE)

//	return(FAILURE)

//

// /* Verify the user-entered password */

// jmcis dbproc2 = ust_dblogin(jmcis dsquery, user_name, jmcis_user_pwd)

// if (jmcis dbproc2 == NULL) {

//	display error message(ìIncorrect JMCIS user passwordî)

//	return(ST_FAILURE)

// }

// dbclose(jmcis dbproc2)

// return(JMCIS_MERGE)

This references a new function zet_getPassword(), probably to be created in zet_passwdMMI.c, which will:

// create a dialog (full application modal) that contains the passed-in message,

//		a text field for the password, and OK/Cancel/Help buttons below.

// add a modifyVerifyCallback must be placed on the text field (very similar to the existing

//		zet_mask_password) that will replace the typed characters with asterisks

// add callbacks to the OK and Cancel buttons that will set a flag indicating which button has been selected

// set flag = NO_BUTTON

// while (flag == NO_BUTTON) {

//	XtAppProcessEvent()

// }

// if (button == OK) {

//	make copy of password to return in output parameter

//	return(ST_SUCCESS)

// } else {

//	return(ST_FAILURE)

// }

After the userís Unix account and Sybase account have been created or modified, if the user has the Network DBA privilege, the account should be given access to the MIDB.

In each of the functions addUser() and modifyUser(), add code, just before calling zrt_setRoles(), to:

// if (zrt_userHasPrivPossible(userData, ZRT_DB_NETWORK_DBA) == TRUE) {

//	if (createNetDBA(net_action) == ST_FAILURE) {

//		display message ìNetwork DBA privilege removedî

//		zrt_makePrivImpossible(userData, ZRT_DB_NETWORK_DBA)

//		zrt_makePrivInactive(userData, ZRT_DB_NETWORK_DBA)

//	}

// }

This references a new private function createNetDBA():

// /* If the action is DO_NOTHING, then the user has been set up in the past */

// if (net_action == DO_NOTHING)

//	return(ST_SUCCESS)

// /* The user must be added to the ìmidbuserî and ìmidbpdbaî groups. */

// read the output from ìniscat group.org_dirî

// for each line in the input {

// 	if (the group name is not a group to be added to)

//		continue		/* go get next line */

//

//	get the list of existing users in the group from input line

//	if (user_to_add is already in group)

//		continue		/* go get next line */

//

//	add ì,î if any user in list of users

//	add user_to_add to list of users

//	execute nistbladm -e ëmembers=listí ë[name=group],group.org_dirí

// }

// /* Now take the appropriate action depending on the what was determined in getNetDBAInfo() */

// /* Not connected to JMCIS and user needs to be added to MIDB on TAMPS server */

// if (action == TAMPS_MERGE) {

//	if (call addMidbUser.sh failed) {

//		display error message(ìAdding user to MIDB databases failedî)

//		return(ST_FAILURE)

//	}

// }

�// /* Connected to JMCIS and user does not exist on JMCIS (case 2 in getNetDBAInfo design) */

// else if (action == JMCIS_NEW) {

//	/* Create a new Sybase account on JMCIS and register it with the TAMPS BLTS server */

//	if (BltsLoginCreate(user_name, jmcis_dsquery, NULL, jmcis_sa_pwd)

//			== BLTS_FAIL) {

//		display error message (ìCreating JMCIS Sybase account failedî)

//		return(ST_FAILURE)

//	}

//

//	/* Add the new account to the MIDB */

//	if (call addMidbUser.sh failed) {

//		display error message(ìAdding user to MIDB databases failedî)

//		return(ST_FAILURE)

//	}

// }

// /* Connected to JMCIS and user was created by JMCIS admin (case 3 in getNetDBAInfo design) */

// /* Account is assumed to be already granted MIDB permissions */

// else if (action == JMCIS_MERGE) {

//	/* Register existing account with TAMPS BLTS server */

//	if (BltsBootstrapPassword(user_name, jmcis_dsquery, jmcis_user_pwd, jmcis_sa_pwd)

//			== BLTS_FAIL) {

//		display error message (ìAdding account to BLTS failedî)

//		return(ST_FAILURE)

//	}

// }

// else {

//	display error message (ìUnknown action code!î)

//	return(ST_FAILURE)

// }

// return(ST_SUCCESS);

Create new script file addMidbUser.sh, which will:

// /* Add the user, or update the group, in each database */

// /* This may also change with resolution of the local record issue! */

// for each MIDB database {

//	if exists(select * from sysusers where name = user_name)

//		sp_changegroup user_name, expert

//	else

//		sp_adduser user_name, user_name, expert

// }

//

// /* Poke values into the MIDB permissions tables. */

// /* These updates are not supported by DIA, and should be reviewed */

// /* for each new release of MIDB being integrated into TAMPS */

// /* This may also change with resolution of the local record issue! */

// insert into table GMI..ZP_USER_PERM_TYPE a record which contains:

//	-- the user account name for the USERID field,

//	-- ëNRí for the USER_TYPE field (no restrictions),

//	-- ëUí for the QUEUE_LEVEL field, and

//	-- ëAí for each _USER_LEVEL field (EQP_USER_LEVEL, etc.)

// insert into table GMI..ZP_USER_PERM_RESPROD a record for each RESPROD

//			the user is allowed to edit

//	-- the user account name for the USERID field,

//	-- the RESPROD value for the RES_PROD field

//

// /* Update the binary user_access file. */

// /* Note that this is a binary file with ?? byte records. The user name is in bytes ??-??, */

// /* and the database access flags are bytes ??-??, one byte for each database: 1=read_only, */

// /* 2=analyst, 3=expert. Skip byte ??, it is for the GAZ database that TAMPS does not use. */

// /* This is also UNSUPPORTED by DIA, and must be reviewed at each MIDB release! */

// /* This may also change with resolution of the local record issue! */

// open the file $MIDB_HOME/$MIDB_VERSION/data/user/user_access for binary read.

// open $MIDB_HOME/$MIDB_VERSION/data/user/user_access.tmp for binary write

// while (a record is successfully read)

//	write the record to the temp file

// using the last record read in:

// change the user name in that record to the user being added

// change each database access flag to 3 (binary)

// write the changed record out

// close the user_access file

// close the temp file

// rename the user_access file to user_access.bak

// rename the user_access.tmp file to user_access

//

// /* Ask the BLTS daemon to re-read the cached information */

// BltsUtility -r

// BltsUtility -R

A new privilege must be added under the Database Administrator role.

In file zet_userMMI.c, function zet_CreatedbPrivForm(), add code after the creation of the ìReceive Database Administrator Alertsî toggle button. This code should be similar to the code to create the existing toggle button, except that the label should be ìNetwork DBAî, and the variable to receive the widget pointer should be zet_dbNetDBAToggle.

In file zrt_defines.h , increase the value of ZRT_NUM_PRIVS by one, and add a new line after the ZRT_DB_RCV_ALERTS definition:

#define ZRT_DB_NETWORK_DBA ìPRIV_DB_NETWORK_DBAî

Interface Description

The following dialog is displayed when a TAMPS user is granted the Modify MIDB privilege on a TAMPS server that is connected to (and replicating MIDB data from) a JMCIS system. The JMCIS ìsaî password is used to create a Sybase login for the TAMPS used in the JMCIS Sybase server, and to grant that login the appropriate MIDB permissions.

�

Figure � STYLEREF 4 \n �4.2.3.6�-� SEQ Figure * ARABIC \r 1 �1�: HMI to request JMCIS "sa" password

The following dialog is displayed when a TAMPS user is granted the Modify MIDB privilege on a TAMPS server that is connected to (and replicating MIDB data from) a JMCIS system, and a JMCIS user with the same user name already exists. In this case, a new Sybase login cannot be created, so the TAMPS user must use the existing JMCIS Sybase login for that user.

�

Figure � STYLEREF 4 \n �4.2.3.6�-� SEQ Figure * ARABIC �2�: HMI to request JMCIS user's Sybase password

�Unit Test Plans and Procedures

� EMBED Excel.Sheet.5 ���

Functional Test Plans and Procedures

SOR 96-01a MIDB 2.0 Function and Unit Test Matrix���3.2.2 TAMPS System Administration CSC ,CS0230 (Ref. TAMPS 6.2 Design Notebook, 6 Aug. 1997)���

Reference�Requirements (Condensed Text)�Test Steps (Ref.)�Purify Results�Pure Coverage Percentage�Pass/Fail Criteria�Test Environment and Applicable (Function)��3.2.2.1�Appropriate permissions for user accounts.�1-5 (4.2.3.7.6)�N/A�N/A�Satisfied requirement.�Completed TAMPS build, installation, data load; MIDB installation, data load. (createNetDBA)��3.2.2.2�Appropriate permissions for the JMCIS MIDB databases.�1-5 (4.2.3.7.6)�N/A�N/A�Satisfied requirement.�Completed TAMPS build, installation, data load; MIDB installation, data load. (createNetDBA)��3.2.2.3�Maintenance access restricted to TAMPS DBA.�1-5 (4.2.3.7.6)�N/A�N/A�Satisfied requirement.�Completed TAMPS build, installation, data load; MIDB installation, data load. (createNetDBA)��3.2.2.3.1�Restricting archive operations to TAMPS DBA.�1-5 (4.2.3.7.6)�N/A�N/A�Satisfied requirement.�Completed TAMPS build, installation, data load; MIDB installation, data load. (createNetDBA)��3.2.2.3.2�Restricting restore operations to TAMPS DBA.�1-5 (4.2.3.7.6)�N/A�N/A�Satisfied requirement.�Completed TAMPS build, installation, data load; MIDB installation, data load. (createNetDBA)��3.2.2.3.3�Restricting load operations to TAMPS DBA.�1-5 (4.2.3.7.6)�N/A�N/A�Satisfied requirement.�Completed TAMPS build, installation, data load; MIDB installation, data load. (createNetDBA)��3.2.2.3.4�Restricting maintenance operations to TAMPS DBA.�1-5 (4.2.3.7.6)�N/A�N/A�Satisfied requirement.�Completed TAMPS build, installation, data load; MIDB installation, data load. (createNetDBA)��3.2.2.4�Supporting subsets for copying to client workstations in an MP-LAN environment. Uses Replication.� (4.2.6.1)��� � ��3.2.2.4.1�Allowing DBA to specify the subset to be copied to client workstation. Uses Replication.� (4.2.6.1)���� ��

�Test Environment

Testing of this CSC will not require anything beyond a completed TAMPS build, installation, and data load, including MIDB installation and data load.

Some tests will require that the system being used by a TAMPS server connected to JMCIS. One test will require the JMCIS Database Administrator to create an account and set it up as an MIDB user.

Dependencies

None

Assumptions

Since TAMPS is only using a limited subset of the MIDB software, we are assuming that the methods we use for assigning MIDB permissions are completely compatible with the supported DIA methods. We cannot completely test the MIDB GOTS software in the TAMPS configuration.

Verification

Verify that an existing account can be granted the Network DBA privilege.

Verify that a new account can be granted the Network DBA privilege.

Verify that the above work in a JMCIS-connected environment.

In a JMCIS-connected environment, verify that a TAMPS account can be created and granted the Network DBA privilege when the account name matches an existing JMCIS account.

Verify that an account granted the Network DBA privilege can run the MIDB applications, especially the Query software and the production editors.

Test Steps

Login in as ìtampsî or some other user with privilege to assign roles and privileges. From the WSE menu bar, select System Admin (User Administration. Select Modify User, select an existing account that has never been assigned the Network DBA privilege, and grant it the Network DBA privilege. Then log in as that user, bring up the Database Administrator application, and select the menu item Utilities (MIDB Tools (Database (Query. Verify that the query utility will come up. Run a query, and verify that data is returned. Select a returned record, and attempt to edit it. The production editor should come up, and it should allow editing of the record (exactly what should be displayed as far as permissions depends on the local record issue).

Turn Network DBA privilege off and back on for a user, and run the MIDB query tool as described in the previous step.

Repeat the first test, but create a new account with the Network DBA privilege instead of modifying an existing account.

Repeat the above steps in a JMCIS-connected environment. Verify that the software prompts for the JMCIS ìsaî password in steps 1 and 3 (enter an incorrect password, and verify that an error message appears).

Again in a JMCIS-connected environment, attempt to grant Network DBA privilege to a user who exists on JMCIS and has been granted MIDB access by the JMCIS Database Administrator, but who has never had the TAMPS Network DBA privilege. The software should in this case prompt for both the JMCIS ìsaî password and the userís Sybase password.

Assumptions from Preliminary Design

JMCIS will allow TAMPS to create user logins to its Sybase server: Fran Wright of JMCIS indicated that this would be allowed at the PDR for SOR 96-01a, 28 May 1997.

TAMPS will be provided with the password of the ìsaî username on the JMCIS MIDB server (or some other username with privilege to create logins): The TAMPS administrator will be required to enter the JMCIS password for ìsaî when granting the Network DBA privilege to a user. I do not believe that BLTS will allow the use of any other username.

Potential conflicts with JMCIS users can be checked for by querying the ìsysloginsî table in the JMCIS master database. This is still an assumption, and it should be verified with JMCIS, but I see no reason why it should be false.

We do not need to perform any BLTS registration or MIDB permission assignments on the JMCIS machine. It still appears that we do not need to perform any BLTS registration on the JMCIS machine ñ we can register the JMCIS Sybase login and password with the BLTS daemon running on the TAMPS server. What we lose by maintaining our own BLTS database is the ability to have a TAMPS user and a JMCIS user with the same name.

Concerns/Questions/Issues from Preliminary Design

What method should be used to assign MIDB permissions to users? As described above, we will be writing directly to the MIDB database tables to specify the permissions. We will be giving all TAMPS users full MIDB permissions, and controlling access to the MIDB editor software through the TAMPS roles and privileges.

Need to coordinate with JMCIS that they have no problems with TAMPS creating users in their database. Fran Wright has indicated that this is not a problem for JMCIS.

JMCIS needs to check for username conflicts with existing TAMPS users. JMCIS has been informed of this requirement, although I do not know what their design is. The error will show up on the JMCIS system as a Sybase login that already exists.

Will the BLTS software be installed at System Generation? Yes.

Is there a method other that the isql procedure ìsp_adduserî that we should use to specify that a user has access to a database? There seems to be no special requirement that we go through BLTS to add users to a database. We will need to send a message to the BLTS daemon process to rebuild its user access info after adding a user. See the addMidbUser.sh script for more details.

��MIDB Baseload CSC

High-Level Design Updates

None

Database Schema

None

Control Flow

Algorithms

None.

Design Description

This CSC covers MIDB baseloads by a standalone TAMPS system, or an MPLAN server that is not connected to a JMCIS system. For baseloads by a server that is connected to JMCIS, see the JMCIS Baseload CSC.

Definition: An MIDB ìviewî consists of a main table and related child tables. For example, the FAC view consists of the tables FAC, FAC_AKA, FAC_TIE, and other tables starting with FAC.

MIDB Baseload Processing

Note: The DIA specification for MIDB baseload tapes has not been completely finalized. This design is based on the proposed specification, and must be reviewed when an MIDB baseload tape is received.

The DD_DBLOAD data must be changed to change the current ìIDB - FORMATTEDî list item with a new ìMIDB Baseloadî item.

The function dlt_load_unload must be changed, replacing the current reference to ìcase†DLT_IDB_DATABASEî with the following:

//	case DLT_MIDB_DATABASE:

//		strcpy(dataPtr(source, ìMIDBî);

//		dlt_load_MIDB_baseload(dataPtr);

//		break;

The file dlt_dbase.h must be changed to replace DLT_IDB_DATABASE with DLT_MIDB_DATABASE.

The new function dlt_load_MIDB_baseload (in new file dlt_midb.c) will perform the following actions:

// load_view_list[server] = (all)

// load_view_list[standalone] = (some)

// get user privileges

// if (zet_userHasPrivActive(NETWORK_DBA) == FALSE) {

//	display error message ìNot privilegedî

//	return ST_FAILURE

// }

// get system configuration

// if (replicating from JMCIS) {

//	display error message ìCannot load while replicatedî

//	return ST_FAILURE

// }

// drop all indexes and triggers on the MIDB GMI tables

// if (device != MANUAL)

//	extract header file from tape

// open header file for read

// while (a header record is read from the header file) {

//	extract view name and tar set number from record

//	if (view is in load_view_list[system_configuration]) {

//		if (device != MANUAL) {

// 			position the tape to the appropriate file

//				(may need to subtract 1 from number in header file)

// 			extract files from tape

//		}

//		truncate the tables.

// 		call the MIDB script ìBcpLoad.plî to load the files

// 		remove the files from disk

//	}

// }

// re-create indexes and triggers on MIDB GMI tables

// run LoadAccession.pl to update accession numbers

// update TAMPS catalog

// send alert to each role announcing that MIDB has been updated

We are assuming that MIDB will provide scripts to drop and re-create the indexes and triggers on the MIDB GMI tables. If this is not true, then we will need to write scripts ourselves to perform these actions.

MIDB Transaction File (TF) Processing

Note: The DIA specification of the delivery media for TF updates has not been completed. This design is based on our assumptions of what the TF updates will look like. The design of this processing must be verified when a complete specification for TF tapes is received from DIA, or when a TF tape is first received.

The arguments to be passed to the Import application also need to be determined.

A TF received via SIPRNET or other method may be processed by placing the TF file(s) into the $DB_MIDBTF_IN directory and using the Database Administrator application to load the TF file, specifying ìManualî as the input device. The method for downloading the TF file and placing it in the proper directory is not specified, since no CONOPS is available for connecting to or downloading from any such network. Most TAMPS systems with access to such a network will be connected to JMCIS, which will process the TF updates.

The DD_DBLOAD data must be changed to change the current ìIDB - TFsî list item with a new ìMIDB TF Updateî item.

The function dlt_load_unload must be changed, replacing the current reference to ìcase†DLT_IDBTF_DATABASEî with the following:

//	case DLT_IDBTF_DATABASE:

//		strcpy(dataPtr(source, ìIDBTFî);

//		dlt_load_MIDB_TF(dataPtr);

//		break;

The new function dlt_load_MIDB_TF (in new file dlt_midb.c) must do the following:

// load_view_list[server] = (all)

// load_view_list[standalone] = (some)

// get user privileges

// if (zet_userHasPrivActive(NETWORK_DBA) == FALSE) {

//	display error message ìNot privilegedî

//	return ST_FAILURE

// }

// get system configuration

// if (replicating from JMCIS) {

//	display error message ìCannot load while replicatedî

//	return ST_FAILURE

// }

// if (device != MANUAL)

//	extract header file from tape

// open header file for read

// while (a header record is read from the header file) {

//	extract view name and tar set number from record

//	if (view is in load_view_list[system_configuration]) {

//		if (device != MANUAL) {

// 			position the tape to the appropriate file

//				(may need to subtract 1 from number in header file)

// 			extract files from tape

//		}

//		for each file in tar set {

// 			run the MIDB ìImportî process

//		}

// 		remove the files from disk

//	}

// }

// run LoadAccession.pl to update accession numbers

// update TAMPS catalog

// send alert to each role announcing that MIDB has been updated

The code to load the IDB is intertwined with the code to load NID, NERF, and EPL, so we will not attempt to remove all the dead IDB loading code.

The file dlt_idbtf.c is now obsolete, as are the applications ìdttî and ìdtfî. These were used to process IDB TF tapes; new TFs for MIDB will be processed by the DEX loader.

Interface Description

Unit Test Plans and Procedures

Test Environment

Testing of this CSC will require an MIDB baseload tape, and an MIDB TF tape. Ideally, these should be tapes produced by the theater producers (AIC, JICPAC, etc.) who will be providing tapes when TAMPS 6.2 is fielded, but these are not expected to be available in this time frame. The next best test data are world-wide tapes produced by DIA. Following that would be subset data tapes produced by DIA. The last resort test tapes would be tapes produced by TAMPS developers.

The test system must not be configured as a JMCIS-connected system (i.e, it must not be using Sybase replication on the MIDB).

Unless noted, the user must be logged in as a user with the Network DBA privilege active.

There must be at least some MIDB data already stored on the test system.

Dependencies

Testing of this CSC is dependent on the system being generated, and the MIDB installed, as specified in the design for those CSCs. Additionally, at least one user must have been created and granted the Network DBA privilege.

Assumptions

We are assuming that the format of the test data will accurately reflect the format of the data that will be received by fielded TAMPS systems.

Since most of the software referenced by these operations are Shell or Perl scripts and/or GOTS software, using Purify or PureCoverage will be of minimal use for this CSC.

Verification

Verify that MIDB baseload and MIDB TF update appear in the list of load options.

(For MIDB baseload only) Verify that the existing data in the views to be loaded has been removed.

Verify that data from the tape has been loaded into the appropriate tables.

(For MIDB baseload only) Verify that the triggers and indices on the tables have been re-generated.

Verify that the data files have been removed from disk.

Verify that the newly loaded data can be used in queries.

Verify that the TAMPS catalog has been updated.

Verify that an alert has been sent.

Test Steps

MIDB Baseload

Bring up the Database Administrator application, and select Utilities (Load...

Select ìMIDB Baseloadî, select the appropriate tape device, fill in the catalog information, and press OK.

Using any MPM or the Database Administrator application, perform a ìDatabase Search(Newî, and select an MIDB object. Run a query.

Once a query has been run, perform various object actions (AMP INFO, LABELS, etc.) on some of the returned object instances.

Using an xterm and the isql application, verify the counts of some (all, if possible) MIDB tables, and that the triggers and indexes are in place.

While logged in as a user without the Network DBA privilege active, verify that the MIDB baseload cannot be performed (either MIDB Baseload will not be available for selection, or if it is selected, an error dialog will appear).

MIDB TF Update

Bring up the Database Administrator application, and select Utilities (Load...

Select ìMIDB TFî, select the appropriate tape device, fill in the catalog information, and press OK.

Open a shell window and review the DEX output files for errors.

Using any MPM or the Database Administrator application, perform a ìDatabase Search(Newî, and select an MIDB object. Run a query that will return a record modified by the TF.

Once a query has been run, perform various object actions (AMP INFO, LABELS, etc.) on some of the returned object instances.

Using an xterm and the isql application, verify the counts of some (all, if possible) MIDB tables, and that the triggers and indexes are in place.

While logged in as a user without the Network DBA privilege active, verify that the MIDB baseload cannot be performed (either MIDB Baseload will not be available for selection, or if it is selected, an error dialog will appear).

Repeat the above procedures, except this time do the following (in a shell window) first: cd $DB_IDBTF_IN; tar xvf tape_device. Then use the ìManualî option as the input device in the Utilities (Load window. Note that unless two successive TF updates are available, it will be necessary to re-baseload the MIDB data before re-processing the TF update.

�Function Test Plans and Procedures

SOR 96-01a MIDB 2.0 Function and Unit Test Matrix���3.2.3.3 MIDB Data Load CSC,CT0485 (Ref. TAMPS 6.2 Design Notebook, 6 Aug. 1997)���

Reference�Requirements (Condensed Text)�Test Steps (Ref.)�Purify Results�Pure Coverage Percentage�Pass/Fail Criteria�Test Environment and Applicable (Function)��3.2.3.3�Tamps shall provide the capability to load MIDB data from any DIA approved MIDB GMI database�����(dlt_load_MIDB_baseload)��3.2.3.3.1�Loading GMI data into empty MIDB GMI database.�1-6 pg 246 (4.2.4.7.5)���Satisfied requirement.�Requires an MIDB baseload tape and an MIDB TF tape. (DIA DEX)��3.2.3.3.2�Overwriting MIDB GMI database with new GMI data.�1-6 pg 246 (4.2.4.7.5)���Satisfied requirement.�Requires an MIDB baseload tape and an MIDB TF tape. (DIA DEX)��3.2.3.3.3�Updating bulk GMI data to MIDB GMI database.�1-6 pg 246 (4.2.4.7.5)���Satisfied requirement.�Requires an MIDB baseload tape and an MIDB TF tape. (DIA DEX)��3.2.3.3.4�Loading operational GMI data.�1-6 pg 246 (4.2.4.7.5)���Correctly loads GMI data.�Requires an MIDB baseload tape and an MIDB TF tape. (DIA DEX)��3.2.3.3.5�Loading exercise/scenario GMI data.�1-6 pg 246 (4.2.4.7.5)���Correctly loads GMI data.�Requires an MIDB baseload tape and an MIDB TF tape. (DIA DEX)��3.2.3.3.6�Processing Sybase Bulk Copy files.�1-6 pg 246 (4.2.4.7.5)���Correctly processes files.�Requires an MIDB baseload tape and an MIDB TF tape. (DIA DEX)��3.2.3.3.7�Processing Standard Extract Format files.�1-6 pg 246 (4.2.4.7.5)���Correctly processes files.�Requires an MIDB baseload tape and an MIDB TF tape. (DIA DEX)��3.2.3.3.8�Processing IDB Transaction files �1-8 pg 246 (4.2.4.7.5)���Correctly processes files.�Requires an MIDB baseload tape and an MIDB TF tape. (DIA DEX)��3.2.3.3.9�Loading GMI data from st'd TAMPS mass storage devices.�1-6 & 1-8 pg 246 (4.2.4.7.5)���Satisfied requirement.�Requires an MIDB baseload tape and an MIDB TF tape. (DIA DEX)��3.2.3.3.10�Loading GMI data to client workstations from TAMPS server.�1-6 pg 246 (4.2.4.7.5)���Satisfied requirement.�Requires an MIDB baseload tape and an MIDB TF tape. (DIA DEX)��3.2.3.3.11�Updating client workstations from TAMPS server.�1-6 pg 246 (4.2.4.7.5)���Satisfied requirement.�Requires an MIDB baseload tape and an MIDB TF tape. (DIA DEX)��3.2.3.3.12�Processing updates from JMCIS CDBS replication server to TAMPS server.�1-6 pg 246 (4.2.4.7.5)���Satisfied requirement.�Requires an MIDB baseload tape and an MIDB TF tape. (DIA DEX)��3.2.3.3.13�Provide report to DBA on data not loadable.�1-6 pg 246 (4.2.4.7.5)���Correctly provides report on any data that cannot be loaded.�Requires an MIDB baseload tape and an MIDB TF tape. (DIA DEX)��3.2.3.3.14�Provide report to DBA on replication failures.�1-6 pg 246 (4.2.4.7.5)���Correctly provides report on any replication errors.�Requires an MIDB baseload tape and an MIDB TF tape. (DIA DEX)��3.2.3.3.15�Supports selective extraction of data.�1-6 pg 246 (4.2.4.7.5)���Satisfied requirement.�Requires an MIDB baseload tape and an MIDB TF tape. (DIA DEX)��3.2.3.3.16�Supports selective insertion of data.�1-6 pg 246 (4.2.4.7.5)���Satisfied requirement.�Requires an MIDB baseload tape and an MIDB TF tape. (DIA DEX)��3.2.3.3.17�Allowing DBA to define new data profiles.�1-6 pg 246 (4.2.4.7.5)���Satisfied requirement.�Requires an MIDB baseload tape and an MIDB TF tape. (DIA DEX)��3.2.3.3.18�Provide default profile to support MIDB server.�1-6 pg 246 (4.2.4.7.5)���Satisfied requirement.�Requires an MIDB baseload tape and an MIDB TF tape. (DIA DEX)��3.2.3.3.19�Provide default profile to support MIDB workstation.�1-6 pg 246 (4.2.4.7.5)���Satisfied requirement.�Requires an MIDB baseload tape and an MIDB TF tape. (DIA DEX)��

SOR 96-01a MIDB 2.0 Function and Unit Test Matrix���3.2.4.2 Target Data Load CSC, CT1100 (Ref. TAMPS 6.2 Design Notebook, 6 Aug. 1997)���

Reference�Requirements (Condensed Text)�Test Steps (Ref.)�Purify Results�Pure Coverage Percentage�Pass/Fail Criteria�Test Environment and Applicable (Function)��3.2.4.2.1�Capability to load target records.�1-6 & 1-8 pg 246 (4.2.4.7.5)���Correctly loads target records.�Requires an MIDB baseload and TF tape. (DIA DEX)��3.2.4.2.2�Loading target data separately from other sets.�1-6 & 1-8 pg 246 (4.2.4.7.5)���Verification of loading sequence.�Requires an MIDB baseload and TF tape. (DIA DEX)��3.2.4.2.3�Loading target data from external mass storage devices.�1-6 & 1-8 pg 246 (4.2.4.7.5)���Correctly loads target data.�Requires an MIDB baseload and TF tape. (DIA DEX)��3.2.4.2.4�Loading target data to client workstations.�1-6 & 1-8 pg 246 (4.2.4.7.5)���Correctly loads target data.�Requires an MIDB baseload and TF tape. (DIA DEX)��3.2.4.2.5�Unused�������3.2.4.2.6�Accepting target data from other MIDB 2.0-compliant CI systems.�1-6 & 1-8 pg 246 (4.2.4.7.5)���Satisfied requirement.�Requires an MIDB baseload and TF tape. (DIA DEX)��3.2.4.2.7�Loading data in Sybase BCP format.�1-6 & 1-8 pg 246 (4.2.4.7.5)���Verification of format.�Requires an MIDB baseload and TF tape. (DIA DEX)��3.2.4.2.8�Loading data in IDB Standard Extract Format.�1-6 & 1-8 pg 246 (4.2.4.7.5)���Verification of format.�Requires an MIDB baseload and TF tape. (DIA DEX)��3.2.4.2.9�Supporting bulk updates performed via replacement.�1-6 & 1-8 pg 246 (4.2.4.7.5)���Deletes all existing data and inserts new data.�Requires an MIDB baseload and TF tape. (DIA DEX)��3.2.4.2.10�Supporting bulk updates performed via addition.�1-6 & 1-8 pg 246 (4.2.4.7.5)���Adds new data to an existing data set and insures no duplicate records are added.�Requires an MIDB baseload and TF tape. (DIA DEX)��3.2.4.2.11�Supporting bulk updates performed manually.�1-6 & 1-8 pg 246 (4.2.4.7.5)���Allows DBA to review existing records and modify updatable fields.�Requires an MIDB baseload and TF tape. (DIA DEX)��

�Assumptions from Preliminary Design

DIA will provide a method for loading by country code in the near future. This is being investigated by DIA, but is not likely to be completed in the near future. TAMPS systems will need to live with the requirement to load MIDB data for the entire world. We can selectively load MIDB views ñ for example, we will load FAC (facility) data, but not IND (individuals) data, on a standalone TAMPS system to reduce the disk space required.

DEX is suitable for the requirements of this SOR. DEX is the only tool available for processing TF updates. While DEX could process the baseload files, using the MIDB utility scripts, specifically BcpLoad.pl, is expected to be a more efficient way to load these files.

Concerns/Questions/Issues from Preliminary Design

Can DEX load from a tape? If not, then we could tar from tape to a file, then process the file with DEX. Our current understanding is that DEX will not process files directly from tape, and that DEX is limited to one input file per run. Therefore, the designs presented above include extraction of the files from tape, and for the TF processing, one DEX application per input file.

Does DEX truncate tables? If not, then it wonít support requirement 3.2.3.3.3. It is unknown at this point whether the MIDB utility scripts delivered with MIDB 2.1 will be able to truncate the tables. However, since we are no longer using the DEX HMI, we can truncate the tables ourselves and satisfy this requirement.

Is DEX HMI too complicated for TAMPS users? If so, can we launch DEX and bypass the initial HMI? We will not be using the DEX (or DBA Utiltity) HMI. Instead, we will be running the DBA utility scripts directly for a baseload, and running the DEX Import application directly for a baseload.

Will DIA provide a DEX that can process by country code? If so, when? The inability to filter BCP loads by country code is inherent in the design of the MIDB schema and tape format, not in the DEX loader. DIA has no plans to change the schema to make filtering by country code possible.

We have not been able to make the DEX loader work. This appears to be a problem in my personal development environment, although I have not located the problem. Other users have successfully run the DEX HMI and loader.��JMCIS Baseload CSC

High-Level Design Updates

MP-LAN software will handle the following issues:

The installation of TAMPS Replication Server

The creation and maintenance of subscriptions for the tables to be replicated to TAMPS GMI database and GMI_SUBSET database

The creation and maintenance of database connections between TAMPS Replication Server and TAMPS GMI database, and between TAMPS Replication Server and TAMPS GMI_SUBSET database.

JMCIS software will handle the following issues:

The creation of replication definitions for all the tables in GMI database

The creation of the route from JMCIS Replication Server to TAMPS Replication Server

The dropping of subscriptions at TAMPS Replication Server when JMCIS is about to start its baseload

This CSC only addresses issues for a JMCIS connected TAMPS system to transfer the baseload data from JMCIS GMI database to TAMPS GMI database after JMCIS completes its baseload. The transfer of baseload data from TAMPS GMI database to TAMPS GMI_SUBSET database is also implemented in the same script file.

TAMPS GMI_SUBSET database receives its baseload from TAMPS GMI database. However, update transactions for replication on GMI_SUBSET database will come from JMCIS Replication Server.

The following scripts are required for bulk-copy process:

The following commands should be included in the create MIDB stored procedure of the MIDB Installation CSC to create stored procedures drop_Rep_Triggers and drop_Rep_Indexes

isql -U SYBUSER -P SYBPASS -S tamps_rs \

-i create_Drop_GMI_TrigIndx

isql -U SYBUSER -P SYBPASS -S tamps_rs \

-i create_Drop_SUBGMI_TrigIndx

delete_GMI_Data and delete_GMI_SUBSET_Data specified in this CSC will be used to drop triggers and indexes and truncate tables before the bulk-copy procedure.

Scripts specified in the ìCreate MIDB indicesî process and the ìCreate MIDB triggersî process of MIDB Installation CSC will be called after bulk-copy procedure to re-create triggers and indexes.

Database Schema

None

Control Flow

�

Figure � SEQ Figure * ARABIC �3� "Re-sync process with named-pipe bcp method for JMCIS connected TAMPS"

�

Figure � SEQ Figure * ARABIC �4� "Re-sync process with flat file bcp method for JMCIS connected TAMPS"

Algorithm

None

Design Description

To avoid heavy network overhead, bulk data materialization seems to be a feasible way to implement the JMCIS baseload process. We will use the bulk-copy method that copies tables from JMCIS to either an operating system file or a named pipe(TBD). We will only replicate data from JMCIS GMI database. There will be no stored procedure to be replicated.

The following describes the variable names used throughout the script files. They also apply to the stand-alone TAMPS system. The actual names for most of the variables will be found in the environment file and be replaced when running the script.

jmcis_gmi will be the name of JMCIS GMI database.

table_name will be the name of the table to be copied, it should be the same name for both copy-in and copy-out command. The same table_name will also be used for replication definition name.

jmcis_user will be JMCIS provided SQL server account with peission described in the following section.

jmcis_passwd will be JMCIS provided password for jmcis_user.

tamps_gmi will be the name of TAMPS GMI database.

tamps_ds will be the name of TAMPS Intel SQL server.

sa_passwd will be the password for sa.

bcpTempDataFilex is the name of an operating system file used for bulk-copy procedure. The x at the end indicating different file name. It will be from 1 to the number of tables to be copied. For example, we may have several file names as bcpTempDataFile1, bcpTempDataFile2, ...etc.

subscrip_name will be the name for the subscription.

Initial JMCIS Baseload Process

This process will be called by MIDB Installation CSC during the procedure for Load MIDB static data. At this point, indexes and triggers for MIDB database should already be created. We also assume that there is no replication process taking place yet. Therefore, bcp_gmi_p.sh or bcp_gmi_f.sh will be used to copy data from JMCIS GMI database to TAMPS GMI database. bcp_subgmi_p.sh or bcp_subgmi_f.sh will be used to copy data from TAMPS GMI database to TAMPS GMI_SUBSET database. At this moment, it is not clear whether we should do bulk-copy out to named pipe files then bulk-copy into TAMPS databases or bulk-copy out to operating system files then bulk-copy into TAMPS databases. This needs to be tested with large data files. Both methods are specified in this CSC.

After the completion of bulk-copy process, we need to use scripts from MIDB Installation CSC to re-create triggers and re-create indexes for TAMPS GMI database.

To copy JMCIS GMI database tables out to the named pipe files or operating system files, we need to have a JMCIS SQL server account with select permission on the following tables:

The table being copied

sysobjects

syscolumns

sysindexes

Re-sync JMCIS Baseload Process

This section specifies appropriate procedures for the database re-sync process. There will be some procedures provided by JMCIS software and some procedures provided by MP-LAN software. This CSC only focuses on procedures needed for baseloading to GMI database and GMI_SUBSET database in TAMPS system.

In this process, JMCIS software should first log into TAMPS Replication Server to drop all subscriptions for tables in TAMPS GMI database and for tables in TAMPS GMI_SUBSET database before JMCIS starts its baseload. Whenever MIDB Editor receives an update request, it should always check to see if the subscription for the table to be updated exists. This way, updates will be rejected when the entry for the subscription in the TAMPS RSSD system tables is not found. Update requests will be disabled until TAMPS administrator receives enable update message from MP_LAN, then update operation will be resumed. The appropriate time to resume update operations will depend on which bcp method is implemented.

After JMCIS completes its baseload, JMCIS software should perform the quiescing process for JMCIS Replication Server to prevent any left over transactions from previous database being forwarded to TAMPS Replication Server and applied to TAMPS GMI database and/or TAMPS GMI_SUBSET database when the replication process is brought back to work.

Procedures for JMCIS to perform its baseload

JMCIS software logs into TAMPS Replication Server and drops all subscriptions for tables in TAMPS GMI database and GMI_SUBSET database. This process will also be an indication for TAMPS administrator to stop accepting any database updates.

JMCIS software starts its baseload.

At the completion of JMCIS baseload, JMCIS performs the quiescing procedure to force JMCIS Replication Server to clean up its inbound and outbound queues. That means, there should be no more transactions existing in its inbound queue and all transactions in its outbound queue have been sent out to TAMPS Replication Server and acknowledgments have been received.

JMCIS informs TAMPS that its baseload is completed.

Procedures for TAMPS to perform its baseload

Depending on which bulk-copy approach to be used, one of the following scripts will be needed.

If the bulk-copy to named pipe files method is to be implemented, run resync_jload_p.sh.

Define an output file for logging output messages.

BaseLoadLogFile=ì$MIDB_OUT/data/out/baseloadlog.outî

Define the maximum number of retries for quiescing the system.

The number specified here needs to be further studied.

MaxQuisceTimes=20

QuiesceCheckInterval=20 # This value may need to be re-adjusted.

Remove the log file containing the status from previous baseload

rm -f $BaseLoadLogFile

Quiesce the TAMPS Replication Server

Force transactions left in the outbound queue of TAMPS Replication Server to be

applied to TAMPS GMI database and GMI_SUBSET database.

isql -U DB_SYBUSER -P DB_SYBPASS -S tamps_rs -i quiesce_RS |

		grep ìis quiescedî

Check the quiescing status, if TAMPS Replication Server is not quiesced, force it by

sending force_rsi command again. If it runs over MaxQuiesceTimes, an error message

will be logged and the program terminates.

loop = 0

while [$? -ne 0]

do�

	if [$loop -lt $MaxQuiesceTimes]

	then

		sleep $QuiesceCheckInterval

		isql -U DB_SYBUSER -P DB_SYBPASS -S tamps_rs -i quiesce_RS |

		grep ìis quiescedî

	loop=`expr $loop + 1`

else

	break;

fi

done

if [$loop -eq $MaxQuiesceTries]

then

	echo ìTAMPS Replication Server is not quiesced.î >> \

		$BaseLoadLogFile

exit 1

fi

echo ìTAMPS Replication Server is quiesced.î >> $BaseLoadLogFile

Drop triggers and indexes, and truncate GMI tables

isql -U SYBUSER -P SYBPASS -S tamps_rs -i delete_GMI_Data

Perform named pipe bulk-copy process

bcp_gmi_p.sh

Run commands specified in the ìCreate MIDB indicesî section of MIDB Installation

CSC to re-create indexes for tables of the GMI database.

Run commands specified in the ìCreate MIDB triggersî section of MIDB Installation

CSC to re-create triggers for the GMI database.

Use the code provided by MP_LAN to create subscriptions for the data to be replicated

at TAMPS GMI database and TAMPS GMI_SUBSET database.

The following steps should be provided to create subscriptions:

For each table to be replicated at TAMPS GMI database:

Define subscription with replicate at TAMPS GMI database.

Activate the subscription with suspension.

Validate the subscription.

End of for loop

#

For each table to be replicated at TAMPS GMI_SUBSET database:

subscription with replicate at TAMPS GMI_SUBSET database.

Activate the subscription with suspension.

Validate the subscription.

End of for loop.

#

Now, TAMPS administrator may enable update operation.

#

Because the activate subscription command was entered with suspension option,

database connection between TAMPS GMI database and TAMPS Replication

Server, and database connection between TAMPS GMI_SUBSET database and

TAMPS Replication Server are also suspended. Therefore, all updates submitted

after this point will be saved in the outbound queue of TAMPS Replication

Server, and applied to TAMPS GMI database and GMI_SUBSET database

when connections are resumed later.

Drop triggers and indexes, and truncate GMI_SUBSET tables

isql -U SYBUSER -P SYBPASS -S tamps_rs -i delete_SUBGMI_Data

Bulk-copy subset of baseload data from TAMPS GMI database to TAMPS

GMI_SUBSET database,

bcp_subgmi_p.sh

Run commands specified in the ìCreate MIDB indicesî section of MIDB Installation

CSC to re-create indexes for tables of the GMI_SUBSET database.

Run commands specified in the ìCreate MIDB triggersî section of MIDB Installation

CSC to re-create triggers for the GMI_SUBSET database.

Set autocorrection feature to on for each table to be replicated in the TAMPS

GMI database.

This feature will change every update or insert transaction to a delete followed by a

insert command. Since we allow database updates while bulk-copy is in process, the

problem with the replicated updates against already updated data will be solved by

setting autocorrection to on.

For example, there will be no error if we try to delete a record which has already

been deleted during bulk-copy process when the autocorrection is set to on.

#

For each table to be replicated at TAMPS GMI database ...

isql -U DB_SYBUSER -P DB_SYBPASS -S tamps_rs -i autoOn_TAMPS_GMI |

	grep ìEnable autocorrection for the table_name replication definitionî

if [$? -ne 0]

then

	echo ìEnable autocorrection for table_name of TAMPS GMI is failed.î \

>> $BaseLoadLogFile

else

	echo ìAutocorrection is on for table_name of TAMPS GMI.î >> \

$BaseLoadLogFile

fi

End of for

Resume database connection between TAMPS GMI database and TAMPS

Replication Server so that transactions in the outbound queue of TAMPS

Replication Server may be applied to TAMPS GMI database.

Note: the database connection was suspended by activate subscription with

suspension command provided by MP_LAN software earlier.

isql -U DB_SYBUSER -P DB_SYBPASS -S tamps_rs -i resume_TAMPS_GMI |

	grep ìResumes the connection to the tamps_gmi databaseî

if [$? -ne 0]

then

	echo ìResume database connection between tamps_gmi and tamps_rs failed.î \

		>> $BaseLoadLogFile

	isql -U DB_SYBUSER -P DB_SYBPASS -S tamps_rs \

-i resume_GMI_SUBSET

	exit 1

else

	echo ìDatabase connection between tamps_gmi and tamps_rs is resumed.î >> \

		$BaseLoadLogFile

fi

For each table to be replicated at TAMPS GMI_SUBSET database ...

isql -U DB_SYBUSER -P DB_SYBPASS -S tamps_rs -i autoOn_GMI_SUBSET |

	grep ìEnable autocorrection for the table_name replication definitionî

if [$? -ne 0]

then

	echo ìEnable autocorrection for table_name of GMI_SUBSET is failed.î\

 >> $BaseLoadLogFile

else

	echo ìAutocorrection is on for table_name. of GMI_SUBSETî >> \

$BaseLoadLogFile

fi

End of for ...

Resume database connection between TAMPS GMI_SUBSET database and TAMPS

Replication Server so that transactions in the outbound queue of TAMPS

Replication Server may be applied to TAMPS GMI_SUBSET database.

isql -U DB_SYBUSER -P DB_SYBPASS -S tamps_rs -i resume_GMI_SUBSET |

	grep ìResumes the connection to the gmi_subset databaseî

if [$? -ne 0]

then

	echo ìResume database connection between gmi_subset and tamps_rs failed.î \

		>> $BaseLoadLogFile

	exit 1

else

	echo ìDatabase connection between gmi_subset and tamps_rs is resumed.î >> \

		$BaseLoadLogFile

fi

Baseload process is completed.

echo ìBaseload process is completed. >> $BaseLoadLogFile

exit 0

If bulk-copy to an operating system file method is to be implemented, run resync_jload_f.sh.

Define an output file for logging the status of baseload process.

BaseLoadLogFile=ì$MIDB_OUT/data/out/baseloadlog.outî

bcpTempDataFilex=ì$MIDB_OUT/data/out/bcptempx.datî

Define the maximum number of retries for quiescing the system.

The number specified here needs to be further studied.

MaxQuisceTimes=20

QuiesceCheckInterval=20 # This value may need to be re-adjusted.

Remove the log file containing the status from previous baseload

rm -f $BaseLoadLogFile

Quiesce the TAMPS Replication Server

Force transactions left in the outbound queue of TAMPS Replication Server to

be applied to TAMPS GMI database and GMI_SUBSET database.

isql -U user -P passwd -S tamps_rs -i quiesce_RS |

		grep ìis quiescedî

Check the quiescing status, if TAMPS Replication Server is not quiesced, force it by

sending force_rsi command again. If it runs over MaxQuiesceTimes, an error message

will be logged and the program terminates.

loop = 0

while [$? -ne 0]

do�

	if [$loop -lt $MaxQuiesceTimes]

	then

		sleep $QuiesceCheckInterval

		isql -U user -P passwd -S tamps_rs -i quiesce_RS |

		grep ìis quiescedî

	loop=`expr $loop + 1`

else

	break

fi

done

if [$loop -eq $MaxQuiesceTries]

then

	echo ìTAMPS Replication Server is not quiesced.î >> \

		$BaseLoadLogFile

exit 1

fi

echo ìTAMPS Replication Server is quiesced.î >> $BaseLoadLogFile

For each table to be replicated ...

Copy table data out of JMCIS GMI database into an operating system file

bcpTempDataFile

bcp jmcis_gmi..table_name out bcpTempDataFilex -c -U jmcis_user -P jmcis_passwd \

-S jmcis_ds

End of for loop

Use the code provided by MP_LAN to create subscriptions for the data to be replicated

at TAMPS GMI database and TAMPS GMI_SUBSET database.

#

For each table to be replicated at TAMPS GMI database:

Define subscription with replicate at TAMPS GMI database.

Activate the subscription with suspension.

Validate the subscription.

End of for loop

#

For each table to be replicated at TAMPS GMI_SUBSET database:

Define subscription with replicate at TAMPS GMI_SUBSET database.

Activate the subscription with suspension.

Validate the subscription.

End of for loop.

#

Now, TAMPS administrator may enable update operations.

#

Because the activate subscription command was used with suspension option,

database connection between TAMPS GMI database and TAMPS Replication

Server, and database connection between TAMPS GMI_SUBSET database and

TAMPS Replication Server are also suspended. Therefore, all updates submitted

after this point will be saved in the outbound queue of TAMPS Replication

Server, and applied to TAMPS GMI database and GMI_SUBSET database when

connections are resumed later.

Drop triggers and indexes, and truncate GMI tables

isql -U SYBUSER -P SYBPASS -S tamps_rs -i delete_GMI_Data

Drop triggers and indexes, and truncate GMI_SUBSET tables

isql -U SYBUSER -P SYBPASS -S tamps_rs -i delete_SUBGMI_Data

For each tables to be replicated ...

Copy table data out of the operating system file into TAMPS GMI database

bcp tamps_gmi..table_name in bcpTempDataFilex -c -U DB_SYBUSER \

-P DB_SYBPASS -S tamps_ds

echo ìBulk-Copy table table_name of GMI database is done.î >> $BaseLoadLogFile

End of for loop

Bulk-copy subset of baseload data to TAMPS GMI_SUBSET database.

For each table to be replicated ...

bcp gmi_subset..table_name in bcpTempDataFilex -c -U DB_SYBUSER \

-P DB_SYBPASS -S tamps_ds

echo ìBulk-Copy table table_name of GMI_SUBSET is done.î >> $BaseLoadLogFile

rm bcpTempDataFilex

End of for loop

Run commands specified in the Create MIDB indices section of MIDB Installation

CSC to re-create indexes for tables of MIDB database and GMI_SUBSET database.

Run commands specified in the Create MIDB triggers section of MIDB Installation

CSC to re-create triggers for GMI database and GMI_SUBSET database.

Set autocorrection feature on for every replicate table in the TAMPS GMI database.

This feature will change every update or insert transaction to a delete followed by a

insert command. Since we allow database updates while bulk-copy is in process, the

problem with updating against already updated data will be solved by setting

autocorrection to on..

#

For each table to be replicated at TAMPS GMI database ...

isql -U DB_SYBUSER -P DB_SYBPASS -S tamps_rs -i autoOn_TAMPS_GMI |

	grep ìEnable autocorrection for the table_name replication definitionî

if [$? -ne 0]

then

	echo ìEnable autocorrection for table_name of GMI database is failed.î\

 >> $BaseLoadLogFile

else

	echo ìAutocorrection is on for table_name of GMI database.î >>\

 $BaseLoadLogFile

fi

End of for ...

Resume database connection between TAMPS GMI database and TAMPS

Replication Server so that transactions in the outbound queue of TAMPS

Replication Server may be applied to TAMPS GMI database.

Note: the database connection was suspended by activate subscription with

suspension command provided by MP_LAN software earlier.

isql -U DB_SYBUSER -P DB_SYBPASS -S tamps_rs -i resume_TAMPS_GMI |

	grep ìResumes the connection to the tamps_gmi databaseî

if [$? -ne 0]

then

	echo ìResume database connection between tamps_gmi and tamps_rs failed.î \

		>> $BaseLoadLogFile

	isql -U DB_SYBUSER -P DB_SYBPASS -S tamps_rs \

-i resume_GMI_SUBSET

	exit 1

else

	echo ìDatabase connection between tamps_gmi and tamps_rs is resumed.î >> \

		$BaseLoadLogFile

fi

For each table to be replicated at TAMPS GMI_SUBSET database ...

isql -U DB_SYBUSER -P DB_SYBPASS -S tamps_rs -i autoOn_GMI_SUBSET |

	grep ìEnable autocorrection for the table_name replication definitionî

if [$? -ne 0]

then

	echo ìEnabel autocorrection for table_name of GMI_SUBSET is failed.î \

>> $BaseLoadLogFile

else

	echo ìAutocorrection is on for table_name of GMI_SUBSET.î >> \

$BaseLoadLogFile

fi

Resume database connection between TAMPS GMI_SUBSET database and TAMPS

Replication Server so that transactions in the outbound queue of TAMPS

Replication Server may be applied to TAMPS GMI_SUBSET database.

isql -U DB_SYBUSER -P DB_SYBPASS -S tamps_rs -i resume_GMI_SUBSET |

	grep ìResumes the connection to the gmi_subset databaseî

if [$? -ne 0]

then

	echo ìResume database connection between gmi_subset and tamps_rs failed.î \

		>> $BaseLoadLogFile

	exit 1

else

	echo ìDatabase connection between gmi_subset and tamps_rs is resumed.î >> \

		$BaseLoadLogFile

fi

Baseload process is completed.

echo ìBaseload process is completed. >> $BaseLoadLogFile

exit 0

supporting functions/procedures and scripts

bcp_gmi_p.sh

Bulk-copy baseload data from JMCIS GMI database to TAMPS GMI database with

named pipe method.

mknod GMI_PIPE p # Create a named pipe file GMI_PIPE

For each table to be replicated ...

Copy table data out of JMCIS GMI database into named pipe file GMI _PIPE

bcp jmcis_gmi..table_name out GMI_PIPE -c -U jmcis_user -P jmcis_passwd \

-S jmcis_ds &

bcp tamps_gmi..table_name in GMI_PIPE -c -U DB_SYBUSER -P DB_SYBPASS \

 -S tamps_ds

End of for loop

rm GMI_PIPE

exit 0

bcp_gmi_f.sh

Bulk-copy baseload data from JMCIS GMI database to an operating system file

bctemp.dat,

then copy the data from bcptemp.dat into the TAMPS GMI database.

Define the output file for logging output messages.

bcpTempDataFile=ì$MIDB_OUT/data/out/bcptemp.datî

For each table to be replicated ...

Copy table data out of JMCIS GMI database into operating system file bcptemp.dat

bcp jmcis_gmi..table_name out bcpTempDataFile -c -U jmcis_user -P jmcis_passwd \

-S jmcis_ds

bcp tamps_gmi..table_name in bcpTempDataFile -c -U DB_SYBUSER \

-P DB_SYBPASS -S tamps_ds

echo ìBulk-Copy table table_name of GMI database is done.î >> $BaseLoadLogFile

rm bcpTempDataFile

End of for loop

exit 0

bcp_subgmi_p.sh

Bulk-copy subset of baseload data from TAMPS GMI database to TAMPS

GMI_SUBSET database with named pipe method.

mknod GMI_PIPE p # Create a named pipe file GMI_PIPE

For each table to be replicated ...

Copy table data out of GMI database into named pipe file GMI_PIPE

bcp tamps_gmi..table_name out GMI_PIPE -c -U DB_SYBUSER \

-P DB_SYBPASS -S tamps_ds &

bcp gmi_subset..table_name in GMI_PIPE -c -U DB_SYBUSER \

 -P DB_SYBPASS -S tamps_ds

End of for loop

rm GMI_PIPE

exit 0

bcp_subgmi_f.sh

Bulk-copy subset of baseload data from TAMPS GMI database to an operating system

file bctemp.dat, then copy the data from bcptemp.dat into the TAMPS GMI_SUBSET

database.

Define a temporary file for bcp output.

bcpTempDataFile=ì$MIDB_OUT/data/out/bcptemp.datî

For each table to be replicated ...

Copy table data out of TAMPS GMI database into operating system file bcptemp.dat

bcp tamps_gmi..table_name out bcpTempDataFile -c -U DB_SYBUSER \

-P DB_SYBPASS -S tamps_ds

bcp gmi_subset..table_name in bcpTempDataFile -c -U DB_SYBUSER \

 -P DB_SYBPASS -S tamps_ds

rm bcpTempDataFile

End of for loop

exit 0

create_Drop_GMI_TrigIndx

use tamps_gmi

go

create_Drop_Rep_Triggers

create_Drop_Rep_Indexes

exit 0

create_Drop_SUBGMI_TrigIndx

use gmi_subset

go

create_Drop_Rep_Triggers

create_Drop_Rep_Indexes

exit 0

create_Drop_Rep_Triggers

create procedure drop_Rep_Triggers

as

	declare @tr_name varchar(30)

	declare tr_cursor cursor for

		select name

		from sysobjects

		where type = ìTRî

		for update

	open tr_cursor

	

	fetch tr_cursor

		into @tr_name

	while (@@sqlstatus = 0)

	begin

		drop trigger @tr_name

		fetch tr_cursor

			into @tr_name

	end

	close tr_cursor

	deallocate cursor tr_cursor

go

create_Drop_Rep_Indexes

create procedure drop_Rep_Indexes

as

	declare @indx_name varchar(30)

	declare @table_name varchar(30)

	declare indx_cursor cursor for

		select a.name, b.name

		from sysobjects a, sysindexes b

		where a.id = b.id and a.type = ìUî

		 and a.indid <> 0 and b.indid <> 255

		for update

	open indx_cursor

	

	fetch indx_cursor

		into @table_name, @indx_name

	while (@@sqlstatus = 0)

	begin

		drop index @table_name.@indx_name

		fetch indx_cursor

			into @table_name, @indx_name

	end

	close indx_cursor

	deallocate cursor indx_cursor

go

autoOff_GMI_SUBSET

set autocorrection off

for table_name

with replicate at tamps_ds.gmi_subset

go

quit

autoOff_TAMPS_GMI

set autocorrection off

for table_name

with replicate at tamps_ds.tamps_gmi

go

quit

autoOn_GMI_SUBSET

set autocorrection on

for table_name

with replicate at tamps_ds.gmi_subset

go

quit

autoOn_TAMPS_GMI

set autocorrection on

for table_name

with replicate at tamps_ds.tamps_gmi

go

quit

quiesce_RS

admin quiesce_force_rsi

admin quiesce_check

go

quit

resume_GMI_SUBSET

resume connection to tamps_ds.gmi_subset

go

quit

resume_TAMPS_GMI

resume connection to tamps_ds.tamps.gmi

go

quit

update_Statistics_TAMPS_GMI

use tamps_gmi

For each table in TAMPS GMI database ...

update statistics table_name

End of for ...

go

quit

update_Statistics_GMI_SUBSET

use gmi_subset

For each table in TAMPS GMI_SUBSET database ...

update statistics table_name

End of for ...

go

quit

delete_GMI_Data

use tamps_gmi

go

Drop indexes for tables in GMI_SUBSET database.

drop_Rep_Indexes

go

Drop triggers in GMI database.

drop_Rep_Triggers

go

For each table in the GMI_SUBSET database

truncate table table_name

End of for ...

go

quit

Administrative Operations

There are two tasks included in this administrative script to improve performance. When all updates submitted during bulk-copy process have been applied to TAMPS GMI database, the autocorrection feature should be set to off to improve replication performance. Also, when a large amount of data has been truncated, update statistics command will help SQL server make the best decision about which index to use. These two operations should be an individual event processed under a system administration function. Maybe a new button ìReplication Administrationî could be included under Utilities of Database Administrator application.

rs_adm_gmi.sh

Define a log file for logging the status of baseload process.

BaseLoadLogFile = ì$MIDB_OUT/data/out/baseloadlog.outî

Remove the log file containing the status from previous baseload

rm -f BaseLoadLogFile

For every replication definition ...

isql -U DB_SYBUSER -P DB_SYBPASS -S tamps_rs -i autoOff_TAMPS_GMI |

	grep ìAutocorrection on replication definition table_name is modifiedî

if [$? -ne 0]

then

	echo ìDisable autocorrection for table_name of TAMPS GMI is failed.î \

>> $BaseLoadLogFile

else

	echo ìAutocorrection is set to off for table_name of TAMPS GMIî \

>> $BaseLoadLogFile

fi�# End of for ...

For every replication definition ...

isql -U DB_SYBUSER -P DB_SYBPASS -S tamps_rs -i autoOff_GMI_SUBSET |

	grep ìAutocorrection on replication definition table_name is modifiedî

if [$? -ne 0]

then

	echo ìDisable autocorrection for table_name of GMI_SUBSET is failed.î \

>> $BaseLoadLogFile

else

	echo ìAutocorrection is set to off for table_name of GMI_SUBSET.î \

>> $BaseLoadLogFile

fi�# End of for ...

isql -U DB_SYBUSER -P DB_SYBPASS -S tamps_ds \

-i update_Statistics_TAMPS_GMI

isql -U DB_SYBUSER -P DB_SYBPASS -S tamps_ds \

-i update_Statistics_GMI_SUBSET

exit 0

Interface Description

The following software is required from MP_LAN:

The creation of subscriptions for TAMPS GMI database.

The creation of subscriptions for TAMPS GMI_SUBSET database.

Note: the with suspension option is required for the command of activate subscription.

Unit Test Plans and Procedures

Test Environment

Testing of this CSC requires a TAMPS-like system with a SQL data server, a Replication Server, a JMCIS-like system with a SQL data server, a Replication Server and a LTM for the database. A primary database is created in the JMCIS system, a replicate of the primary database and a subset of the primary database are created in the TAMPS system.

Dependencies

None

Assumptions

We assume that this test should be coordinated with JMCIS and MP_LAN as follows:

The interface file should be properly specified by MP_LAN.

The maintenance user should be granted select, insert, update and delete permissions on the databases of TAMPS system. Note: a maintenance user is created during the Replication Server installation process.

A user with the same login name and password should be defined at both Replication Server.

Replication definitions should be available from JMCIS for the testing.

Subscriptions should be available from MP_LAN for the testing.

The software to load the JMCIS baselod to the JMCIS system should be available from JMCIS.

A large amount of baseload data should be available and loaded into JMCIS GMI database for the bcp test.

Another large amount of baseload data should be available and loaded into JMCIS GMI database for re-sync test.

Verification

Experiment bulk-copy methods with large amount of data, select the better method to implement.

Verify that both databases are consistent after the initial baseload process.

Verify that both databases are consistent after the re-sync process.

Verify that the database generation number does not change after the loading of data.

Test Steps

Run bcp_gmi_p.sh and bcp_subgmi_p.sh against JMCIS GMI database and TAMPS GMI database. Experiment the available disk space and processing time. Then run bcp_gmi_f.sh and bcp_subgmi_f.sh against TAMPS GMI database and GMI_SUBSET database. Do the same experiment.

Enter the following command before and after re-sync process to observe the database generation number. As we stated in the Concerns section, this number needs to be further studied.

isql -U DB_SYBUSER -P DB_SYBPASS -S tamps_rs

admin get_generation, tamps_ds, tamps_gmi

go

The output will show as follow:

Current generation number for tamps_ds.tamps_gmi is ...

Wait until JMCIS completes their baseload, run resync_jload_p.sh or resync_jload_f.sh according to the decision made from previous experiments.

Enter updates at JMCIS system. Make sure that updates are replicated at the GMI database and GMI_SUBSET database.

Run rs_adm_gmi.sh to disable autocorrection feature and update statistic information for indexes of GMI database and GMI_SUBSET database. Check output messages at the file baseloadlog.out in the directory of $MIDB_OUT/data/out.

Assumptions from Preliminary Design

For the Initial JMCIS Baseload Process, we assume that the replication has not started yet while we are loading the data. If for any reason, the data becomes inconsistent when we actually start the replication process, we should use the re-sync procedure to correct the problem.

In this CSC, we assume that table names will be used to define replication definitions. That means, MP_LAN will use the corresponding table name for the replication definition name. If this is not true, we will have to replace table_name with rep_def_name for the setting of autocorrection feature in the scripts.

Concerns/Questions/Issues from Preliminary Design

In order for the autocorrection feature to be working, replicate minimal column option for the replication definition can not be specified. If this requirement can not be followed, we should stop updates for the whole duration of materialization.

Itís not clear if the Database Generation Number needs to be incremented after the baseload and that how much this number will impact our design. This will need to be tested before and after a bulk-copy process.

Although we quiesce both the JMCIS Replication Server and TAMPS Replication Server during the baseload process, we still need to find out if there will be any transactions left at the JMCIS GMI database log. Will those transactions be scanned by LTM and transferred to the Replication Server for replication when replication process is resumed? Do we need to use dbcc settrunc command to have SQL Server to truncate log records that the LTM has not yet transferred to the JMCIS Replication Server? This needs to be tested when we have the Replication Server set up in the lab.

The output messages from isql statements in the scripts will have to be verified with a Replication Server and re-adjusted accordingly. Since they are used to check the successful status of the isql statement execution, we need to specify the correction output messages in the scripts.

Stand-alone GMI Baseload CSC

High-Level Design Updates

This CSC covers the baseload procedures for a stand-alone TAMPS system with Sybase replication capabilities only. Baseload requirement for a stand-alone TAMPS system without the Sybase Replication Server is specified in MIDB Baseload CSC of Design Notebook section 4.2.4. Installation and configuration for the Replication Server and databases are not included in this CSC.

A Replication Server will be used for replicating data from GMI database to GMI_SUBSET database. This stand-alone TAMPS system also contains a SQL data server and a Log Transfer Manager for the transferring of transaction log records.

We need to perform the same requirements for bulk-copy process as specified in the JMCIS Baseload CSC.

Database Schema

None

Control Flow

�

Figure � SEQ Figure * ARABIC �5� "Create replication definitions"

�

Figure � SEQ Figure * ARABIC �6� "Create subscriptions - 1"

�

Figure � SEQ Figure * ARABIC �7� "Create subscriptions - 2"

�

Figure � SEQ Figure * ARABIC �8� "Re-sync process for stand-alone TAMPS"

Algorithm

None

Design Description

Initial GMI Baseload Process

In order for the replication process to be fully functioning, the following steps need to be performed:

Install the Replication Server.

Create the database and tables.

Load initial data into GMI database and GMI_SUBSET database.

Create replication definitions for the tables to be replicated to GMI_SUBSET database. The replication definition defines the table to be available for replication.

Create subscriptions for the data to be replicated to GMI_SUBSET database.

Step 1 will be performed by MP_LAN software. Step 2, and 3 will be part of MIDB Installation CSC. Step 4 and 5 may be performed any time before the replication process starts and are specified in the following sections.

Create replication definitions for tables to be replicated.

We may use sa or a user account defined at the TAMPS Replication Server with create object permission to create replication definitions. The following script rep_def.sh will be used for the creation of replication definitions.

rep_def.sh

Define a log file for logging the status of baseload process.

BaseLoadLogFile=ì$MIDB_OUT/data/out/baseloadlog.outî

Remove the log file containing the status from previous baseload

rm -f $BaseLoadLogFile

For each table to be replicated ...

Create a replication definition for the table

isql -U DB_SYBUSER -P DB_SYBPASS -S tamps_rs -i create_Rep_Def |

	grep ìReplication definition table_name is createdî

if [$? -ne 0]

then

	echo ìReplication definition table_name creation failed.î >> \

		$BaseLoadLogFile

	exit 1

else

	echo ìReplication definition table_name is created.î >> \

		$BaseLoadLogFile

fi

End of for ...

For each table to be replicated ...

Mark the table for replication

isql -U DB_SYBUSER -P DB_SYBPASS -S tamps_ds -i mark_Replication |

	grep ìReplication definition table_name is marked.î

if [$? -ne 0]

then

	echo ìMark replication definition table_name failed.î >> \

		$BaseLoadLogFile

	exit 1

else

	echo ìReplication definition table_name is marked.î >> \

		$BaseLoadLogFile

fi

End of for ...

Create subscriptions for tables to be replicated

We will use the following scripts to create subscriptions. However, before the subscriptions are created, we need to have sa permission or a user login account gmirs created by User Administration CSC with the create object permission. We may use the same account to drop the subscription when it is needed. (Note: Sybase suggests not to create subscriptions as the sa user).

subscrip_crt.sh

Define a log file for logging the status of baseload process.

BaseLoadLogFile=ì$MIDB_OUT/data/out/baseloadlog.outî

Define the maximum number of retries for creating the subscriptions

MaxSubscripTimes=20

SubscripCheckInterval=20 # This value may need to be re-adjusted.

Execute the define subscription command for every table to be replicated

at the TAMPS Replication Server

DEFINE the subscription

#

For each table to be replicated at GMI_SUBSET database ...

isql -U gmirs -P gmirs_passwd -S tamps_rs -i define_Subscrip

Verify the status of the subscription definition, until it is defined at the

TAMPS Replication Server.

isql -U gmirs -P gmirs_passwd -S tamps_rs -i check_Subscrip |

		grep ìhas been defined at the Replicateî

Check the replicate site

loop=0

while [$? -ne 0]

do

	if [$loop -lt $MaxSubscripTimes]

	then

		sleep $SubscripCheckInterval

		isql -U gmirs -P gmirs_passwd -S tamps_rs i- check_Subscrip |

			grep ìhas been defined at the Replicateî

	loop=`expr $loop + 1`

else

	break

fi

done

		

if [$loop -eq $MaxSubscripTimes]

then

	echo ìThe subscription subscrip_name is not defined.î >> $BaseLoadLogFile

exit 1

else

Check the primary site

	loop=0

while [$? -ne 0]

do

		if [$loop -lt $MaxSubscripTimes]

	then

		sleep $SubscripCheckInterval

			isql -U gmirs -P gmirs_passwd -S tamps_rs \

i- check_Subscrip |

			grep ìhas been defined at the PRIMARYî

		loop=`expr $loop + 1`

else

	break

fi

done

fi

if [$loop -eq $MaxSubscripTimes]

then

	echo ìThe subscription subscrip_name is not defined.î >> $BaseLoadLogFile

exit 1

else

echo ìThe subscription subscrip_name is defined.î >> $BaseLoadLogFile

End of for ...

ACTIVATE the subscription

#

For each table to be replicated at GMI_SUBSET database ...

isql -U gmirs -P gmirs_passwd -S tamps_rs -i activate_Subscrip

Check the subscription status, until it is active at the TAMPS Replication Server.

isql -U gmirs -P gmirs_passwd -S tamps_rs -i check_Subscrip |

		grep ìis ACTIVE at the Replicateî

Check the replicate site

loop=0

while [$? -ne 0]

do

	if [$loop -lt $MaxSubscripTimes]

	then

		sleep $SubscripCheckInterval

		isql -U gmirs -P gmirs_passwd -S tamps_rs i- check_Subscrip|

			grep ìis ACTIVE at the Replicateî

	loop=`expr $loop + 1`

else

	break

fi

done

		

if [$loop -eq $MaxSubscripTimes]

then

	echo ìThe subscription subscrip_name is not active.î >> $BaseLoadLogFile

exit 1

else

Check the primary site

	loop=0

while [$? -ne 0]

do

		if [$loop -lt $MaxSubscripTimes]

	then

			sleep $SubscripCheckInterval

			isql -U gmirs -P gmirs_passwd -S tamps_rs \

i- check_Subscrip|

			grep ìis ACTIVE at the PRIMARYî

		loop=`expr $loop + 1`

else

	break

fi

done

fi

if [$loop -eq $MaxSubscripTimes]

then

	echo ìThe subscription subscrip_name is not active.î >> $BaseLoadLogFile

exit 1

else

echo ìThe subscription subscrip_name is active.î >> $BaseLoadLogFile

End of for ...

VALIDATE the subscription

#

For each table to be replicated at GMI_SUBSET database ...

isql -U gmirs -P gmirs_passwd -S tamps_rs -i valid_Subscrip

Check the subscription status, until it is active at the TAMPS Replication Server.

isql -U gmirs -P gmirs_passwd -S tamps_rs -i check_Subscrip |

		grep ìis VALID at the Replicateî

Check the replicate site

loop=0

while [$? -ne 0]

do

	if [$loop -lt $MaxSubscripTimes]

	then

		sleep $SubscripCheckInterval

		isql -U gmirs -P gmirs_passwd -S tamps_rs i- check_Subscrip_d|

			grep ìis VALID at the Replicateî

	loop=`expr $loop + 1`

else

	break

fi

done

		

if [$loop -eq $MaxSubscripTimes]

then

	echo ìThe subscription subscrip_name is not valid.î >> $BaseLoadLogFile

exit 1

else

Check the primary site

	loop=0

while [$? -ne 0]

do

		if [$loop -lt $MaxSubscripTimes]

	then

		sleep $SubscripCheckInterval

			isql -U gmirs -P gmirs_passwd -S tamps_rs \

i- check_Subscrip|

			grep ìis VALID at the PRIMARYî

		loop=`expr $loop + 1`

else

	break

fi

done

fi

if [$loop -eq $MaxSubscripTimes]

then

	echo ìThe subscription subscrip_name is not valid.î >> $BaseLoadLogFile

exit 1

else

echo ìThe subscription subscrip_name is valid.î >> $BaseLoadLogFile

End of for ...

Subscription is created.

exit 0

Supporting functions

create_Rep_Def

We use the table name from GMI database as the name of replication definition

create replication definition table_name

with primary at tamps_ds.tamps_gmi

(column_name datatype, column_name datatype, ...)

primary key (column_name, ...)

go

quit

#

We use table name as the replication definition name

The above column list includes all columns defined for the base table.

Primary key columns specified with the primary key clause must match the primary

key column as defined for the base table.

Columns that have user-defined datatypes must be defined in the replication definition

with the underlying base datatype.

mark_Replication

use tamps_gmi

go

sp_setreptable table_name, ëtableí

go

quit

define_Subscrip

We use the table name from GMI database as the name of replication definition

define subscription subscrip_name

for table_name

with replicate at tamps_ds.gmi_subset

go

quit

check_Subscrip

We use the table name from GMI database as the name of replication definition

check subscription subscrip_name

for table_name

with replicate at tamps_ds.gmi_subset

go

quit

valid_Subscrip

We use the table name from GMI database as the name of replication definition

validate subscription subscrip_name

for table_name

with replicate at tamps_ds.gmi_subset

go

quit

Re-sync GMI Baseload Process

This section is for re-synchronization of databases after the replication process has taken place. We assume that subscriptions may not need to be dropped and recreated . This depends on whether transactions will be logged when we load baseload data from tapes. Procedures specified at MIDB Baseload CSC should be used at GMI database to truncate old data and load new data from the tape product. Updates to GMI database have to be suspended before re-sync process starts. According to the bulk-copy method to be used, one of the following scripts will be run to re-sync GMI database and GMI_SUBSET database.

If bulk-copy to named pipe files method is to be implemented, run resync_mload_p.sh

Define a log file for logging the status of baseload process.

BaseLoadLogFile=ì$MIDB_OUT/data/out/baseloadlog.outî

Define the maximum number of tries for quiescing the system

MaxQuisceTries=20

QuiesceCheckInterval=20 # This value may need to be re-adjusted.

Remove the log file containing the status from previous baseload

rm -f $BaseLoadLogFile

Quiesce the replication system

Suspend log transfer from GMI database to TAMPS Replication Server

isql -U DB_SYBUSER -P DB_SYBPASS -S tamps_rs -i suspend_Log_Transfer |

	grep ìLog transfer to tamps_rs is suspendedî

if [$? -ne 0] # If the return status is false, write to error file.

then

	echo ìSuspend log transfer to tamps_rs failed.î >> $BaseLoadLogFile

	exit 1

else

	echo ìSuspend log transfer to tamps_rs.î >> $BaseLoadLogFile

fi

Force TAMPS Replication Server to apply messages left in the outbound queue to

GMI_SUBSET database.

isql -U DB_SYBUSER -P DB_SYBPASS -S tamps_rs -i quiesce_RS |

		grep ìis quiescedî

Check the quiescing status, if TAMPS Replication Server is not quiesced, force it to

# deliver messages again.	

loop=0

while [$? -ne 0]

do

	if [$loop -lt $MaxQuiesceTries]

	then

		sleep $QuiesceCheckInterval

	isql -U DB_SYBUSER -P DB_SYBPASS -S tamps_rs -i quiesce_RS |

			grep ìis quiescedî

	loop=`expr $loop + 1`

else

	break

fi

done

if [$loop -eq $MaxQuiesceTries]

then

	echo ìTAMPS Replication Server is not quiesced.î >> $BaseLoadLogFile

isql -U DB_SYBUSER -P DB_SYBPASS -S tamps_rs -i resume_Log_Transfer

exit 1

fi

echo ìTAMPS Replication Server is quiesced.î >> $BaseLoadLogFile

At this point, we can use the procedures specified in the MIDB Baseload Processing of

MIDB Baseload CSC to truncate tables and load TAMPS GMI tables from baseload

tapes.

Suspend connection to TAMPS GMI_SUBSET database

isql -U DB_SYBUSER -P DB_SYBPASS -S tamps_rs -i suspend_GMI_SUBSET |

		grep ìConnection to gmi_subset is suspendedî

if [$? -ne 0]

then

echo ìSuspend database connection for gmi_subset failed.î >> \

$BaseLoadLogFile

	isql -U DB_SYBUSER -P DB_SYBPASS -S tamps_rs -i resume_Log_Transfer

	exit 1

else

	echo ìDatabase connection to GMI_SUBSET is suspended.î >> \

 $BaseLoadLogFile

fi

Resume log transfer between TAMPS Replication Server and TAMPS GMI database.

isql -U DB_SYBUSER -P DB_SYBPASS -S tamps_rs -i resume_Log_Transfer |

	grep ìThe Replication Server will now accept connections from any LTMî

if [$? -ne 0]

then

	echo ìResume log transfer to TAMPS Replication Server failed.î >> \

$BaseLoadLogFile

	isql -U DB_SYBUSER -P DB_SYBPASS -S tamps_rs \

-i resume_GMI_SUBSET

	exit 1

else

	echo ìResume log transfer to TAMPS Replication Server.î >> $BaseLoadLogFile

fi

Now, update requests are allowed to be submitted to TAMPS GMI database.

Drop triggers and indexes, and truncate GMI_SUBSET tables

isql -U DB_SYBUSER -P DB_SYBPASS -S tamps_ds -i delete_GMI_SUBSET_Data

echo ìTables in GMI_SUBSET database are deleted.î >> $BaseLoadLogFile

Bulk-copy subset of baseload data from TAMPS GMI database to TAMPS

GMI_SUBSET database,

bcp_subgmi_p.sh

Run commands specified in the ìCreate MIDB indicesî section of MIDB Installation

CSC to re-create indexes for tables of GMI_SUBSET database.

Run commands specified in the ìCreate MIDB triggersî section of MIDB Installation

CSC to re-create triggers for GMI_SUBSET database.

Set autocorrection on for each table to be replicated.

For each table to be replicated ...

isql -U DB_SYBUSER -P DB_SYBPASS -S tamps_rs -i autoOn_GMI_SUBSET |

	grep ìEnable autocorrection for the table_name replication definitionî

if [$? -ne 0]

then

	echo ìEnable autocorrection for table_name of GMI_SUBSET is failed.î \

>> $BaseLoadLogFile

else

	echo ìAutocorrection for table_name of GMI_SUBSET is set to on.î \

>> $BaseLoadLogFile

fi

Resume connection to GMI_SUBSET database

isql -U DB_SYBUSER -P DB_SYBPASS -S tamps_rs -i resume_GMI_SUBSET |

grep ìResumes the connection to the gmi_subset databaseî

if [$? -ne 0]

then

	echo ìResume connection to GMI_SUBSET database failed.î

		>> $BaseLoadLogFile

else

	echo ìResume connection to GMI_SUBSET database.î >> $BaseLoadLogFile

fi

echo ìBaseload process is completed.î >> $BaseLoadLogFile

exit 0

If bulk-copy to operating system files method is to be implemented, run resync_mload_f.sh

We only need to replace the segment of script resync_mload_f.sh for bulk-copy with the following code:

Drop triggers and indexes, and truncate GMI_SUBSET tables

isql -U DB_SYBUSER -P DB_SYBPASS -S tamps_ds -i delete_GMI_SUBSET_Data

echo ìTables in GMI_SUBSET database are deleted.î >> $BaseLoadLogFile

Bulk-copy subset of baseload data to TAMPS GMI_SUBSET database

bcp_subgmi_f.sh

Run commands specified in the Create MIDB indices section of MIDB Installation

CSC to re-create indexes for tables of GMI_SUBSET database.

Run commands specified in the Create MIDB triggers section of MIDB Installation

CSC to re-create triggers for GMI_SUBSET database.

exit 0

Functions that support the script files

delete_GMI_SUBSET_Data

2.5.3.1 delete_GMI_SUBSET_Data

use gmi_subset

go

Drop indexes for tables in GMI_SUBSET database.

drop_Rep_Indexes

go

Drop triggers in GMI_SUBSET database.

drop_Rep_Triggers

go

For each table in the GMI_SUBSET database

truncate table table_name

End of for ...

go

quit

resume_Log_Transfer

resume log transfer from all

go

quit

suspend_Log_Transfer

suspend log transfer from all

go

quit

Administrative Operations

The same administrative script rs_adm_gmi.sh needs to be called after all updates submitted during bulk-copy process have been applied to TAMPS GMI_SUBSET database.

Interface Description

None.

Unit Test Plans and Procedure

Test Environment

Testing of this CSC requires that a system with a SQL data server to be installed, a primary database to be created and loaded with data, a subset database of the primary database to be created and loaded with data, a Replication Server to be installed with routes and database connections to be defined, and a LTM to be installed. A user login for creating subscriptions should be granted with proper permission.

Dependencies

None.

Assumptions

We assume that the software to truncate tables, drop indexes, and reload data will be ready for our test and that it is not provided in this CSC. A new set of baseload data from a storage media should be ready for the re-sync process. The SQL server name, database names, table names, replication definition names, subscription names, and sa password should be entered in the script files.

Verification

Verify that replication definitions are created at the RSSD system tables.

Verify that subscriptions are valid at the RSSD system tables.

Verify that both databases are consistent after replication process starts.

Verify that both databases are consistent after re-sync process.

Test Steps

Make sure that all system objects are up and running. System objects include SQL data server, Replication Server, Log Transfer Manager for the Replication Server.

Make sure that the primary database is created, tables exist, and contains data. Run the SQL select statement for each table from isql session.

Make sure that tables in the primary database are ready to be replicated. Run the following command from isql session.

		isql -U DB_SYBUSER -P DB_SYBPASS -S tamps_ds

	use primary_db

// for each table in primary_db, do the following:

		sp_setreptable table_name

	go

// The return status should be 0 to indicate that the table is ready for replication.

// After finish checking with every table in primary_db database, type quit to leave

// isql session.

		quit

Make sure that the subset database is created, tables exists, columns and data types match with those in the primary database, and same data from the primary database is loaded.

5. Run rep_def.sh to create replication definitions.

Run subscrip_crt.sh to create subscriptions.

Enter a few updates at the primary database to ensure the replication process is taking place.

Use procedures specified in the MIDB Baseload Processing of MIDB Baseload CSC to truncate tables in the primary databases, drop table indexes, and load new set of data.

Run resync_mload_p.sh or resync_mload_f.sh to re-sync these two databases.

Check both databases, make sure they contain consistent data.

Enter a few updates and watch the replication taking place.

Assumptions from Preliminary Design

We assume that the procedure specified in the MIDB Baseload CSC will not be logged into the MIDB database log. If this is not true, we need to drop and re-create subscriptions for the re-sync process. The dropping of subscriptions will be performed before quiescing the replication system. The creation of subscriptions will be performed before updates to the database are enabled.

Variable names used in the script files of this CSC should be either pre-defined in the environment file or provided by the TAMPS administrator. They will be replaced with the appropriate names before we start the baseload process.

Concerns/Questions/Issues from Preliminary Design

Same as the previous section for JMCIS connected TAMPS system.

�MIDB Subset CSC

This CSC has been removed and the processing required is covered in the JMCIS Baseload CSC and the Stand-Alone GMI Baseload CSC, above.

�Query Execution CSC

High-Level Design Updates

The use of ODBC has been removed from the design.

A new public function, dat_getDatabaseForTable(), has been added to the design. This is a utility function to allow a programmer to determine which database a table exists in. This database name can then be passed to the new _get_dbproc() function being written by the MPLAN SOR.

The Amp Info window will be changed so that, for a spatial object, the latitude and longitude of the object will always be included in the window, formatted according to the userís current default setting for Lat/Long.

Database Schema

The Core database table DD_DEFAULTS will be removed from the system.

The existing stored procedures created for object-based queries installed as part of TAMPS will be removed. Note that the objects and queries will not be removed; the stored procedures are no longer referenced by query execution and should be removed.

Control Flow

Main Query Execution Control Flow

�

Figure � STYLEREF 4 \n �4.2.8.3�-� SEQ Figure * ARABIC \r 1 �1� Main Query Execution Control Flow

Default Condition Generation

�

Figure � STYLEREF 4 \n �4.2.8.3�-� SEQ Figure * ARABIC �2� Default Condition Generation Control Flow

Boundary Condition Generation

�

Figure � STYLEREF 4 \n �4.2.8.3�-� SEQ Figure * ARABIC �3� Boundary Condition Generation Control Flow

Join Condition Generation

�

Figure � STYLEREF 4 \n �4.2.8.3�-� SEQ Figure * ARABIC �4� Join Condition Generation Control Flow (Part 1)

�

Figure � STYLEREF 4 \n �4.2.8.3�-� SEQ Figure * ARABIC �5� Join Condition Generation Control Flow (Part 2)

�

Figure � STYLEREF 4 \n �4.2.8.3�-� SEQ Figure * ARABIC �6� Join Condition Generation Control Flow (Part 3)

�

Figure � STYLEREF 4 \n �4.2.8.3�-� SEQ Figure * ARABIC �7� Join Condition Generation Control Flow (Part 4)

�

Figure � STYLEREF 4 \n �4.2.8.3�-� SEQ Figure * ARABIC �8� Join Condition Generation Control Flow (Part 5)

�

Figure � STYLEREF 4 \n �4.2.8.3�-� SEQ Figure * ARABIC �9� Join Condition Generation Control Flow (Part 6)

Algorithms

Not Applicable

Design Description

dat_proto.h:

Add the new public function dat_getDatabaseForTable().

dat_prot_proto.h:

Remove the newly obsolete function dat_dropSp().

dat_priv_proto.h:

Remove the already obsolete function dat_exQuery() from the header file.

Remove the already obsolete function dat_regProgQuery() from the header file.

Remove the unused function dat_getPkList() from the header file.

dqt_priv_proto.h:

Remove the newly obsolete function dqt_genSp().

Update the existing functions dqt_genDefCond() and dqt_genJoinCond().

Update the existing functions dqt_genSql().

Add the new function dqt_genBoundsCond().

ust_priv_proto.h:

Remove the already obsolete functions ust_dropUpdTriggers() and ust_DropPerfIndex().

utt_priv_proto.h:

Remove the already obsolete function utt_delete_from_tables().

utt_prot_proto.h:

Remove the newly obsolete functions utt_build_tablelist(), utt_check_unique(), utt_find_filename(), utt_get_tablist(), utt_strtok(), utt_table_list_alloc(), utt_update_stats(). Do not confuse utt_build_tablist(), which should remain, with utt_build_tablelist().

Update the parameters on function utt_find_prefix().

dat.a:

Add the new public function dat_getDatabaseForTable().

dqt.a:

Remove the newly obsolete function dqt_genSp().

Remove the binding for the protected function dqt_genSql() .

utt.a:

Remove the newly obsolete function utt_strtok().

Update the binding for the protected function utt_find_prefix() .

dat_execute.c:

Remove the global variable dat_prgQueryList

Remove the obsolete function dat_exQuery() from the source file.

In the function dat_newExQuery():

dat_newExQuery(QUERY *query, GEO_NODE *query_geo,

	CORNER_RADS *taoi_bounds, int in_or_out,

	BUCKET_HEADER bucket_info, int bucketAction,

	char *destination)

{

	// if (object id >= 0 && primary handler != NULL)

	//	query_handler = primary handler

	// else if (secondary_handler != NULL)

	//	query_handler = secondary handler

	// else

	//	log error message and return ST_FAILURE

	// save start time

	// if (text query) {

	//	set flags to force output to text tool

	//	query bounds = NULL

	// } else {

	//	query bounds = dat_getQueryBounds(query_geo, taoi_bounds)

	// }

	// sql string = dqt_genSql(query, query bounds)

	// free(query bounds)

	// execute sql string

	// if (dbresults() == SUCCEED) {

	//	allocate and fill results structure as currently done

	//	call query_handler(results)

	//	return ST_SUCCESS

	// } else

	//	return ST_FAILURE

}

dat_delQuery.c:

Remove the function dat_dropSp() ñ the function is no longer necessary.

In the function dat_deleteQuery(), delete the reference to dat_dropSp().

dat_getDbStr.c:

In function dat_getColumns():

Get the database associated with the input table name, and use the new db_proc function to get a connection to that database before querying for column names.

In function dat_getTables():

Open connection to tamps database; query DD_DATASETS only for the prefix and database name; open a connection to that database using the new db_proc function; query sysobjects using prefix to get table names.

In function dat_getColInfo():

Get the database associated with the input table name, and use the new db_proc function to get a connection to that table before querying for column info.

Remove the unused function dat_getPkList().

New public function dat_getDatabaseForTable():

ST_PUBLIC const char *dat_getDatabaseForTable(const char *table)

{

	// if (table == NULL) /* be paranoid */

	//	return(NULL)

	// for (each cache_rec in cache) {

	//	if (table == cache_rec->table)

	//		return(cache_rec->database)

	// }

	// for (each database ìtampsî, ìDAFIFî, ìNIDî, ìGMIî) {

	//	dbproc = dat_get_dbproc(database)

	//	dbfcmd(dbproc, ìselect count(*) from sysobjectsî

	//			ìwhere type = ëUí and name = %sî, table)

	//	execute query, bind column to ìcountî

	//	if (database error)

	//		skip to next database

	//	found = false;

	//	while (dbnextrow() != NO_MORE_ROWS) {

	//		if (count > 0)

	//			found = true

	//	}

	//	if (found) {

	//		cache_rec = malloc(sizeof (*cache_rec))

	//		if (cache_rec != NULL) {

	//			cache_rec->table = strdup(table)

	//			cache_rec->database = database

	//			add cache_rec to cache

	//		}

	//		return(database)

	//	}

	// }

	// return(NULL)

}

dat_queries.c:

Remove the global variable dat_prgQueryList

Remove the function dat_regProgQuery() ñ the function is not used and is difficult to support under the new design.

Query in dat_getQueries() must open up a connection to the ìtampsî database, and query DD_CONDITIONS only; then call dat_getColInfo() on each returned column.

dqt_cond.c:

In function dqt_genUserCond():

Remove check whether parameter is a fill-in parameter (treat as if fillin_flag == 0, since values have already been filled in); always use filldata(value.

Remove check whether parameter is a fill-in parameter when testing whether to put quotes around value.

Rewrite function dqt_genDefCond() so that it does not attempt to provide a generic default on any column. Most of the existing defaults were IDB-specific, and the RECORD_STATUS default does not lend itself to the DD_DEFAULTS paradigm (the exact default required will depend on the local record concept resolution). One of the defaults, MODE, was already likely to cause problems on certain non-IDB queries, as the specified default (for IDB tables) was not suitable for other columns named MODE.

Additionally, for an MIDB query, we must add a clause to exclude scenario records from the result set.

{

	// allocate empty (1-byte) string for where_clause

	// for (each table in the from_tables list) {

	//	if (table is a DAFIF table and table has a HITLIST column) {

	//		/* Check to see if there is already a HITLIST condition in query */

	//		found_col = False

	//		for (each user condition in query) {

	//			if (condition_table == from_table &&

	//			 condition_column == HITLIST)

	//				found_col = True

	//		}

	//		if (found_col == False) {

	//			add table.HITLIST like ëB%í to whereclause

	//		}

	//	}

	// }

	//

	// for (each table in the from_tables list) {

	//	if (table is an MIDB table and

	//			table has a RECORD_STATUS column) {

	//		found_col = False

	//		for (each user condition in query) {

	//			if (condition_table == from_table &&

	//			condition_column == RECORD_STATUS)

	//				found_col = True

	//		}

	//		if (found_col == False) {

	//			add depends on local record issue clause

	//				ìnot exists (select 1 from %s_TIE

	//				where %s_TIE.SK = %s.%s_SK

	//					and ASSOC = ëAAí)î

	//		}

	//		break;		/* only need to do this for first MIDB table */

	//	}

	// }

	//

	// /* check to see if there is already a SCENARIO_SET column in query */

	// found_col = False

	// for (each user condition in query) {

	//	if condition_column == SCENARIO_STATUS)

	//		found_col = True

	// }

	//

	// /* If no scenario condition found, look for a table to add one to */

	// if (found_col == False) {

	// 	for (each table in the from_tables list) {

	//	if (table has a SCENARIO_SET column) {

	//		scenario == dut_get_current_scenario();

	//		if (scenario == NULL) {

	//			add to where clause ì(%s.SCENARIO_SET is NULL

	//					or %s.SCENARIO_SET = ëíî), table;

	//		} else {

	//			add to where clause ìwhere %s.SCENARIO_SET = ë%síî,

	//					table, scenario;

	//		}

	//		break;

	//	}

	// }

	// return where_clause

}

New function dqt_genBoundsCond():

char *dqt_genBoundsCond(OBJECT_CLASS_DATA *obj_data,

	CORNER_RADS *query_bounds)

{

	// allocate empty (1-byte) string

	// if (query_bounds == NULL || obj_data == NULL)

	//	return string

	// if (obj_data->lat_lon_table has a LAT_RADIANS column) {

	//	construct one condition as

	//		database..lat_lon_table.LAT_RADIANS >=

	//		query_bounds.lower_left_lat (as floating radians)

	//	use dat_appendWhere to append condition to string

	//	repeat for upper_right_lat, lower_left_lon, upper_right_lon

	// }

	// else if (obj_data->lat_lon_table is an ILAT column) {

	//	construct one condition as

	//		database..lat_lon_table.ILAT >=

	//		query_bounds.lower_left_lat (as ILAT value)

	//	use dat_appendWhere to append condition to string

	//	repeat for upper_right_lat, lower_left_lon, upper_right_lon

	// }

	// else {

	//	log warning message

	//	/* continue processing, no bounds conditions added */

	// }

	// return string

}

Rewrite function dqt_genJoinCond():

{

	// allocate empty (1-byte) string

	// for (each table on from_tables list) {

	//	get dataset and database for table

	//	add table, dataset, database to temp_from_table list

	// }

	// remove object determinator table from temp_from_table list

	// add object determinator table to temp_join_table list

	// loop marker = NULL

	// while (temp_from_table list is not empty) {

	//	from_table = ult_lst_deque(temp_from_table)

	//	if (from_table == loop marker) {

	//		// been through entire list without making progress

	//		output error message

	//		free allocated memory

	//		return(NULL)

	//	}

	//	for (each table on temp_join_table list that is in same dataset as from_table) {

	//		if (dqt_resolveJoin(from_table, temp_join_table) == ST_SUCCESS) {

	//			add from_table to temp_join_table list

	//			loop marker = NULL

	//			break;

	//		}

	//	}

	//	if (joined)

	//		continue

	//	for (each table on temp_join_table list that is not in the same dataset as from_table

	//				and is in the same database as from_table) {

	//		if (dqt_resolveJoin(from_table, temp_join_table) == ST_SUCCESS) {

	//			add from_table to temp_join_table list

	//			loop marker = NULL

	//			break;

	//		}

	//	}

	//	if (joined)

	//		continue

	//	for (each table on temp_join_table list that is not in the same database as from_table) {

	//		if (dqt_resolveJoin(from_table, temp_join_table,

	//					join_cond_list) == ST_SUCCESS) {

	//			add from_table to temp_join_table list

	//			loop marker = NULL

	//			break;

	//		}

	//	}

	//	if (joined)

	//		continue

	//	// if got here, could not join from_table to any table now on temp_join_table list

	//	if (loop marker == NULL)

	//		loop marker = from_table

	//	ult_lst_enque(temp_from_table list, from_table) // table goes back on at end of list

	// }

	// When we get here all the tables will be successfully joined

	//	-- the temp_from_table list will be empty

	//	-- the temp_join_table list will contain all tables in the original from_tables list

	//	-- the join_cond list will contain the information on each condition required to

	//		perform the joins.

	// for (each join_cond in join_cond_list) {

	//	outer_ok = True

	//	if (join_cond is a value condition) {

	//		outer_ok = False

	//	}

	//	else {

	//		for (each join_cond2 in join_cond_list) {

	//			if (join_cond.right_table == join_cond2.left_table &&

	//					join_cond2 is not a value condition) {

	//				outer_ok = False

	//				break

	//			}

	//		}

	//	}

	//	if (outer_ok)

	//		add condition to where_clause using ì*=î

	//	else

	//		add condition to where_clause using ì=î

	// }

	// return(where_clause)

}

Rewrite function dqt_resolveJoin() to not add text directly to the where_clause, but to create a new join_cond structure (left_table, left_column, right_table, right_column ñ right_column can contain a value when right_table is blank or NULL), and add this to a list. This is necessary because we will not know until all the joins have been generated whether we can use the outer join operator ì*=î.

dqt_sql.c:

In function dqt_genSql():

new parameter CORNER_RADS *query_bounds

return type is now char *.

add new code to call dqt_genBoundsCond(obj_data, query_bounds) and append result to where clause (similar to existing code for join conditions).

remove the call to dat_dropSp().

remove the call to dat_genSp().

build up string to return as select_clause from database1..from_table1 from_table1, database2..from_table2 from_table2 where where_clause (repeating the from_table construction for each table in the from list)

dqt_sp.c:

This file is no longer necessary.

dqt_select.c:

In function dqt_selectFields():

must connect to proper database to determine if HITLIST column available ñ is there a better way to do this (perhaps special-case DAFIF only?)

dbt_bcp_inout.c:

In function dbt_bcp_inout():

determine database containing table rather than using getenv(DT_DBNAME_IDB)

dmt_qnebcb.c:

In function dmt_qne_execute_callback():

remove the call to dat_dropSp().

remove the call to dqt_genSql() and associated error checking.

dmt_qsavcb.c:

In function dmt_query_save_ok_callback():

replace call to dqt_genSql() with dat_saveQuery().

edt_layer.c:

In function edt_get_bucket_data():

Missile objects will no longer have a column name called MSL_SYS_ID that can be used to distinguish them from other objects with Range Ring attributes. The best alternative is to check whether a BE_NUMBER attribute is defined for the object; based on the current object hierarchy data, this test is accurate for all objects except AIR_DEFENSE_WPNS, a THREAT_FAC_EQUIP object that would be flagged as a missile using this proposal. This test only sets a flag that is not used within Core; it is not known whether any MPM uses this flag.

Change the processing for an object attribute of BE_NUMBER as follows:

//	if (strcmp(ìBE_NUMBERî, current_attribute(value) == 0)

//	{

//		memcpy(threat(be_number, colValue,

//				sizeof (threat(be_number));

//		threat(missile = 1	/* this is new */

//		continue;

//	}

Change the processing for an object attribute of EQUIP CODE as follows:

//	if (strcmp(ìEQUIP CODEî, current_attribute(value) == 0)

//	{

//		/* remove test against MSL_SYS_ID */

//		/* and assignment of threat(missile */

//		memcpy(threat(equip_code, colValue,

//				sizeof (threat(equip_code));

//		continue;

//	}

ist_amp.c:

In function ist_text_printAmpData():

Just after strcpy(ist_buffer, ìî) and before the loop that processes items from the amp_head list, add the following:

//	if (bkObj(latitude != -999.0 && bkObj(longitude != -999.0) {

//		MT_GEO_POINT coord;

//		char lat_str[14], lon_str[15];

//		coord.lat = bkObj(latitude;

//		coord.lon = bkObj(longitude;

//		if (mpt_Num2Text(pMap(units.latlong_fmt, &coord,

//				lat_str, lon_str) == ST_SUCCESS) {

//			sprintf (labelText, "%-20s : %s", ìLATITUDEî, lat_str);

//			pos = strlen (labelText);

//			if (pos > max_len) max_len = pos;

//			strcat (ist_buffer, labelText);

//			strcat (ist_buffer, "\n");

//			sprintf (labelText, "%-20s : %s", ìLONGITUDEî, lon_str);

//			pos = strlen (labelText);

//			if (pos > max_len) max_len = pos;

//			strcat (ist_buffer, labelText);

//			strcat (ist_buffer, "\n");

//		}

//	}

oet_objDsp.c:

In function oet_objectDisplayOk():

remove the call to dat_dropSp().

replace call to dqt_genSql() with dat_saveQuery().

out_dbfuncs.c:

In function out_spatialObject():

probably just remove the check whether the lat_lon table has a LAT_RADIANS. If left in, must connect to proper database for that table, and check for either LAT_RADIANS or ILAT.

ust_utils.c:

Remove unused function ust_dropUpdTriggers() and ust_DropPerfIndex()

See also User Administration CSC for updates to the Sybase login/user functions.

utt_build_tablist.c:

In functions utt_build_tablist() and utt_dataset_tablist(), must open connection to database associated with the passed-in prefix before querying sysobjects.

Remove the function utt_delete_from_tables(), it is not used anywhere.

In functions utt_delete_tables() and utt_truncate_tables(), must rewrite the functions like this:

{

	// while (there is a table in the list) {

	// 	get first table from list

	//	get database for table

	//	open connection to database

	//	for (each table in list) {

	//		if (table is in open database) {

	//			perform deletion or truncation

	//			remove table from list

	//		}

	//	}

	//	close connection to database

	// }

}

utt_createDBMenu.c:

In functions utt_createDBMenu(), must open connection to database ìtampsî (or whatever database contains DD_DATASETS).

utt_finds.c:

Remove the following IDB-specific routines:

utt_get_tablist()

utt_check_unique()

utt_build_tablelist()

utt_update_stats()

utt_table_list_alloc()

utt_find_filename()

utt_strtok()

Change utt_find_prefix()to return database as an output parameter.

dbt_procedures.sql:

Those stored procedures in this file that correspond to pre-defined object queries should be removed. The following stored procedures will not be removed:

dut_adjustLogins

fill in

Interface Description

There will be a new public function to return the name of the database containing a table:

ST_PUBLIC const char *dat_getDatabaseForTable(const char *table);

This function will return a pointer to a string ìtampsî, ìDAFIFî, ìNIDî, or ìGMIî. This string must not be changed or freed by the calling function.

This function will return the name of the database where the table was found. It will return NULL if the table is not found, or if there was an error querying the database.

Unit Test Plans and Procedures

Testing of Public Function dat_getDatabaseForTable()

Test Environment

Testing of this function will require an API test application. The test application will take one argument, the name of the table to pass to the function. It will pass a NULL parameter if no argument is supplied. This test application should do the following:

int main(int argc, char **argv)

{

	int i = 1;

	do {

	const char *ret_val = dat_getDatabaseForTable(argv[i]);

		printf(ìdat_getDatabaseForTable(%s) returned %s\nî,

			(argv[1] == NULL) ? ì(null)î : argv[1],

(ret_val == NULL) ? ì(null)î : ret_val);

	} while (++i < argc);

	exit(0);

}

Dependencies

This test requires the tamps, DAFID, MIDB (GMI), and NID databases and tables to have been created.

Assumptions

None

Verification

Verify that the proper database is returned for each table.

Verify that a NULL value is returned when a parameter is passed that is not the name of a table (including NULL).

Verify that, for a spatial object, the latitude and longitude of the object are displayed at the top of the AMP INFO window. Verify that the values are displayed in the userís current default lat/long format.

Verify that, for a text object, no latitude and longitude field appear in the AMP INFO window.

This test procedure should be able to test at least 95% of the code in function dat_getDatabaseForTable(). 100% could be achieved by using the debugger to simulate database connection errors and memory allocation errors.

Test Steps

Run the API tester, passing the name of a table in the tamps database (such as DD_DATASETS). The output should be ìtampsî.

Run the API tester, passing the name of a table in the DAFID database (such as DAFID_WAYPOINT). The output should be ìDAFIDî.

Run the API tester, passing the name of a table in the MIDB GMI database (such as FAC). The output should be ìGMIî.

Run the API tester, passing the name of a table in the NID database (such as NID_SSM). The output should be ìNIDî.

Run the API tester, passing a string that is not the name of a table in any TAMPS database (such as NONESUCH). The output should be ì(null)î.

Run the API tester, passing several names (repeating at least one later in the string). The output should be as above for each name passed, including the repeated one(s).

Run the API tester, passing no argument. The output should be ì(null)î.

Testing of New Object Execution Code

�� EMBED Excel.Sheet.5 ���

� EMBED Excel.Sheet.5 ���

� EMBED Excel.Sheet.5 ���

�Test Environment

Testing of the new Object Execution code will not require anything beyond a completed TAMPS build, installation, and data load, including MIDB installation and data load. Some tests may require the use of a debugger to examine program variables.

Dependencies

None

Assumptions

The Object Hierarchy data has been update and manually reviewed, as described in the Object Conversion CSC.

Verification

Verify that the query is performed against the database, and the returned data is displayed properly on the map or in a text tool.

Verify that the proper data is returned for each object queried.

Verify that object actions (such as AMP INFO) display and/or process the correct columns. While some actions (AMP INFO, LABELS) are easily verified, some others may require the use of the debugger to stop and inspect (though not to modify) the program variables.

For the AMP INFO action, verify that the latitude and longitude values appear first in the list of values displayed, and that the latitude and longitude values are formatted according to the userís default lat/long format.

The code delivered under this CSC is a modification of existing code. These tests are only designed to exercise the modified code. The PureCoverage value for the specific functions listed above should be 90%. The remaining code tests for invalid object definitions, database access failures, and memory allocation failures.

Test Steps

Using any MPM or the Database Administrator application, perform a ìDatabase Search(Newî, and select an object. Run a query.

Once a query has been run, perform various object actions (AMP INFO, LABELS, etc.) on some of the returned object instances.

The above steps should be repeated using a variety of objects, query conditions, and query additional fields. At least one test case should be run that includes the following conditions:

The columns to be retrieved are from more than one database.

There are conditions on columns from more than one database.

The object is not a ìspatialî (located) object.

The object is a ìspatialî object.

The object is an MIDB object, and there is no RECORD_STATUS condition.

The object is an MIDB object, and the query includes a RECORD_STATUS condition.

The object is a DAFIF object, and there is no HITLIST condition.

The object is a DAFIF object, and the query includes a HITLIST condition.

Create a query using the Query Tool, and save the query. Execute the query from the Query Tool. Then use the ìDatabase Search(Allî menu option to select the query, and the ìDatabase Search(Executeî menu option to run it.

�Functional Test Plans and Procedures

SOR 96-01a MIDB 2.0 Function and Unit Test Matrix���3.2.3.4 MIDB Query CSC, CT0525 (Ref. TAMPS 6.2 Design Notebook, 6 Aug. 1997)���

Reference�Requirements (Condensed Text)�Test Steps (Ref.)�Purify Results�Pure Coverage Percentage�Pass/Fail Criteria�Test Environment and Appiicable (Function)��3.2.3.4.1�Overlay Manager for graphic display of query results.�1-3 pg 279 (4.2.7.7.2.5)���Satisfied requirement.�Completed TAMPS build, installation, data load; MIDB installation, data load. (mmt_featOKCallback)��3.2.3.4.2�Text Tool for textual display of query results.�1-3 pg 279 (4.2.7.7.2.5)���Satisfied requirement.�Completed TAMPS build, installation, data load; MIDB installation, data load. (mmt_featOKCallback)��3.2.3.4.3�Object Hierarchy for querying for data.�1-3 pg 279 (4.2.7.7.2.5)���Satisfied requirement.�Completed TAMPS build, installation, data load; MIDB installation, data load. (mmt_featOKCallback)��3.2.3.4.3.1�Capability to query for operational data.�1-3 pg 279 (4.2.7.7.2.5)���Correctly queries for operational data.�Completed TAMPS build, installation, data load; MIDB installation, data load. (dqt_genDefCond)��3.2.3.4.3.2�Capability to query for scenario data.�1-3 pg 279 (4.2.7.7.2.5)���Correctly queries for scenario data.�Completed TAMPS build, installation, data load; MIDB installation, data load. (dqt_genDefCond)��3.2.3.4.3.3�Restriction of queries on scenario data.�1-3 pg 279 (4.2.7.7.2.5)���Satisfied requirement.�Completed TAMPS build, installation, data load; MIDB installation, data load. (dqt_genDefCond)��3.2.3.4.3.4�Selection of data set for query. Deleted�������3.2.3.4.3.5�Using operational data by default.�1-3 pg 279 (4.2.7.7.2.5)���Satisfied requirement.�Completed TAMPS build, installation, data load; MIDB installation, data load. (dqt_genDefCond)��3.2.3.4.4�Supports the following pre-defined queries:�������3.2.3.4.4.1�Supports pre-defined queries for the following data:�������3.2.3.4.4.1.1�Airfields�������3.2.3.4.4.1.1.1�Support pre-defined airfield queries to major types.�1-3 pg 279 (4.2.7.7.2.5)���Correctly queries to major type airfields.�Completed TAMPS build, installation, data load; MIDB installation, data load. (dat_newExQuery)��3.2.3.4.4.1.1.2�Support pre-defined airfield queries to all types.�1-3 pg 279 (4.2.7.7.2.5)���Correctly queries to all type airfields.�Completed TAMPS build, installation, data load; MIDB installation, data load. (dat_newExQuery)��3.2.3.4.4.1.2�Anti-Aircraft Artillery sites/equipment�������3.2.3.4.4.1.2.1�Support pre-defined AAA sites/equipment queries to type gun.�1-3 pg 279 (4.2.7.7.2.5)���Correctly queries to AAA sites/equipment type gun.�Completed TAMPS build, installation, data load; MIDB installation, data load. (dat_newExQuery)��3.2.3.4.4.1.2.2�Support pre-defined AAA sites/equipment queries to all types option.�1-3 pg 279 (4.2.7.7.2.5)���Correctly queries to AAA sites/equipment all types option.�Completed TAMPS build, installation, data load; MIDB installation, data load. (dat_newExQuery)��3.2.3.4.4.1.3�Surface-to-Air Missiles�������3.2.3.4.4.1.3.1�Support pre-defined SAM queries to individual equipment.�1-3 pg 279 (4.2.7.7.2.5)���Correctly queries to SAM individual equipment.�Completed TAMPS build, installation, data load; MIDB installation, data load. (dat_newExQuery)��3.2.3.4.4.1.3.2�Support pre-defined SAM queries to all types option.�1-3 pg 279 (4.2.7.7.2.5)���Correctly queries to SAM all types option.�Completed TAMPS build, installation, data load; MIDB installation, data load. (dat_newExQuery)��3.2.3.4.4.1.4�Radars�������3.2.3.4.4.1.4.1�Support pre-defined Radar queries to type.�1-3 pg 279 (4.2.7.7.2.5)���Correctly queries to Radar type.�Completed TAMPS build, installation, data load; MIDB installation, data load. (dat_newExQuery)��3.2.3.4.4.1.4.2�Support pre-defined Radar queries to all types option.�1-3 pg 279 (4.2.7.7.2.5)���Correctly queries to Radar all types option.�Completed TAMPS build, installation, data load; MIDB installation, data load. (dat_newExQuery)��3.2.3.4.4.1.5�Units�������3.2.3.4.4.1.5.1�Support pre-defined Units queries to primary mission.�1-3 pg 279 (4.2.7.7.2.5)���Correctly queries to Units primary mission.�Completed TAMPS build, installation, data load; MIDB installation, data load. (dat_newExQuery)��3.2.3.4.4.1.5.2�Deleted�������3.2.3.4.4.1.6�Aircraft�������3.2.3.4.4.1.6.1�Support pre-defined Aircraft queries to fixed wing.�1-3 pg 279 (4.2.7.7.2.5)���Correctly queries to Aircraft fixed wing.�Completed TAMPS build, installation, data load; MIDB installation, data load. (dat_newExQuery)��3.2.3.4.4.1.6.2�Support pre-defined Aircraft queries to rotary wing.�1-3 pg 279 (4.2.7.7.2.5)���Correctly queries to Aircraft rotary wing.�Completed TAMPS build, installation, data load; MIDB installation, data load. (dat_newExQuery)��3.2.3.4.4.1.7�Support pre-defined Ships queries.�1-3 pg 279 (4.2.7.7.2.5)���Correctly queries to Ships.�Completed TAMPS build, installation, data load; MIDB installation, data load. (dat_newExQuery)��3.2.3.4.4.1.8�Support pre-defined Targets queries.�1-3 pg 279 (4.2.7.7.2.5)���Correctly queries to Targets.�Completed TAMPS build, installation, data load; MIDB installation, data load. (dat_newExQuery)��3.2.3.4.5�Support spatial objects for the following data:�������3.2.3.4.5.1�Airfields�������3.2.3.4.5.1.1�Support spatial objects for major type Airfields.�1-3 pg 279 (4.2.7.7.2.5)���Verified spatial objects for Airfields.�Completed TAMPS build, installation, data load; MIDB installation, data load. (dat_newExQuery)��3.2.3.4.5.2�AAA sites/equipment�������3.2.3.4.5.2.1�Support spatial objects for type AAA sites/equipment.�1-3 pg 279 (4.2.7.7.2.5)���Verified spatial objects for type AAA sites/equipment.�Completed TAMPS build, installation, data load; MIDB installation, data load. (dat_newExQuery)��3.2.3.4.5.3�SAMs�������3.2.3.4.5.3.1�Supporting spatial objects for individual SAM equipment.�1-3 pg 279 (4.2.7.7.2.5)���Verified spatial objects for SAM equipment.�Completed TAMPS build, installation, data load; MIDB installation, data load. (dat_newExQuery)��3.2.3.4.5.4�Radars�������3.2.3.4.5.4.1�Supporting spatial objects for radar type.�1-3 pg 279 (4.2.7.7.2.5)���Verified spatial objects for Radar.�Completed TAMPS build, installation, data load; MIDB installation, data load. (dat_newExQuery)��3.2.3.4.5.5�Supporting spatial objects for Surface-to-Surface missiles.�1-3 pg 279 (4.2.7.7.2.5)���Verified spatial objects for Surface-to-Surface missiles.�Completed TAMPS build, installation, data load; MIDB installation, data load. (dat_newExQuery)��3.2.3.4.5.6�Units�������3.2.3.4.5.6.1�Supporting spatial objects Units to the primary mission/echelon level.�1-3 pg 279 (4.2.7.7.2.5)���Verified spatial objects for Units.�Completed TAMPS build, installation, data load; MIDB installation, data load. (dat_newExQuery)��3.2.3.4.5.7�Aircraft�������3.2.3.4.5.7.1�Supporting spatial objects for fixed wing aircraft.�1-3 pg 279 (4.2.7.7.2.5)���Verified spatial objects for fixed wing aircraft.�Completed TAMPS build, installation, data load; MIDB installation, data load. (dat_newExQuery)��3.2.3.4.5.7.2�Supporting spatial objects for rotary wing aircraft.�1-3 pg 279 (4.2.7.7.2.5)���Verified spatial objects for rotary wing aircraft.�Completed TAMPS build, installation, data load; MIDB installation, data load. (dat_newExQuery)��3.2.3.4.5.8�Supporting spatial objects for Ships.�1-3 pg 279 (4.2.7.7.2.5)���Verified spatial objects for Ships.�Completed TAMPS build, installation, data load; MIDB installation, data load. (dat_newExQuery)��3.2.3.4.5.9�Supporting spatial objects for Targets.�1-3 pg 279 (4.2.7.7.2.5)���Verified spatial objects for Targets.�Completed TAMPS build, installation, data load; MIDB installation, data load. (dat_newExQuery)��3.2.3.4.6�Support text objects for the following data:�������3.2.3.4.6.1�Supporting spatial objects for Radar ELINT Notations.�1-3 pg 279 (4.2.7.7.2.5)���Verified spatial objects for Radar ELINT Notations.�Completed TAMPS build, installation, data load; MIDB installation, data load. (dat_newExQuery)��3.2.3.4.6.2�Supporting spatial objects for Remarks.�1-3 pg 279 (4.2.7.7.2.5)���Verified spatial objects for Remarks.�Completed TAMPS build, installation, data load; MIDB installation, data load. (dat_newExQuery)��3.2.3.4.6.3�Supporting spatial objects for Equipment.�1-3 pg 279 (4.2.7.7.2.5)���Verified spatial objects for Equipment.�Completed TAMPS build, installation, data load; MIDB installation, data load. (dat_newExQuery)��3.2.3.4.7�By default retrieve "best" data that matches all other conditions of the query.�1-3 pg 279 (4.2.7.7.2.5)���Satisfied requirement.�Completed TAMPS build, installation, data load; MIDB installation, data load. (dat_newExQuery)��3.2.3.4.8�Capability of retrieving historical data instead of "best" data.�1-3 pg 279 (4.2.7.7.2.5)���Satisfied requirement.�Completed TAMPS build, installation, data load; MIDB installation, data load. (dat_newExQuery)��

SOR 96-01a MIDB 2.0 Function and Unit Test Matrix���3.2.3.6 GMI Application Interface CSC, CT0550 (Ref. TAMPS 6.2 Design Notebook, 6 Aug. 1997)���

Reference�Requirements (Condensed Text)�Test Steps (Ref.)�Purify Results�Pure Coverage Percentage�Pass/Fail Criteria�Test Environment and Applicable (Function)��3.2.3.6.1�Capability to query for Facility data.�1-23 pg 342-4 (4.2.16.2)���Correctly queries for Facility data.�API test application.

(dit_getMIDBData)��3.2.3.6.2�Capability to query for Equipment data.�1-23 pg 342-4 (4.2.16.2)���Correctly queries for Equipment data.�API test application.

(dit_getMIDBData)��3.2.3.6.3�Capability to query for Unit data.�1-23 pg 342-4 (4.2.16.2)���Correctly queries for Unit data.�API test application.

(dit_getMIDBData)��3.2.3.6.4�Capability to query for data based on geographic bounding rectangle and threat type.�1-23 pg 342-4 (4.2.16.2)���Satisfied requirement.�API test application.

(dit_getMIDBData)��3.2.3.6.5� Specifying returned data items within data set.�1-23 pg 342-4 (4.2.16.2)���Satisfied requirement.�API test application.

(dit_getMIDBData)��

SOR 96-01a MIDB 2.0 Function and Unit Test Matrix���3.2.5.1 Data Query CSC, CT2300 (Ref. TAMPS 6.2 Design Notebook, 6 Aug. 1997)���

Reference�Requirements (Condensed Text)�Test Steps (Ref.)�Purify Results�Pure Coverage Percentage�Pass/Fail Criteria�Test Environment and Applicable (Function)��3.2.5.1.1�Determining location of spatial object data using Lat/Lon table.�1-9 pg 257 (4.2.7.3.3)���Correctly determines location.�API test application. (dqt_genBoundsCond)��3.2.5.1.1.1�Supporting use of ILAT/ILON columns.�1-9 pg 257 (4.2.7.3.3)���Verification of support feature.�API test application. (dqt_genBoundsCond)��3.2.5.1.1.2�Supporting use of WGS-84 lat/lon columns.�1-9 pg 257 (4.2.7.3.3)���Verification of support feature.�API test application. (dqt_genBoundsCond)��3.2.5.1.1.3�Supporting use of lat_radian/lon_radian columns.�1-9 pg 257 (4.2.7.3.3)���Verification of support feature.�API test application. (dqt_genBoundsCond)��3.2.5.1.2�Constraining queries of spatial object.�1-14 pg 255 (4.2.7.3.1)���Satisfied requirement.�API test application. (dat_newExQuery)��3.2.5.1.3�Querying of spatial objects will be displayed as symbols.�1-6 pg 286-7 (4.2.8.7.5)���Satisfied requirement.�TAMPS and MIDB with data load.��3.2.5.1.3.1�Using symbol information specified in the Object Editor.�1-6 pg 286-7 (4.2.8.7.5)���Satisfied requirement.�TAMPS and MIDB with data load.��3.2.5.1.4�Querying of spatial objects will be displayed in text window.�1-6 pg 286-7 (4.2.8.7.5)���Visual verification.�TAMPS and MIDB with data load.��3.2.5.1.5�Querying of spatial objects will be displayed as symbols and in text window.�1-6 pg 286-7 (4.2.8.7.5)���Visual verification.�TAMPS and MIDB with data load.��3.2.5.1.6�Displaying results of query of a text object.�1-6 pg 286-7 (4.2.8.7.5)���Visual verification.�TAMPS and MIDB with data load.��3.2.5.1.7�Allowing query to be saved.�1-4 pg 279-80 (4.2.7.7.2.5)���Correctly saves query.�TAMPS and MIDB with data load. (dmt_query_save_callback)��3.2.5.1.8�Selecting and executing a pre-defined query.�1-4 pg 279-80 (4.2.7.7.2.5)���Satisfied requirement.�TAMPS and MIDB with data load. (dmt_query_browse_callback)��3.2.5.1.8.1�Allowing DBA to add queries.�1-4 pg 279-80 (4.2.7.7.2.5)���Correctly adds queries.�TAMPS and MIDB with data load. (dmt_query_new_callback)��3.2.5.1.8.2�Allowing DBA to remove queries.�1-4 pg 279-80 (4.2.7.7.2.5)���Correctly removes queries.�TAMPS and MIDB with data load. (dmt_query_delete_callback)��3.2.5.1.8.3�Selecting query to be retrieved from available queries.�1-4 pg 279-80 (4.2.7.7.2.5)���Satisfied requirement.�TAMPS and MIDB with data load. (dmt_query_browse_callback)��3.2.5.1.9�Retrieving a query for execution.�1-4 pg 279-80 (4.2.7.7.2.5)���Verification of retrieval process.�TAMPS and MIDB with data load.��3.2.5.1.9.1�Executing retrieved query.�1-4 pg 279-80 (4.2.7.7.2.5)���Satisfied requirement.�TAMPS and MIDB with data load. (dmt_query_execute_callback, dmt_qfq�_execute_callback)��3.2.5.1.9.2�Adding retrieved query to list.�1-4 pg 279-80 (4.2.7.7.2.5)���Correctly adds query to list.�TAMPS and MIDB with data load. (dmt_qfq_add_callback)��3.2.5.1.9.3�Selecting query to be executed from list.�1-4 pg 279-80 (4.2.7.7.2.5)���Satisfied requirement.�TAMPS and MIDB with data load. (dmt_query_browse_callback)��3.2.5.1.9.4�Removing query from list.�1-4 pg 279-80 (4.2.7.7.2.5)���Correctly removes query from list.�TAMPS and MIDB with data load. (dmt_qfq_delete_callback)��3.2.5.1.10�Retrieving query for edit.�1-4 pg 279-80 (4.2.7.7.2.5)���Verification of retrieval process.�TAMPS and MIDB with data load. (dmt_query_edit_callback)��3.2.5.1.11�Retrieving query for deletion.�1-4 pg 279-80 (4.2.7.7.2.5)���Verification of retrieval process.�TAMPS and MIDB with data load. (dmt_query_delete_callback)��3.2.5.1.11.1�Allowing retrieved query to be deleted.�1-4 pg 279-80 (4.2.7.7.2.5)���Verification of deletion process.�TAMPS and MIDB with data load. (dmt_query_delete_callback)��3.2.5.1.11.1.1�Allowing planner to delete saved query.�1-4 pg 279-80 (4.2.7.7.2.5)���Verification of deletion process.�TAMPS and MIDB with data load. (dmt_query_delete_callback)��3.2.5.1.11.1.2�Allowing DBA to delete saved system query. �1-4 pg 279-80 (4.2.7.7.2.5)���Verification of deletion process.�TAMPS and MIDB with data load. (dmt_query_delete_callback)��3.2.5.1.11.2�Not allowing deletions of system queries installed by the System Installation CSC.�1-4 pg 279-80 (4.2.7.7.2.5)���Satisfied requirement.�TAMPS and MIDB with data load. (dmt_query_delete_callback)��3.2.5.1.12�Providing capability for sub-query to be run.�1-4 pg 279-80 (4.2.7.7.2.5)���Satisfied requirement.�TAMPS and MIDB with data load. (dmt_query_sub_ convert_callback, dmt_query_ sub_delete_callback)��3.2.5.1.13�Specifying scenario/ exercise database for queries.�1-8 pg 256 (4.2.7.3.2)���Satisfied requirement.�API test application. (dut_set_courent_scenario, dqt_genDefCond)��3.2.5.1.13.1�Specifying which scenario/ exercise database for queries.�1-8 pg 256 (4.2.7.3.2)���Satisfied requirement.�API test application. (dut_set_courent_scenario, dqt_genDefCond)��3.2.5.1.14�Specifying operational database for queries.�1-8 pg 256 (4.2.7.3.2)���Satisfied requirement.�API test application. (dut_set_courent_scenario, dqt_genDefCond)��3.2.5.1.14.1�Using operational database for queries by default.�1-8 pg 256 (4.2.7.3.2)���Satisfied requirement.�API test application. (dqt_genDefCond)��

SOR 96-01a MIDB 2.0 Function and Unit Test Matrix���3.2.5.3 Query Tool CSC, CT2320 (Ref. TAMPS 6.2 Design Notebook, 6 Aug. 1997)���

Reference�Requirements (Condensed Text)�Test Steps�Purify Results�Pure Coverage Percentage�Pass/Fail Criteria�Test Environment and Applicable (function)��3.2.5.3.1�Allowing filter condition on any data element.�1-7 pg 275 (4.2.7.7.1.5)���Satisfied requirement.�Requires API test application and database tables.��3.2.5.3.1.1�Allowing at least filter condition: equal to, not equal to, greater than, greater than or equal, less than, less than or equal, like, not like, between, not between, in, not in.�1-7 pg 275 (4.2.7.7.1.5)���Satisfied requirement.�Requires API test application and database tables.��3.2.5.3.1.2�Specifying more than one filter condition in query.�1-7 pg 275 (4.2.7.7.1.5)���Satisfied requirement.�Requires API test application and database tables.��3.2.5.3.1.3�Allowing filter condition to contain a specific value.�1-7 pg 275 (4.2.7.7.1.5)���Satisfied requirement.�Requires API test application and database tables.��3.2.5.3.1.4�Allowing filter condition to request a value to be used.�1-7 pg 275 (4.2.7.7.1.5)���Satisfied requirement.�Requires API test application and database tables.��3.2.5.3.1.5�Allowing filter condition to contain specific value for default.�1-7 pg 275 (4.2.7.7.1.5)���Satisfied requirement.�Requires API test application and database tables.��3.2.5.3.1.6�Allowing wild card character in filter condition match.�1-7 pg 275 (4.2.7.7.1.5)���Satisfied requirement.�Requires API test application and database tables.��3.2.5.3.2�Retrieving data elements in "Amp Info" and "Label".�1-7 pg 275 (4.2.7.7.1.5)���Verification of retrieval process.�Requires API test application and database tables.��3.2.5.3.3�Allowing additional data elements selected be retrieved.�1-7 pg 275 (4.2.7.7.1.5)���Verification of retrieval process.�Requires API test application and database tables.��3.2.5.3.4�Processing queries which retrieve or filter on data elements from more than one table or database.�1-7 pg 275 (4.2.7.7.1.5)���Satisfied requirement.�Requires API test application and database tables.��3.2.5.3.4.1�Performing data base joins.�1-7 pg 275 (4.2.7.7.1.5)���Satisfied requirement.�Requires API test application and database tables.��3.2.5.3.5�Allowing query be executed and results displayed.�1-7 pg 275 (4.2.7.7.1.5)���Satisfied requirement.�Requires API test application and database tables.��3.2.5.3.5.1�Allowing executed query be edited.�1-7 pg 275 (4.2.7.7.1.5)���Verification of editing process.�Requires API test application and database tables. (dmt_qne_edit_callback) ��3.2.5.3.5.2�Allowing executed query be saved.�1-7 pg 275 (4.2.7.7.1.5)���Correctly saves query.�Requires API test application and database tables. (dmt_qne_save_callback)��3.2.5.3.6�Allowing queries be assigned name, saved and retrieved.�1-7 pg 275 (4.2.7.7.1.5)���Satisfied requirement.�Requires API test application and database tables. (dmt_qne_save_callback)��3.2.5.3.6.1�Restricting user from saving query that would replace an existing query.�1-7 pg 275 (4.2.7.7.1.5)���Satisfied requirement.�Requires API test application and database tables. (dmt_qne_save_callback)��3.2.5.3.6.2�Not allowing replacement of existing system query installed by System Installation CSC.�1-7 pg 275 (4.2.7.7.1.5)���Satisfied requirement.�Requires API test application and database tables. (dmt_qne_save_callback)��3.2.5.3.6.3�Allowing edited query be assigned new name and saved as new query.�1-7 pg 275 (4.2.7.7.1.5)���Satisfied requirement.�Requires API test application and database tables. (dmt_qne_save_callback)��

�Assumptions from Preliminary Design

None

Concerns/Questions/Issues from Preliminary Design

None

��Object Conversion CSC

High-Level Design Updates

The DD_DEFAULTS table will be removed from the system. All of the existing defaults were intended for use with the IDB data. The existing DD_DEFAULTS schema does not meet (and cannot easily be adapted to) the new default requirement for the RECORD_STATUS column of most MIDB tables. The new default will be coded within the Query Processing CSC.

Database Schema

Database Tables to be Removed

The following database tables will become obsolete as a result of this SOR and will therefore be removed from the database schema:

All IDB tables

All NTCSA tables

All RAAP tables

CC_BAD_TF

CC_PRIMARY

CC_TF_LIST

DD_COUNTRY_CODE

DD_CUTDOWN

DD_DEFAULTS

DD_DOT_DEFAULTS

DD_KEYS

DD_MAINTTABS

DD_ONEUPS

Database Tables to be Modified

The table DD_DATASETS will be modified by adding the following new columns:

Column�Type�Nulls?�Description��DATA_BASE�sysname�N�The name of the database containing the dataset��ARCHIVE_OK�char(1)�N�ìYî if data can be archived from Archive/Restore MMI��RESTORE_OK�char(1)�N�ìYî if data can be restored from Archive/Restore MMI��REMOVE_OK�char(1)�N�ìYî if data can be removed (unloaded) from the Remove Data MMI.��Database Tables to be Added

The table DD_DATABASES will be created, with the following columns:

Column�Type�Nulls?�Description��DATA_BASE�sysname�N�The name of the database (primary key)��DISPLAY_NAME�varchar(30)�N�Name to display in Dump/Restore MMI��REPLICATE_FM�varchar(30)�Y�If replicated, replication source (ìJMCISî, for example)��DUMP_OK�char(1)�N�ìYî if db can be dumped from Dump/Restore MMI��RESTORE_OK�char(1)�N�ìYî if db can be restored from Dump/Restore MMI��SEARCH_OK�char(1)�N�ìYî if db should be included in table searches. Certain special-purpose databases (GMI_SUBSET, for example) should not be considered when searching for database tables.��

The MIDB database schema will be created using the scripts delivered by DIA with the MIDB software. These tables will be located in several databases; the main one of interest to TAMPS is the GMI database.

Database Data to be Updated

The following database tables will have their pre-defined data updated, as described under Detailed Design, below.

Object Hierarchy Tables:

OH_ATTRIBUTES

Stored Object Query Tables:

DD_CONDITIONS

DD_USER_FIELDS

TAMPS Data Dictionary Tables:

DD_DATASETS

DD_DBLOAD

DD_JOINS

DD_PKS

DD_TRANSLATE

DD_VALID_XREF

Stored Procedures to be Removed

All stored procedures which correspond to pre-defined object queries will be removed from the system. The queries will still be executed as before (see Query Execution CSC), but the stored procedures are not necessary for query execution. These stored procedures are stored in the file dbt_procedures.sql. However, the following stored procedures (in dbt_procedures.sql) do not correspond to pre-defined object queries, and must not be removed:

dlt_adjustTempAirport

dlt_adjustTempNavaid

dlt_adjustTempWaypoint

dlt_deleteDafif

dlt_modBackAirport

dlt_modBackNavaid

dlt_modBackWaypoint

dlt_modReapplyAirport

dlt_modReapplyNavaid

dlt_modReapplyWaypoint

dlt_truncRpts

dut_adjustLogins

ust_tab_ind_depends

ust_tab_trig_depends

The following IDB-based stored procedures are also obsolete and will be removed:

dvt_IDBMainKeys

dvt_countIDBMainKeys

dvt_updtBest

insert_idbf_targets_sp

Control Flow

Not Applicable

Algorithms

The mapping of an IDB table or column to the corresponding MIDB table will be done using the data in Appendix B of this notebook.

Design Description

It should be noted that this CSC will not contain software to be delivered as part of the fielded TAMPS system. Instead, this CSC contains scripts that will convert references to the IDB dataset into references to the new MIDB dataset within the existing TAMPS Object Hierarchy and related data.

A script will be written that will:

{

	while (a record is read from the input BCP file)

	{

		split the record at the TAB characters

		extract the database table and column names

		if (table not an IDB table) {

			write record unchanged to output file

		} else if (there is a corresponding MIDB table and column) {

			replace table and column with MIDB table and column

			write record to output file

		} else {	// no corresponding MIDB column

			do not write record to output file

		}

	}

	rename the input file to a backup file name

	rename the output file to the original input file name

}

The position of the table and column names within the record must be a run-time parameter.

The script, as it will be used for the OH_ATTRIBUTES table, must output a warning for any record that is dropped from the output if the VALUE column is not NULL.

The following tables can be modified by such a procedure:

DD_CONDITIONS

DD_PKS

DD_TRANSLATE

DD_USER_FIELDS

DD_VALID_XREF (may need manual review)

OH_ATTRIBUTES (see additional procedures below)

The table DD_JOINS can be modified by a similar process to replace the joins from IDB tables to tables within other datasets. The joins between IDB tables will need to be replaced manually; this should be relatively simple, since most joins between MIDB tables will use the surrogate key (SK) columns rather than a collection of data columns.

To modify the DD_JOINS table, the above procedure can be used, with the following modifications:

The program must look at two sets of table/column pairs; and

If the both tables contained within a record begin with ëIDBí, drop the record from the output.

Once the automated conversion of the OH_ATTRIBUTES table is completed, additional commands should be run to:

find attribute records that reference tables not listed in the TABLES attribute for that object, and add TABLE attributes for the referenced tables.

insert into OH_ATTRIBUTES (SERVER_NAME, OBJECT_ID, CLASS_NAME, TABLE_NAME, COLUMN_NAME, VALUE) values (select C.SERVER_NAME, C.OBJECT_ID, ìTABLESî, C.TABLE_NAME, NULL, NULL from OH_ATTRIBUTES C where C.CLASS_NAME != ìTABLESî and C.TABLE_NAME not in (select T.TABLE_NAME from OH_ATTRIBUTES T where T.SERVER_NAME = C.SERVER_NAME and T.OBJECT_ID = C.OBJECT_ID and T.CLASS_NAME = ìTABLESî))

add COLUMNS attribute records so when an MIDB table is listed in the TABLES attributes for an object, all columns of that table are listed as COLUMNS attributes for that object.

insert into OH_ATTRIBUTES (SERVER_NAME, OBJECT_ID, CLASS_NAME, TABLE_NAME, COLUMN_NAME, VALUE) values (select T.SERVER_NAME, T.OBJECT_ID, ìCOLUMNSî, T.TABLE_NAME, sc.name, NULL from OH_ATTRIBUTES T, syscolumns sc where sc.id = object_id(T.TABLE_NAME) and T.CLASS_NAME = ìTABLESî and (T.TABLE_NAME like ìEQP%î or T.TABLE_NAME like ìFAC%î or...) and sc.name not in (select C.COLUMN_NAME from OH_ATTRIBUTES C where C.SERVER_NAME = T.SERVER_NAME and C.OBJECT_ID = T.OBJECT_ID and C.TABLE_NAME = T.TABLE_NAME and C.CLASS_NAME = ìCOLUMNSî))

The tables DD_DATASETS and DD_DBLOAD will require manual replacement of the current IDB records with new MIDB records.

The load data for DD_DATASETS will also require modification to contain the DATA_BASE, ARCHIVE_OK, and REPLACE_OK values for each dataset. The DATA_BASE value should be ìtampsî for all datasets except DAFIF (ìDAFIFî), NID (ìNIDî), and MIDB (ìGMIî). The ARCHIVE_OK value should be ìNî for DAFIF, NID, and MIDB, and ìYî for all others. The REPLACE_OK value should be ìNî for MIDB, and ìYî for all others.

The stored procedures in dbt_procedures.sql will be reviewed, and those stored procedures that correspond to existing object queries will be removed from the file. In addition, the stored procedures dvt_IDBMainKeys, dvt_countIDBMainKeys, dvt_updtBest, and insert_idbf_targets_sp will be obsolete and will be removed.

Interface Description

Not Applicable (except as described under Database Schema, section � REF _Ref392485508 \n �4.2.9.2�above).

Unit Test Plans and Procedures

Test Environment

Testing of the new Object Hierarchy data will not require anything beyond a completed TAMPS build, installation, and data load, including MIDB installation and data load.

Dependencies

Testing of this data depends on the completion of a manual review and update of the data output by the automated scripts described above.

Assumptions

The data has been manually reviewed and updated, as described above. Not all the required changes will be feasible using automated scripts.

Verification

Verify that the Object Editor displays the correct data for the table list, column list, object determinator, lat/lon table, and each object action for each object inspected.

Verify that the proper data is returned for each object queried.

Verify that object actions (such as AMP INFO) display and/or process the correct columns. While some actions (AMP INFO, LABELS) are easily verified, some others may require the use of the debugger to stop and inspect (though not to modify) the program variables.

This is a test of the delivered data, not code, so PureCoverage will not be used.

Test Steps

Using the Object Editor, select an object and press the ìEditî button. Examine the data comprising that object ñ the list of available tables, the list of available columns, the object determinator, the lat/lon table, and the list of columns for each object action. This step should be repeated for a number of different objects.

Using any MPM or the Database Administrator application, perform a ìDatabase Search(Newî, and select an object. Examine the list of available columns in the Query Tool. Run a query.

Once a query has been run, perform various object actions (AMP INFO, LABELS, etc.) on some of the returned object instances.

The last two steps should be repeated using a variety of objects, query conditions, and query additional fields. At least some of the queries run should retrieve fields from more than one database. At least some of the queries run should be such that the results using outer joins are distinguishable from the results using normal joins.

Using any MPM, run one of the pre-defined queries from the popup dialogs (for example, select the menu item Threat/Intel (OOB (Ground; a popup dialog will appear with a list of queries; select one query and press OK). Or, perform a ìDatabase Search (Allî, select an object, select a query, and press Execute.

For complete coverage, each pre-defined query should be run at least once, and at least one query should be run against each pre-defined object.

Assumptions from Preliminary Design

None

Concerns/Questions/Issues from Preliminary Design

None��Object Editor CSC

High-Level Design Updates

None

Database Schema

No changes will be made to the Object Hierarchy data table schema.

Changes made to the pre-defined Object Hierarchy data are defined in the Object Conversion CSC.

TAMPS Data Dictionary schema changes required for this CSC are defined in the Object Conversion CSC.

Control Flow

The control flow of this CSC is not substantially changed from the current processing.

Algorithms

None

Design Description

Most of the changes required for the Object Editor to function in an environment where the data is contained in several databases have been covered in the Query Execution CSC. These changes include changes to the dat_getTables() function, the dat_getColumns() function, and the dat_getColInfo() function, as well as changes made as a result of the non-use of stored procedures.

The following changes are required for the Object Editor to correctly process objects that reference the MIDB:

out_prot_proto.h

Add the new function ST_PROTECTED ST_STATUS out_tableHasLocation(const char *)

out_dbfuncs.c

Create a new function

ST_PROTECTED ST_STATUS out_tableHasLocation(const char *table)

{

//	found_loc = False;

//

//	if (table == NULL)

//		return ST_FAILURE;

//

//	col_list = dat_getColumns(table)

//	if (col_list == NULL)

//		return ST_FAILURE;

//

//	for each column in col_list {

//		if (strcmp(column, ìLAT_RADIANSî) == 0 || strcmp(column, ìILATî) == 0) {

//			found_loc = True;

//			break;

//		}

//	}

//

//	ult_lst_free(col_list)

//	return(found_loc ? ST_SUCCESS : ST_FAILURE);

}

Change the existing function out_spatialObject() to

{

//	if (objData == NULL ||

//	 objData(geographic == NULL ||

//	 strcmp(objData(geographic(lat_lon_table, ìî) == 0)

//		return ST_FAILURE;

//	else

//		return out_tableHasLocation(objData(geographic(lat_lon_table);

}

oet_lltab.c

In the function oet_llTabSelection(), change the loop over the table names to:

//	for (lp=objDsp->object->table_names->next;

//			lp != objDsp->object->table_names;

//			lp=lp->next) {

//		table = (char *) lp->data;

//		if (out_tableHasLocation(table) == ST_SUCCESS) {		/** NEW **/

//			xmstr = XmStringCreateLtoR (table, XmSTRING_DEFAULT_CHARSET);

//			XmListAddItem (oet_llTabWidgets[LLTAB_LIST], xmstr, 0);

//			if (XmStringCompare (xmstr, curllTab) == True)

//				XmListSelectItem (oet_llTabWidgets[LLTAB_LIST], xmstr, False);

//			XmStringFree (xmstr);

//		}							/** NEW **/

//	}

// }

Interface Description

No public functions are affected by this change.

A new Core-wide protected function, out_tableHasLocation(), will be created as described above.

Unit Test Plans and Procedures

Test Environment

No special test environment is required aside from a TAMPS system with the Object Hierarchy data loaded. Purify and PureCoverage will be used.

Dependencies

Pre-existing object hierarchy data is not required for these tests, although if present, it may provide objects that can be used for some of the tests..

Assumptions

This test covers some code changed in the Query Execution CSC; since the data required to test that code is closely related to the data required to test this CSC, the tests have been included here.

This test is not a complete test of the Object Editor CSC, only of the code changed for this SOR.

Verification

Verify that object tables containing MIDB-style position information (ILAT/ILON) are available for selection in the Object Editor as Lat/Lon tables.

Verify that object tables containing DAFIF-style position information (LAT_RADIANS/LONG_RADIANS) are available for selection in the Object Editor as Lat/Lon tables.

Verify that object tables not containing recognized position information are not available for selection as Lat/Lon tables.

Verify that when creating a top-level object, tables and views from all datasets, including those stored in databases other than ìtampsî, are available for selection as object tables.

Verify that when creating a top-level object, columns from all object tables, including those stored in databases other than ìtampsî, are available for selection as object columns.

Verify that when creating a child object, all object tables of the parent object, including those stored in databases other than ìtampsî, are available for selection as object tables.

Verify that when creating a child object, all object columns of the parent object that are contained in object tables of the child object are available for selection as object tables.

This test procedure should be able to test at least 100% of the new code in this CSC, with the exception of the dut_spatialObject function. This function is used only by the Object Hierarchy translation tool, which is not believed to be used any more.

Test Steps

Run the API tester, passing the name of a table in the tamps database (such as DD_DATASETS). The output should be ìtampsî.

Run the API tester, passing the name of a table in the DAFID database (such as DAFID_WAYPOINT). The output should be ìDAFIDî.

Run the API tester, passing the name of a table in the MIDB GMI database (such as FAC). The output should be ìGMIî.

Run the API tester, passing the name of a table in the NID database (such as NID_SSM). The output should be ìNIDî.

Run the API tester, passing a string that is not the name of a table in any TAMPS database (such as NONESUCH). The output should be ì(null)î.

Run the API tester, passing several names (repeating at least one later in the string). The output should be as above for each name passed, including the repeated one(s).

Run the API tester, passing no argument. The output should be ì(null)î.

�Function Test Plans and Procedures

SOR 96-01a MIDB 2.0 Function and Unit Test Matrix���3.2.5.2 Object Editor CSC, CT2306, CT2307 (Ref. TAMPS 6.2 Design Notebook, 6 Aug. 1997)���

Reference�Requirements (Condensed Text)�Test Steps (Ref.)�Purify Results�Pure Coverage Percentage�Pass/Fail Criteria�Test Environment and Applicable (Function)��3.2.5.2.1�Capability to create new objects.�1-7 pg 291 (4.2.9.7.4-5)���Satisfied requirement.�TAMPS system with the Object Hierarchy loaded. (oet_createObjectCallback)��3.2.5.2.2�Capability to create new object which contains a subtype.�1-7 pg 291 (4.2.9.7.4-5)���Satisfied requirement.�TAMPS system with the Object Hierarchy loaded. (oet_editObject)��3.2.5.2.2.1�Allowing filter condition on a single column.�1-7 pg 291 (4.2.9.7.4-5)���Satisfied requirement.�TAMPS system with the Object Hierarchy loaded. (oet_editObject)��3.2.5.2.2.2�Allowing one or more values to be specified.�1-7 pg 291 (4.2.9.7.4-5)���Satisfied requirement.�TAMPS system with the Object Hierarchy loaded. (oet_editObject)��3.2.5.2.2.2.1�Considering data record to be of a specified object type.�1-7 pg 291 (4.2.9.7.4-5)���Satisfied requirement.�TAMPS system with the Object Hierarchy loaded. (oet_editObject)��3.2.5.2.3�Allowing wild card character in an Object Determinator value.�1-7 pg 291 (4.2.9.7.4-5)���Satisfied requirement.�TAMPS system with the Object Hierarchy loaded. (oet_editObject)��3.2.5.2.4�Capability to store objects.�1-7 pg 291 (4.2.9.7.4-5)���Correctly stores objects.�TAMPS system with the Object Hierarchy loaded.��3.2.5.2.5�Capability to retrieve objects.�1-7 pg 291 (4.2.9.7.4-5)���Verification of retrieval process.�TAMPS system with the Object Hierarchy loaded.��3.2.5.2.6�Capability to delete objects.�1-7 pg 291 (4.2.9.7.4-5)���Verification of deletion process.�TAMPS system with the Object Hierarchy loaded.��3.2.5.2.7�Capability to modify objects.�1-7 pg 291 (4.2.9.7.4-5)���Correctly modifies objects.�TAMPS system with the Object Hierarchy loaded. (oet_editObject)��3.2.5.2.8�Capability to associate different symbol sets.�1-7 pg 291 (4.2.9.7.4-5)���Satisfied requirement.�TAMPS system with the Object Hierarchy loaded. oet_invokeSymbolMapping)��3.2.5.2.8.1�Allowing only one active symbol set at a time.�1-7 pg 291 (4.2.9.7.4-5)���Satisfied requirement.�TAMPS system with the Object Hierarchy loaded. oet_invokeSymbolMapping)��3.2.5.2.8.2�Using TAMPS symbol set by default.�1-7 pg 291 (4.2.9.7.4-5)���Visual verification.�TAMPS system with the Object Hierarchy loaded. oet_invokeSymbolMapping)��3.2.5.2.9�Capability to review complete object hierarchy.�1-7 pg 291 (4.2.9.7.4-5)���Satisfied requirement.�TAMPS system with the Object Hierarchy loaded. obt_getBrowserForm)��3.2.5.2.9.1�Not allowing create, delete or modify for review capability.�1-7 pg 291 (4.2.9.7.4-5)���Satisfied requirement.�TAMPS system with the Object Hierarchy loaded. obt_getBrowserForm)��3.2.5.2.10�Including data elements from MIDB GMI tables.�1-7 pg 291 (4.2.9.7.4-5)���Satisfied requirement.�TAMPS system with the Object Hierarchy loaded. obt_getBrowserForm)��3.2.5.2.11�Including data elements from MIDB target tables.�1-7 pg 291 (4.2.9.7.4-5)���Satisfied requirement.�TAMPS system with the Object Hierarchy loaded. obt_getBrowserForm)��3.2.5.2.12�Capability to access across multiple tables within a single object.�1-7 pg 291 (4.2.9.7.4-5)���Satisfied requirement.�TAMPS system with the Object Hierarchy loaded. (oet_editObject)��3.2.5.2.13�Capability to access across multiple databases within a single object.�1-7 pg 291 (4.2.9.7.4-5)���Satisfied requirement.�TAMPS system with the Object Hierarchy loaded. (oet_editObject)��

�Assumptions from Preliminary Design

None.

Concerns/Questions/Issues from Preliminary Design

None.��Threat OOB Editor CSC

High-Level Design Updates

The Update (Threat (OOB menu in the Database Administrator application has been replaced with an Update (Threat (MIDB menu, which will now look like:

MIDB (Edit Hooked Object...

	New Installation/Facility...

	New Unit...

The Update (Targets menu item will be replaced by a new sub-menu, which will look like:

Targets (Edit Hooked Object...

	New Target...

The Update (Threat (OOB (Polygon Defense Area menu item will be moved to the end of the Update (Threat menu.

The proposed new context-sensitive pop-up menus have been removed from the design. The existing pop-up menus will continue to be supported, but the new Facility, Unit, and Target menus will not.

Access to the OOB and Target editors will be controlled by the new Network DBA privilege, and the MP-LAN SOR will ensure that the menu items are not accessible if this privilege is not set.

The DIA Production Subsystem Extensions, which were proposed to make the screens in the DIA editors correspond more closely to the TAMPS Object Hierarchy objects, have been removed from the design. Editing will now be done using the standard DIA editor screens, which map to the underlying MIDB design. This will mean that a TAMPS Database Administrator must have more familiarity with the MIDB design in order to successfully edit the OOB data.

Database Schema

Not Applicable

Control Flow

Algorithms

Not Applicable

Design Description

dmt_default_defines.h

The following defines are obsolete and should be removed:

DBA_UPDATE_TARGET_CALLBACK

DBA_UPDATE_THREATS_OOB

DBA_UPDATE_THREATS_OOB_AOB

DBA_UPDATE_THREATS_OOB_AOB_CALLBACK

DBA_UPDATE_THREATS_OOB_GOB

DBA_UPDATE_THREATS_OOB_GOB_CALLBACK

DBA_UPDATE_THREATS_OOB_NOB

DBA_UPDATE_THREATS_OOB_NOB_CALLBACK

DBA_UPDATE_THREATS_OOB_EOB

DBA_UPDATE_THREATS_OOB_EOB_CALLBACK

DBA_UPDATE_THREATS_OOB_SAM

DBA_UPDATE_THREATS_OOB_SAM_CALLBACK

DBA_UPDATE_THREATS_OOB_AAA

DBA_UPDATE_THREATS_OOB_AAA_CALLBACK

DBA_UPDATE_THREATS_OOB_OTHER

DBA_UPDATE_THREATS_OOB_OTHER_CALLBACK

DBA_UPDATE_THREATS_OOB_POLY_DEF_AREA

DBA_UPDATE_THREATS_OOB_POLY_DEF_AREA_CALLBACK

The following defines should be added in place of those removed above:

DBA_UPDATE_TARGET_EDIT_HOOK_OBJ

DBA_UPDATE_TARGET_EDIT_HOOK_OBJ_CALLBACK

DBA_UPDATE_TARGET_NEW_TARGET

DBA_UPDATE_TARGET_NEW_TARGET_CALLBACK

DBA_UPDATE_THREATS_MIDB

DBA_UPDATE_THREATS_MIDB_EDIT_HOOK_OBJ

DBA_UPDATE_THREATS_MIDB_EDIT_HOOK_OBJ_CALLBACK

DBA_UPDATE_THREATS_MIDB_NEW_FAC

DBA_UPDATE_THREATS_MIDB_NEW_FAC_CALLBACK

DBA_UPDATE_THREATS_MIDB_NEW_UNIT

DBA_UPDATE_THREATS_MIDB_NEW_UNIT_CALLBACK

DBA_UPDATE_THREATS_POLY_DEF_AREA

DBA_UPDATE_THREATS_POLY_DEF_AREA_CALLBACK

dmt_priv_proto.h

Add the following prototypes:

	void dmt_editHookedObjCallback(Widget, XtPointer, XtPointer)

	void dmt_newMidbObjCallback(Widget, XtPointer, XtPointer)

dmt_menu.c

This file needs to be changed to remove the button creations that reference the obsolete defines listed above (note that they are not referenced in this file in the same order that they appear above).

Remove the code that created the Update(Targets... menu button, and replace it with the following:

// (void) umt_add_pulldown(*table,

//			DBA_UPDATE_TARGET,

//			DBA_UPDATE,

//			ìTargetsî, ëTí, NO);

// (void) umt_add_button(*table,

//			DBA_UPDATE_TARGET_EDIT_HOOK_OBJ,

//			DBA_UPDATE_TARGET,

//			ìEdit Hooked Object...î,

//			NULL, ëEí, NO);

// (void) umt_add_callback(*table,

//			DBA_UPDATE_TARGET_EDIT_HOOK_OBJ_CALLBACK,

//			DBA_UPDATE_TARGET_EDIT_HOOK_OBJ,

//			dmt_editHookedObjCallback,

//			(XtPointer) topLevel);

// (void) umt_add_button(*table,

//			DBA_UPDATE_TARGET_NEW_TARGET,

//			DBA_UPDATE_TARGET,

//			ìNew Target...î,

//			(XtPointer) DIT_TARGET, ëNí, NO);

// (void) umt_add_callback(*table,

//			DBA_UPDATE_TARGET_NEW_TARGET_CALLBACK,

//			DBA_UPDATE_TARGET_NEW_TARGET,

//			dmt_newMidbObjCallback,

//			(XtPointer) topLevel);

Remove the code that created the Update (Threats (OOB sub-menu and its buttons, and replace it with the following:

// (void) umt_add_pulldown(*table,

//			DBA_UPDATE_THREATS_MIDB,

//			DBA_UPDATE_THREATS,

//			ìMIDBî, ëMí, NO);

// (void) umt_add_button(*table,

//			DBA_UPDATE_THREATS_MIDB_EDIT_HOOK_OBJ,

//			DBA_UPDATE_THREATS_MIDB,

//			ìEdit Hooked Object...î,

//			NULL, ëEí, NO);

// (void) umt_add_callback(*table,

//			DBA_UPDATE_THREATS_MIDB_EDIT_HOOK_OBJ_CALLBACK,

//			DBA_UPDATE_THREATS_MIDB_EDIT_HOOK_OBJ,

//			dmt_editHookedObjCallback,

//			(XtPointer) topLevel);

// (void) umt_add_button(*table,

//			DBA_UPDATE_THREATS_MIDB_NEW_FAC,

//			DBA_UPDATE_THREATS_MIDB,

//			ìNew Installation/Facility...î,

//			(XtPointer) DIT_FAC, ëNí, NO);

// (void) umt_add_callback(*table,

//			DBA_UPDATE_THREATS_MIDB_NEW_FAC_CALLBACK,

//			DBA_UPDATE_THREATS_MIDB_NEW_FAC,

//			dmt_newMidbObjCallback,

//			(XtPointer) topLevel);

// (void) umt_add_button(*table,

//			DBA_UPDATE_THREATS_MIDB_NEW_UNIT,

//			DBA_UPDATE_THREATS_MIDB,

//			ìNew Unit...î,

//			(XtPointer) DIT_UNIT, ëUí, NO);

// (void) umt_add_callback(*table,

//			DBA_UPDATE_THREATS_MIDB_NEW_UNIT_CALLBACK,

//			DBA_UPDATE_THREATS_MIDB_NEW_UNIT,

//			dmt_newMidbObjCallback,

//			(XtPointer) topLevel);

Add this just after the section creating the existing button ìPolitical Alliances...î. This does not change the processing associated with this menu item, just its placement in the menu tree.

// (void) umt_add_button(*table,

//			DBA_UPDATE_THREATS_POLY_DEF_AREA,,

//			DBA_UPDATE_THREATS,

//			ìPolygon Defense Area...î,

//			NULL, ëAí, NO);

// (void) umt_add_callback(*table,

//			DBA_UPDATE_THREATS_POLY_DEF_AREA_CALLBACK,

//			DBA_UPDATE_THREATS_POLY_DEF_AREA_OBJ,

//			dnt_activatePolygonDefenseDialog,

//			(XtPointer) topLevel);

dmt_editMidbCb.c

This new file should contain the following functions:

void dmt_newMidbObjCallback(Widget w, XtPointer client, XtPointer call)

{

// if (zrt_userHasPrivActive(userData, ZRT_DB_NETWORK_DBA) == ST_FAILURE) {

//	display error(ìNot privileged to edit MIDBî)

//	return

// }

// if (dut_get_current_scenario() != NULL)

	//	display warning (ìRemember to set SCENARIO_SET field!î)

	// XtVaGetValues(w, XmNuserData, &tableType, NULL);

	// if (tableType == (XtPointer) DIT_FAC)

	//	dut_run_midb_cmd(ìMidbEngine FACî, True);

	// else if (tableType == (XtPointer) DIT_UNIT)

	//	dut_run_midb_cmd(ìMidbEngine UNITî, True);

	// else if (tableType == (XtPointer) DIT_TARGET)

	//	/* Currently TGT_DETAIL, will change to TGT_DTL */

	//	dut_run_midb_cmd(ìMidbEngine TGT_DTLî, True);

	// else

	//	log error message(ìUnrecognized Midb table typeî)

}

void dmt_editHookedObjCallback(Widget w, XtPointer client, XtPointer call)

{

	// char *MidbViews[] = {ìFACî, ìUNITî, ..., NULL};

// if (zrt_userHasPrivActive(userData, ZRT_DB_NETWORK_DBA) == ST_FAILURE) {

//	display error(ìNot privileged to edit MIDBî)

//	return

// }

	// hook_list = lbt_get_hook_list()

	// if (hook_list->next == hook_list) {

	//	display message(ìNo object hookedî)

	//	return;

	// }

	// if (hook_list->next->next != hook_list) {

	//	display message(ìMultiple objects hookedî)

	//	return;

	// }

	// bkObj = hook_list->next->data;

	// bkInfo = lbt_get_bucket(bkObj->bucket_header->layer_num,

//			bkObj->bucket_header->bucket_num);

	// for (i = 0; MidbViews[i] != NULL; i++) {

	//	sprintf(colName, ì%s.%s_SKî, MidbViews[i], MidbViews[i]);

	//	if (lbt_setColByName(bkInfo, colName) == ST_SUCCESS) {

	//		sk = lbt_get_data(bkInfo, bkObj);

	//		sprintf(cmd, ìMidbEngine %s -SK %sî, MidbViews[i], sk)

	//		free(sk)

	//		dut_run_midb_cmd(cmd, True);

	//		break;

	//	}

	// }

	// if (MidbViews[i] == NULL) {

	//	display error(ìCannot edit hooked objectî);

	// }

	// else {

	//	sleep(5);

	//	lbt_reexecute(bkObj->bucket_header->layer_num,

//			bkObj->bucket_header->bucket_num);

	// }

}

Interface Description

Unit Test Plans and Procedures

Test Environment

Except as noted, all tests are run on a standalone TAMPS system, or a TAMPS server not connected to JMCIS, by a user with Network DBA privilege.

The testing user should be familiar with the MIDB editor application.

All tests are performed from the Database Administrator application unless noted.

Dependencies

None

Assumptions

TAMPS will not attempt to thoroughly test the MIDB editors, since these are GOTS and not supported directly by TAMPS.

The exact behavior of the MIDB editors, and the requirements on the user to enter specific values in certain fields (notably RECORD_STATUS) are dependent on the local record issue resolution.

The user is required to enter the appropriate value in the SCENARIO_SET field if a scenario record is being created.

This test plan includes some tests that may be more fully covered in the Query Execution and Threat Scenario CSCs. These tests are relatively easy to perform here because this CSC will set up the data required for those tests.

Verification

Verify that if the user does not have the Network DBA privilege, the user will not be allowed to edit or create MIDB objects.

Verify that an error message is displayed if no object is hooked when the Edit Hooked Object menu item is selected.

Verify that an error message is displayed if more than one object is hooked when the Edit Hooked Object menu item is selected.

Verify that an error message is displayed if a non-MIDB object is hooked when the Edit Hooked Object menu item is selected.

Verify that the MIDB editor appears in the proper view, displaying the data corresponding to the hooked object, if an MIDB object is hooked when the Edit Hooked Object menu item is selected. Verify that this can be performed at least for Facility, Unit, and Target objects.

Verify that the MIDB editor appears in the proper view, without an object displayed, if the New Facility, New Unit, or New Target menu item is selected.

Verify that a reminder message appears if a scenario is active when the New Facility, New Unit, or New Target menu item is selected.

Verify that a new record can be created by the user, and that this new record is properly marked as a ìlocal recordî.

Verify that an existing record can be modified by the user, and that this results in a new record containing the modified data. Verify that the new record is properly marked as a ìlocal recordî. Verify that the original existing record has not been modified.

Verify that if the edit is performed on a system connected to JMCIS, the connection is made to the JMCIS database.

Verify that new records can be retrieved by TAMPS object queries.

Verify that the modified data (and not the original record) is retrieved by a TAMPS object query that retrieves a modified record.

Verify that a TAMPS object query will not return any scenario records when no current scenario is selected (i.e., when the current scenario is ìOperationalî).

Verify that a TAMPS object query will return only records containing the selected scenario ID when there is a current scenario selected.

PureCoverage should show 100% coverage of the code being tested. However, this does not include the MIDB editor applications, which are not being tested to this level.

Test Steps

As a user without the Network DBA privilege active, select the Update (Threats (MIDB (Edit Hooked Object menu item.

As a user without the Network DBA privilege active, select the Update (Threats (MIDB (New Facility menu item. Repeat for New Unit.

As a user with the Network DBA privilege active, and with no object hooked, select the Update (Threats (MIDB (Edit Hooked Object menu item.

With more than one object hooked, select the Update (Threats (MIDB (Edit Hooked Object menu item.

With a non-MIDB object (for example, a DAFID object) hooked, select the Update (Threats (MIDB (Edit Hooked Object menu item.

Hook an MIDB Facility object, and select the Update (Threats (MIDB (Edit Hooked Object menu item. Update the object data, and save the object.

Perform a database query that should return the modified record. Verify that the original record is not returned.

Hook an MIDB Target object, and select the Update (Targets (Edit Hooked Object menu item. Modify and save the object data. Run a query that should return the modified record.

Perform another database query, specifying RECORD_STATUS = A. This should return the original record and not the modified record.

Repeat for an MIDB Unit object.

Select the Update (Threats (MIDB (New Facility menu item Create a new facility object.

Perform a database query that should return the new record. This query should return the new object as well as any existing operational data that satisfies the query.

Select a scenario as the current scenario (create one if necessary).

Create a new Unit record by using the New Unit menu item. Set the SCENARIO_SET value in this new record to indicate that it is a scenario record.

Perform a database query that should return the new record. Since there is a current scenario, it should return only the new record.

Select no current scenario (i.e., ìOperationalî).

Repeat the database query. Since there is now no current scenario, it should not return the new record and should return the existing operational data.

Create a new Target record by using the New Target menu item. Run a query to verify that the new record can be retrieved.

Use ìisqlî to examine the records created in the above steps. Verify that the RECORD_STATUS and SCENARIO_SET fields are set properly (exact values depend on local record issue).

On a TAMPS server system connected to (and replicating MIDB from) JMCIS, create a new MIDB Facility record. Then use isql to query the JMCIS MIDB database, and verify that the new record is stored in the JMCIS database.

�Functional Test Plans and Procedures

SOR 96-01a MIDB 2.0 Function and Unit Test Matrix���3.2.3.5 GMI Editor CSC, CT0540 (Ref. TAMPS 6.2 Design Notebook, 6 Aug. 1997)���

Reference�Requirements (Condensed Text)�Test Steps (Ref.)�Purify Results�Pure Coverage Percentage�Pass/Fail Criteria�Test Environment and Applicable (Function)��3.2.3.5.1�Performing all edits on workstation's database.�1-20 pg 300-1 (4.2.10.7.5)���Satisfied requirement.�Use TAMPS standalone system. (MP-LAN)��3.2.3.5.2�Performing all edits on the TAMPS Server's MIDB database.�1-20 pg 300-1 (4.2.10.7.5)���Satisfied requirement.�Use TAMPS standalone system. (MP-LAN)��3.2.3.5.2.1�Support being disabled when connected to MP LAN.�1-20 pg 300-1 (4.2.10.7.5)���Satisfied requirement.�Use TAMPS standalone system. (MP-LAN)��3.2.3.5.2.2�Support being enabled when disconnect from MP LAN.�1-20 pg 300-1 (4.2.10.7.5)���Satisfied requirement.�Use TAMPS standalone system. (MP-LAN)��3.2.3.5.3�Performing all edits on JMCIS MIDB database.�1-20 pg 300-1 (4.2.10.7.5)���Satisfied requirement.�Use TAMPS standalone system. (MP-LAN)��3.2.3.5.3.1�Processing of TAMPS query request.�1-20 pg 300-1 (4.2.10.7.5)���Satisfied requirement.�Use TAMPS standalone system. (dat_newExQuery)��3.2.3.5.3.2�Replicating to the TAMPS MIDB.�1-20 pg 300-1 (4.2.10.7.5)���Satisfied requirement.�Use TAMPS standalone system. (MP-LAN)��3.2.3.5.3.3�Accepting updates from JMCIS server.�1-20 pg 300-1 (4.2.10.7.5)���Satisfied requirement.�Use TAMPS standalone system. (MP-LAN)��3.2.3.5.4�Capability to create data.�1-20 pg 300-1 (4.2.10.7.5)���Creates data correctly.�Use TAMPS standalone system. (aet_CreateRefOAPDialog)��3.2.3.5.5�Capability to modify data.�1-20 pg 300-1 (4.2.10.7.5)���Modifies data correctly.�Use TAMPS standalone system. (adt_target.c)��3.2.3.5.6�Capability to delete data.�1-20 pg 300-1 (4.2.10.7.5)���Deletes data correctly.�Use TAMPS standalone system. (adt_tgData.c)��

SOR 96-01a MIDB 2.0 Function and Unit Test Matrix���3.2.4.3 Target Editor, CT1115 (Ref. TAMPS 6.2 Design Notebook, 6 Aug. 1997) Note: Editor items supported by GOTS will not be tested.���

Reference�Requirements (Condensed Text)�Test Steps (Ref.)�Purify Results�Pure Coverage Percentage�Pass/Fail Criteria�Test Environment and Applicable (Function)��3.2.4.3.1�Manually maintain target data.����Satisfied requirement.���3.2.4.3.2�Creating new target records.����Satisfied requirement.���3.2.4.3.2.1�Creating new target record in DBA application.����Adds new record to TAMPS MIDB target data table.���3.2.4.3.2.2�Creating new target record in TAMPS MPM.����Adds new record to TAMPS target data table.���3.2.4.3.2.3�Creating new target record by graphical selection through the Overlay Manager.����Satisfied requirement.���3.2.4.3.2.4�Creating new target record by selection of any point.����Satisfied requirement.���3.2.4.3.2.5�Creating new target record by text entry.����Satisfied requirement.���3.2.4.3.3�Modifying existing targets.�1-20 pg 300-1 (4.2.10.7.5)���Correctly modifies existing targets.�Use TAMPS standalone system. (DIA Editor)��3.2.4.3.3.1�Modifying existing target records with DBA.�1-20 pg 300-1 (4.2.10.7.5)���Correctly modifies existing targets.�Use TAMPS standalone system. (DIA Editor)��3.2.4.3.3.2�Modifying existing target records of planner.����Correctly modifies existing targets.���3.2.4.3.3.3�Modifying existing targets not owned by planner.����Correctly modifies existing targets.���3.2.4.3.4�Deleting existing targets.�1-20 pg 300-1 (4.2.10.7.5)���Verification of deletion process.�Use TAMPS standalone system. (DIA Editor)��3.2.4.3.4.1�Deleting existing target with DBA.�1-20 pg 300-1 (4.2.10.7.5)���Verification of deletion process.�Use TAMPS standalone system. (DIA Editor)��3.2.4.3.4.2�Limiting planner ability to delete targets.����Satisfied requirement.���3.2.4.3.5�Performing all MIDB Target edits against the JMCIS MIDB database.�1-20 pg 300-1 (4.2.10.7.5)���Verification of editing process.�Use TAMPS standalone system. (DIA Editor)��3.2.4.3.5.1�Processing only MIDB target query requests.�1-20 pg 300-1 (4.2.10.7.5)���Satisfied requirement.�Use TAMPS standalone system. (DIA Editor)��3.2.4.3.5.2�Replicating to TAMPS MIDB target data from JMCIS MIDB.����Verification of replication process.���3.2.4.3.5.3�Accepting updates only from JMCIS server.����Satisfied requirement.���

�Assumptions from Preliminary Design

Each DIA Threat Editor will be callable from code. True. The MidbEngine application provides a way to start the MIDB Production Editors on any view, with or without an existing object.

The API is callable by specifying various views of the data. We are no longer planning on providing TAMPS-specific views of the data, but the MidbEngine application allows any view supported by the editors to be specified.

Concerns/Questions/Issues from Preliminary Design

Since the DIA Facility Editor allows the DBA to switch between Air, SAM, AAA, records, do we need to provide the OOB sub-menu (Air, SAM, AAA...)? We will be re-working the OOB sub-menu to provide only Facility and Unit (plus Polygon Defense Area, which is not MIDB-related).

Why try to limit the DIA facility editor to only one type of facility record? We do not want to try to create TAMPS-specific views of the data, so we will use the DIA-supplied facility view. However, an operator who is familiar with the system can create any type of facility from this view.

How does the editor know to assign a unique tag in the RECORD_STATUS field for a scenario? While this is still dependent on the local record issue for complete resolution, we are planning on requiring the operator to fill in the SCENARIO_SET field for a scenario record. The handling of RECORD_STATUS in general is an open issue.��Data Archival CSC

High-Level Design Updates

Archiving (to BCP files) of datasets contained in separate databases will no longer be supported. These datasets are MIDB, NID, and DAFIF. These datasets shall be archived (to database dump files) using the Dump/Restore MMI.

MIDB cannot be restored in a JMCIS-connected environment. This is because the MIDB GMI database is replicated from JMCIS in such an environment, and should not be modified locally by TAMPS.

Database Schema

Two new columns used by this CSC will be added to the DD_DATASETS database relation: ARCHIVE_OK, type char(1), which should be ìYî if the dataset can be archived using this CSC, and ìNî otherwise (ìYî for all datasets except MIDB, DAFID, and NID), and RESTORE_OK if the dataset can be restored using this CSC. (See also the Data Removal CSC)

A new database table, DD_DATABASES, will be added to the ìtampsî database. This table will have the following columns:

DATA_BASE, type sysname, not null, to hold the database name

DISPLAY_NAME, type varchar(32), not null, which will hold the name to be displayed to the user in the Dump Database MMI. In most cases, this will be the same as the database name.

DUMP_OK, type char(1), not null, which will be ìYî if the database is allowed to be dumped using the TAMPS dump/restore application.

RESTORE_OK, type char(1), not null, which will be ìYî if a dump of this database is allowed to be restored using the TAMPS dump/restore application.

REPLICATE_FM, type varchar(32), null, which if not NULL indicates that the database in question is being replicated from the specified source. This will be NULL for all databases except GMI, where the value will be ìJMCISî in a JMCIS-connected environment.

Control Flow

Algorithms

None.

Design Description

In utt_prot_proto.h :

Update the prototype for utt_createDBMenu() to include the new ìchar *where_clauseî parameter.

In utt_createDBMenu.c:

Alter the parameters to utt_createDBMenu() as follows: add a new char *where_clause.

The database connection should be opened with the new get_dbproc function to the ìtampsî database.

Add the following between the existing ìselect ... from DD_DATASETSî and the ìorder by...î statements.

//	if (where_clause != NULL) {

//		dbcmd(dbproc, ìwhere ì);

//		dbcmd(dbproc, where_clause);

//		dbcmd(dbproc, ì ì);

//	}

In dut_util_struct.h:

In the structure DUT_ARCHIVE_RESTORE_MMI_STRUCT, add ìWidget archiveButtonî and ìWidget restoreButtonî.

In the structure DUT_DUMP_RESTORE_MMI_STRUCT, add ìWidget dumpButtonî and ìWidget restoreButtonî.

In dut_arResMMI.c:

After creating the Archive toggle button, add ìdataPtr(archiveButton = archiveToggleButtonî.

After creating the Restore toggle button, add ìdataPtr(restoreButton = restoreToggleButtonî.

Remove the ìuserî and ìpassî parameters from the call to utt_createDBMenu(), and add a where_clause of ìwhere to the parameter list.

In dut_archive_restore.c:

In the function dut_build_tablist(), we must desensitize the Archive button if archiving of the dataset will not be allowed, or desensitize the Restore button if restoring of the dataset will not be allowed (if neither is allowed, we should not see the dataset in the list). Add the following processing:

//	retrieve the ARCHIVE_OK and RESTORE_OK flags from DD_DATASETS

//			for the dataset to be archived

//	if (ARCHIVE_OK == ìYî) {

//		XtSetSensitive(dataPtr(archiveButton, True);

//	} else {

//		if (XtToggleButtonGetState(dataPtr(archiveButton) == True)

//			XtToggleButtonSetState(dataPtr(restoreButton, True, True)

//		XtSetSensitive(dataPtr(archiveButton, False);

//	}

//	if (RESTORE_OK == ìYî) {

//		XtSetSensitive(dataPtr(restoreButton, True);

//	} else {

//		if (XtToggleButtonGetState(dataPtr(restoreButton) == True)

//			XtToggleButtonSetState(dataPtr(archiveButton, True, True)

//		XtSetSensitive(dataPtr(restoreButton, False);

//	}

In the function dut_processArchiveRestore(), remove the hard-coded table prefix setting (e.g., changing NERF to N2).

In the function dut_processArchive(), determine the database for the dataset being archived, and open a connection to that database.

In the function dut_processRestore(), determine the database for the dataset being restored, and open a connection to that database.

It should be noted that there is a fair amount of special-case code for archiving the DAFID dataset that will now be obsolete. However, this code should probably be left in for now, until we know that there is in fact no requirement to BCP out DAFID (someone might depend on being able to save a single version).

In dut_dumpResMMI.c:

After creating the Dump toggle button, add ìdataPtr(dumpButton = dumpToggleButtonî.

After creating the Restore toggle button, add ìdataPtr(restoreButton = restoreToggleButtonî.

In dut_dump_restore.c:

In the function dut_getDbList(), use the new get_dbproc function to open a connection to the tamps database. Do a select DISPLAY_NAME from DD_DATABASES where DUMP_OK = ëYí or RESTORE_OK = ëYí to retrieve the database names.

In the function dut_restoreDb(), add the following (before writing out the script file):

// if (DATA_BASE == ìGMIî) {

//	do a ìselect into tamps..TEMP_ZP_TYPE from GMI..ZP_USER_PERM_TYPEî)

//	do a ìselect into tamps..TEMP_ZP_RP from GMI..ZP_USER_PERM_RESPRODî)

// }

and add the following in place of the ìexit\nî and ìEOF\nî of the script file:

// if (DATA_BASE == ìGMIî) {

//	fprintf(fp, ìselect into GMI..ZP_USER_PERM_TYPE from

//				tamps..TEMP_ZP_TYPE\nî)

//	fprintf(fp, ìgo\nî)

//	fprintf(fp, ìselect into GMI..ZP_USER_PERM_RESPROD from

//				tamps..TEMP_ZP_RP\nî)

//	fprintf(fp, ìgo\nî)

//	fprintf(fp, ìexit\nî)

//

//	/* This depends on local record issue ñ review with each delivery */

//	fprintf(fp, ì(echo ë%sí; echo ëí, echo ëí) | LoadAccession.pl\nî,

//			getenv(ìTAMPS_PRODUCERî)

// }

// else

//	fprintf(fp, ìexit\nî)

// fprintf(fp, ìEOF\nî)		/* as current */

In the function dut_dumpRestoreDatabaseOption(),we must get the database name corresponding to the displayed string. Also, we must desensitize the Dump button if dumping of the database will not be allowed, or desensitize the Restore button if restoring of the database will not be allowed (if neither is allowed, we should not see the database in the list). The function as changed looks like this:

//	XtVaGetValues(w, XmNlabelString, &xmstr)

//	XmStringGetLtoR(xmstr, XmSTRING_DEFAULT_CHARSET, &display_name)

//	XmStringFree(xmstr)

//

//	do a select DATA_BASE, DUMP_OK, RESTORE_OK, and REPLICATE_FR flags

//			 from DD_DATABASES for the selected DISPLAY_NAME

//	if (DUMP_OK == ìYî) {

//		XtSetSensitive(dataPtr(archiveButton, True);

//	} else {

//		if (XtToggleButtonGetState(dataPtr(archiveButton) == True)

//			XtToggleButtonSetState(dataPtr(restoreButton, True, True)

//		XtSetSensitive(dataPtr(archiveButton, False);

//	}

//	if (RESTORE_OK == ìYî && REPLICATE_FR == ìî) {

//		XtSetSensitive(dataPtr(restoreButton, True);

//	} else {

//		if (XtToggleButtonGetState(dataPtr(restoreButton) == True)

//			XtToggleButtonSetState(dataPtr(archiveButton, True, True)

//		XtSetSensitive(dataPtr(restoreButton, False);

//	}

//	strcpy(dataPtr(source, DATA_BASE)

//	XtFree(display_name)

The adjustLogins.csh file must be rewritten as follows:

	// /* Step 1: Find and delete users who are in the database just restored, but not in syslogins */

	// /* In order to drop a user from a database, we must drop all objects owned by that user. */

	// /* Most users will not own objects (with a possible exception of temporary tables), but */

	// /* we want to be as complete as possible. */

// select u.name from sysusers u

//		where u.suid > 0		/* skip group names */

//		and u.name not in (ìdboî, ìsaî, ìtampsî, ìprobeî)	/* skip special accts */

//					/* skip users who exist in syslogins */

//		and not exists (select 1 from master..syslogins l

//			where l.name = u.name)

// while (dbnextrow() != NO_MORE_ROWS)

//	add u.name to user list

//

// for each user in user list

//	select o.name, o.type from sysobjects o, sysusers u

//		where o.uid = u.uid and u.name = user

//	while (dbnextrow() != NO_MORE_ROWS)

//		add o.name, o.type to drop_list

//

//	making_progress = True;

//	while (making_progress) {

//	 making_progess = False;

//	 for each item in drop list {

//		if (item.type == ëUí)

//			select i.name from sysindexes i where i.id = object_id(item.name)

//			for each index {

//				drop index item_name.index_name

//			}

//			drop table item.name

//			if (successfully dropped)

//				making_progress = True

//		if (item.type == ëPí)

//			drop procedure item.name

//			if (successfully dropped)

//				making_progress = True

//		if (item.type == ëTRí)

//			drop trigger item.name

//			if (successfully dropped)

//				making_progress = True

//		if (item.type == ëDí)

//			drop default item.name

//			if (successfully dropped)

//				making_progress = True

//		if (item.type == ëVí)

//			drop view item.name

//			if (successfully dropped)

//				making_progress = True

//	 }

//	}

//	if (any items in drop list)

//		log error message (ìCannot delete all user-owned objectsî)

//	else

//		sp_dropuser user

//

// /* Step 2: Find users who are in both sysusers and syslogins, but with different user IDs. */

// /* This turns out to be fairly simple, since Sybase will let the dbo (or sa) update the suid */

// /* field of sysusers. We must watch out for users who have swapped ID values. */

//

// select u.name, u.suid, l.suid from sysusers u, master..syslogins l

//		where u.name = l.name and u.suid != s.suid

//		and u.name not in (ìdboî, ìsaî, ìtampsî, ìprobeî)	/* skip special accts */

// for (each user returned) {

//	/* move anyone else who has that suid out of the way */

//	select u2.name from sysusers u2 where u2.suid = l_suid

//	if (any record returned) {

//		update sysusers set suid = l_suid+500 where name = u2_name

//		if (not successful) {

//			increment suid and try again

//		}

//	}

//	updata sysusers set suid = l_suid where name = u_name

// }

//

// /* Step 3: Find users who are in syslogins but not in this database. */

// /* We need to give those users access to this database. This is a matter */

// /* of running sp_adduser. */

//

// select l.name from master..syslogins l where not exists

//		(select 1 from sysusers u where u.name = l.name)

//		and l.name not in (ìdboî, ìsaî, ìtampsî, ìprobeî)	/* skip special accts */

// for (each user returned) {

// 	sp_adduser user

//

// /* Step 4: For each user in the database, update the group (and MIDB permissions if */

// /* appropriate */

//

// select u.name from sysusers u where l.name not in (ìdboî, ìsaî, ìtampsî, ìprobeî)

// for (each user) {

//	if (database is an MIDB database) {

//		if (user has Network DBA privilege) {

//			sp_changegroup user, expert

//			insert into ZP_USER_PERM_TYPE /* as in User Admin CSC */

//			insert into ZP_USER_PERM_RESPROD /* ditto */

//		}

//		else

//			sp_changegroup user, read_only

//	}

//	else {

//		if (user has DBA role)

//			sp_changegroup user, dba

//		else if (user has SA role)

//			sp_changegroup user, dba

//		else if (user has MP role)

//			sp_changegroup user, mission_planner

//	}

// }

What about MIDB support info? If only GMI is being restored, we need to run the LoadAccession.pl script (as reflected in the design). Do we need to do anything else regarding SK values?

It should be noted that this design does not support multi-tape dumps. Writing a multi-tape dump is probably fairly simple, if the Sybase message/error handlers see the ìnext tape neededî message. However, loading a multi-tape dump is difficult because loading a database dump is done at system boot, so there is no process available to receive the ìnext tapeî message, and no way to display it to the user if a message was received.

Interface Description

Not applicable

Unit Test Plans and Procedures

Test Environment

Testing of this CSC will require an installed TAMPS system with the MIDB loaded. It will require a user with the privilege to add and remove users, and assign roles and privileges, and with the Database Administrator role.

Dependencies

None

Assumptions

These tests emphasize the code that has been changed for this SOR, and do not re-test existing functionality.

There are many possible combinations of user roles and privileges, as well as many possible combinations of objects owned by a user who needs to be dropped from a database. It is not possible to test every combination.

Not enough is known about the Accession number processing within the MIDB to perform complete testing.

Verification

Verify that a database table can be archived.

Verify that a database table can be restored.

Verify that MIDB, DAFID, and NID do not appear in the list of datasets to be archived.

Verify that MIDB, DAFID, and NID do appear in the list of datasets to be dumped.

Verify that the database has been dumped to tape.

Verify that the database has been restored to the system.

Verify that a user present in the database being restored but not on the server is deleted.

Verify that if the user owns objects, the objects are deleted before the user is deleted.

Verify that a user present on the server but not in the restored database is added.

Verify that the group that a user belongs to is reset, based on the current roles and privileges, after restoring a database.

Verify that a user present both in the database and on the server, but with different ID values, has the ID value in the database changed to that on the server.

Verify that if the database is being replicated from JMCIS, then the restore operation is not allowed.

PureCoverage should show 100% coverage of the code being tested. However, much of the critical functionality is contained within Shell and SQL scripts, and cannot be tested with Purify or PureCoverage.

Test Steps

Archive a table from the ìtampsî database.

Restore the table just archived.

Create a user, and assign that user the Database Administrator role and the Network DBA privilege.

Create a user, and assign that user the Mission Planner role.

Perform a database dump of the ìtampsî database.

Do a ìload database with listonlyî to verify that the database has been correctly dumped.

Perform a database dump of the ìMIDBî (GMI) database.

Delete the user created in step 3, and create a new user.

Modify the user created in step 4 to have the Database Administrator role and Network DBA privilege.

Restore the ìtampsî database dump.

Restore the ìMIDBî database dump.

On a TAMPS server connected to JMCIS, attempt to restore the ìMIDBî database dump done earlier

�Function Test Plans and Procedures

SOR 96-01a MIDB 2.0 Function and Unit Test Matrix���3.2.6.1 Database Archive CSC, CT2740 (Ref. TAMPS 6.2 Design Notebook, 6 Aug. 1997)���

Reference�Requirements (Condensed Text)�Test Steps (Ref.)�Purify Results�Pure Coverage Percentage�Pass/Fail Criteria�Test Environment and Applicable (Function)��3.2.6.1.1�Capability to archive data set as a database dump file, or as set of BCP files.�1-12 pg 309-10 (4.2.11.7.5)���Verification requirement (4.2.11.7.4).�Requires an installed TAMPS system with MIDB loaded.��3.2.6.1.2�Capability to restore a data set from an archive set.�1-12 pg 309-10 (4.2.11.7.5)���Verification requirement (4.2.11.7.4).�Requires an installed TAMPS system with MIDB loaded.��3.2.6.1.3�Archiving MIDB data.�1-12 pg 309-10 (4.2.11.7.5)���Verification requirement (4.2.11.7.4).�Requires an installed TAMPS system with MIDB loaded.��3.2.6.1.4�Restoring MIDB data.�1-12 pg 309-10 (4.2.11.7.5)���Verification requirement (4.2.11.7.4).�Requires an installed TAMPS system with MIDB loaded.��

�Assumptions from Preliminary Design

None

Concerns/Questions/Issues from Preliminary Design

None��Threat Query CSC

High-Level Design Updates

All threat queries will be changed from stored procedures to select queries executed upon request. Also, all threat queries will be updated to access the corresponding MIDB database objects.

Database Schema

See the Appendix A for objects in the MIDB database.

Control Flow

Algorithms

There are no algorithms needed for this CSC.

Design Description

sit_defaultMenu.c

Purpose:	This file contains the functions to initialize the top-level menu bar for TAMPS core functions.

Exportability:	Public

Interactions:	umt_add_pulldown()

	umt_add_button()

	umt_add_callback()	

Public Operations:	No public changes.

Private Operations:	sit_setupMenu (Widget*, umt_table_item ***, MPT_MAP **,

		Widget)

	sit_threatIntelMenu (Widget*, umt_table_item ***, 	MPT_MAP**)

Private Members:	None

Public Operation PDL:	None

Private Operation PDL:

/*

** This function defines the pulldown menu items for the generic MPM Setup menu item.

*/

ST_PRIVATE void

sit_setupMenu (Widget *toplevel, umt_table_item ***table, MPT_MAP **pMap,

	Widget parent)

{

	< ... existing code ... >

	/* add threat scenario menu item after Search Destination */

	// call umt_add_button (*table,

	//	MPM_SETUP_DEFAULTS_SCENARIOS_BUTTON,

	//	MPM_SETUP_DEFAULTS,

	//	ìThreat Scenarios ...î,

	//	NULL, ëSí, NO)

	// call umt_add_button (*table,

	//	MPM_SETUP_DEFAULTS_SCENARIOS_CALLBACK,

	//	MPM_SETUP_DEFAULTS_SCENARIOS_BUTTON,

	//	(XtCallbackProc) dut_threatScenarioMPMDialog,

	//	(XtPointer) *toplevel)

	< ... existing code ... >

}

/*

** This function defines the pulldown menu items for generic MPM Threat/Intel menu

** bar.

*/

ST_PRIVATE void

sit_threatIntelMenu (Widget *toplevel, umt_table_item ***table, MPT_MAP **pMap)

{

	<... existing code for Threat/Intel Pulldown ...>

	/* add after OOB menu item pulldown */

	// call umt_add_pulldown

	//	(*table,

	//	MPM_THREAT_ORDEROFBATTLE_AOB,

	//	MPM_THREAT_ORDEROFBATTLE,

	//	ìAirî, ëií, NO)

	/* oob-> air -> airfields */

	// call umt_add_button

	//	(*table,

	//	MPM_THREAT_ORDEROFBATTLE_AOB_AIR_BUTTON,

	//	MPM_THREAT_ORDEROFBATTLE,

	//	ìAirfields Wingî, ëAí, NO)

	// call umt_add_callback

	//	(*table,

	//	MPM_THREAT_ORDEROFBATTLE_AOB_AIR_CALLBACK,

	//	MPM_THREAT_ORDEROFBATTLE_AOB_AIR_BUTTON,

	//	iot_createAobDialog, (XtPointer) *toplevel)

	/* oob-> air -> fixed wing */

	// call umt_add_button

	//	(*table,

	//	MPM_THREAT_ORDEROFBATTLE_AOB_FIX_BUTTON,

	//	MPM_THREAT_ORDEROFBATTLE,

	//	ìFixed Wing ...î, ëFí, NO)

	// call umt_add_callback

	//	(*table,

	//	MPM_THREAT_ORDEROFBATTLE_AOB_FIX_CALLBACK,

	//	MPM_THREAT_ORDEROFBATTLE_AOB_FIX_BUTTON,

	//	iot_createAobDialog, (XtPointer) *toplevel)

	/* oob-> air -> rotary wing */

	// call umt_add_button

	//	(*table,

	//	MPM_THREAT_ORDEROFBATTLE_AOB_ROT_BUTTON,

	//	MPM_THREAT_ORDEROFBATTLE,

	//	ìRotary Wing ...î, ëRí, NO)

	// call umt_add_callback

	//	(*table,

	//	MPM_THREAT_ORDEROFBATTLE_AOB_ROT_CALLBACK,

	//	MPM_THREAT_ORDEROFBATTLE_AOB_ROT_BUTTON,

	//	iot_createAobDialog, (XtPointer) *toplevel)

	/* oob-> air -> specific aricraft */

	// call umt_add_button

	//	(*table,

	//	MPM_THREAT_ORDEROFBATTLE_AOB_SPEC_BUTTON,

	//	MPM_THREAT_ORDEROFBATTLE,

	//	ìSpecific Aircraft ...î, ëSí, NO)

	// call umt_add_callback

	//	(*table,

	//	MPM_THREAT_ORDEROFBATTLE_AOB_SPEC_CALLBACK,

	//	MPM_THREAT_ORDEROFBATTLE_AOB_SPEC_BUTTON,

	//	iot_createAobDialog, (XtPointer) *toplevel)

	<... existing code for Threat/Intel pulldown menu items ...>

}

sit_default_defines.h

Purpose:	This file contains the definitions of the existing standard menu options in the generic MPM.

	This file will be updated to delete the definitions for MPM_THREAT_ORDEROFBATTLE_AOB_BUTTON and

	MPM_THREAT_ORDEROFBATTLE_AOB_CALLBACK.

Exportability:	Public

Interactions:	None	

Public Members PDL:	None

/*

** Setup Pulldown

*/

<... existing code ...>

#define MPM_SETUP_DEFAULTS_SCENARIOS_BUTTON	(FILE_TOTAL+24)

#define MPM_SETUP_DEFAULTS_SCENARIOS_CALLBACK 	(FILE_TOTAL+25)

#define SETUP_TOTAL	(FILE_TOTAL+26)

<... existing code ...>

/*

** Threat Pulldown

*/

<... existing code ...>

#define MPM_THREAT_ORDEROFBATTLE_AOB (DISPLAY_TOTAL+6)

#define MPM_THREAT_ORDEROFBATTLE_AOB_AIR_BUTTON

	(DISPLAY_TOTAL+7)

#define MPM_THREAT_ORDEROFBATTLE_AOB_AIR_CALLBACK

	(DISPLAY_TOTAL+8)

#define MPM_THREAT_ORDEROFBATTLE_AOB_FIX_BUTTON

	(DISPLAY_TOTAL+9)

#define MPM_THREAT_ORDEROFBATTLE_AOB_FIX_CALLBACK

	(DISPLAY_TOTAL+10)

#define MPM_THREAT_ORDEROFBATTLE_AOB_ROT_BUTTON

	(DISPLAY_TOTAL+11)

#define MPM_THREAT_ORDEROFBATTLE_AOB_ROT_CALLBACK

	(DISPLAY_TOTAL+12)

#define MPM_THREAT_ORDEROFBATTLE_AOB_SPEC_BUTTON

	(DISPLAY_TOTAL+13)

#define MPM_THREAT_ORDEROFBATTLE_AOB_SPEC_CALLBACK

	(DISPLAY_TOTAL+14)

<... modify existing code to update DISPLAY_TOTAL offsets for remaining threat menu items ...>

iot_aob.c

Purpose:	This file contains functions to create the Air Order of Battle query interface.

	The dialog box will be updated to delete the ìSelectî push-button which is defined as a pull-down menu with sub-query options. The dialog box is called from the Threat OOB menu when one of the cascading Air menu items has been selected. The possible selections are: Airfields, Fixed Wing, Rotary Wing and Specific Aircraft.

	Delete all references to the following widgets:

	aobMenuBar, menuShell, menuShell1, aobSelectPulldown, aobSelectButton, aobSelectFamily, aobFamilyPulldown, aobFixedWingButton, aobRotaryWingButton, aobSpecificAircraftButton, aobSpecialCapabilityButton

	With the selection of the specific order of battle air queries from the OOB->Air menu item, the following files can be deleted:

	iot_aobcap.c, iot_aobfix.c, iot_aobrot.c, iot_aobspec.c.

Exportability:	Public

Interactions:	None	

Public Operations:	None

Private Operations:	iot_createAobDialog (Widget, XtPointer, XtPointer)

Private Members:	None

Public Operation PDL:	None

Private Operation PDL:	

/*

** This function creates the Air Order of Battle dialog box.

*/

ST_PROTECTED void

iot_createAobDialog (Widget w, XtPointer client, XtPointer call)

{

	if (iot_aobInfor.dialog != (Widget) NULL) {

		XtManageChild (iot_aobInfo.dialog);

	}

	/* Create the dialog shell */

	// determine menu item used that called this dialog

	// if (button == MPM_THREAT_ORDEROFBATTLE_AOB_AIR_BUTTON)

	//	set title of dialog to ìAir - Airfieldsî

	//	iot_aobInfo.index = AMT_THREAT_AOB

	// else if (button == MPM_THREAT_ORDEROFBATTLE_AOB_FIX_BUTTON)

	//	set title of dialog to ìAir - Fixed Wingî

	//	iot_aobInfo.index = AMT_THREAT_AOB_FIXED_WING

	// else if (button == MPM_THREAT_ORDEROFBATTLE_AOB_ROT_BUTTON)

	//	set title of dialog to ìAir - Rotary Wingî

	//	iot_aobInfo.index = AMT_THREAT_AOB_ROTARY_WING

	// else if (button == MPM_THREAT_ORDEROFBATTLE_AOB_SPEC_BUTTON)

	//	set title of dialog to ìAir - Specific Aircraftî

	//	iot_aobInfo.index = AMT_THREAT_AOB_SPEC_AC

	// end if

	<... existing code ...>

}

iot_sam.c

Purpose:	This file contains functions to create the SAM Order of Battle query interface. The iot_createSamDialog() function will be modified to display a scrolled list dialog box which contains the available list of SAM queries. The functionality of this dialog box will correspond to the current functionality provided with the individual sam fixed radar, tactical and unit dialog boxes.

	Delete all references to the following widgets:

	samLabel, samTacticalFacButton, samFixedFacButton, samUnitsButton

	With the selection of the specific order of battle sam queries from the OOB->SAM menu item, the following files can be deleted:

	iot_samfix.c, iot_samtac.c and iot_samunit.c

Exportability:	Public

Interactions:	None	

Public Operations:	None

Private Operations:	iot_createSamDialog (Widget, XtPointer, XtPointer)

Private Members:	None

Public Operation PDL:	None

Private Operation PDL:	

/*

** This function creates the SAM Order of Battle dialog box.

*/

ST_PROTECTED void

iot_createSamDialog (Widget w, XtPointer client, XtPointer call)

{

	if (iot_samInfo.dialog != (Widget) NULL) {

		XtManageChild (iot_samInfo.dialog);

	}

	/* Create the dialog shell */

	// determine menu item used that called this dialog

	// if (button == MPM_THREAT_ORDEROFBATTLE_SAM_BUTTON)

	//	set title of dialog to ìSAMî

	//	iot_aobInfo.index = AMT_THREAT_SAM

	// end if

	<... use existing code in sam fixed radar unit (iot_samfix.c) ...>

}

iot_aaa.c

Purpose:	This file contains functions to create the AAA Order of Battle query interface. The iot_createAaaDialog() function will be modified to display a scrolled list dialog box which contains the available list of AAA queries. The functionality of this dialog box will correspond to the current functionality provided with the individual AAA facility, equipment and fire control radars dialog boxes.

	Delete all references to the following widgets:

	aaaSelectLabel, aaaFacilityButton, aaaUnitEquipmentButton, aaaFireControlRadarsButton

	With the selection of the specific order of battle aaa queries from the OOB->AAA menu, item the following files can be deleted:

	iot_aaafac.c, iot_aaafcrdr.c, and iot_aaaUnitEq.c

Exportability:	Public

Interactions:	None	

Public Operations:	None

Private Operations:	iot_createAaaDialog (Widget, XtPointer, XtPointer)

Private Members:	None

Public Operation PDL:	None

Private Operation PDL:	

/*

** This function creates the AAA Order of Battle dialog box.

*/

ST_PROTECTED void

iot_createAaaDialog (Widget w, XtPointer client, XtPointer call)

{

	if (iot_aaaInfo.dialog != (Widget) NULL) {

		XtManageChild (iot_aaaInfo.dialog);

	}

	/* Create the dialog shell */

	// determine menu item used that called this dialog

	// if (button == MPM_THREAT_ORDEROFBATTLE_AAA_BUTTON)

	//	set title of dialog to ìAAAî

	//	iot_aaaInfo.index = AMT_THREAT_AAA

	// end if

	<... use existing code in aaa fixed radar unit (iot_aaafac.c) ...>

}

amt_menu.h

Purpose:	This file contains the definitions of the existing standard menu options in the generic MPM.

	This file will be updated to delete the definitions:

AMT_THREAT_AOB_SPEC_CAP,

	AMT_THREAT_SAM_FIXED,

	AMT_THREAT_SAM_TACTICAL,

	AMT_THREAT_SAM_UNITS,

	AMT_THREAT_AAA_FC_RDR,

	AMT_THREAT_AAA_UNIT_EQ,

	AMT_THREAT_AAA_FACILITY

Exportability:	Public

Interactions:	None	

Public Members PDL:	None

<... use existing code ...>

#define AMT_THREAT_SAM	ìMPM:THREAT_INTEL:OOB:SAMî

#define AMT_THREAT_AAA	ìMPM:THREAT_INTEL:OOB:AAAî

dmt_menu.c

Purpose:	This file contains the definitions for the menu options in the DBA administration application.

Exportability:	Public

Interactions:	umt_add_pulldown()

	umt_add_button()

	umt_add_callback()

Public Operations:	None

Private Operations:	dmt_setupMenu (Widget, umt_table_item ***)

dmt_threatIntelMenu (Widget, umt_table_item ***)

Private Members:	None

Public Operation PDL:	None

Private Operation PDL:

/*

** This function defines the pulldown menu items for the Setup menu item in the

** DBA administration application.

*/

ST_PRIVATE void

dmt_setupMenu (Widget *toplevel, umt_table_item ***table)

{

	< ... existing code ... >

	/* add threat scenario menu item after Search Destination */

	// call umt_add_button (*table,

	//	DBA_SETUP_DEFAULTS_SCENARIOS_BUTTON,

	//	DBA_SETUP_DEFAULTS,

	//	ìThreat Scenarios ...î,

	//	NULL, ëSí, NO)

	// call umt_add_button (*table,

	//	DBA_SETUP_DEFAULTS_SCENARIOS_CALLBACK,

	//	DBA_SETUP_DEFAULTS_SCENARIOS_BUTTON,

	//	(XtCallbackProc) dut_threatScenarioDBADialog,

	//	(XtPointer) *toplevel)

	< ... existing code ... >

}

/*

** This function defines the pulldown menu items for the Threat/Intel menu item in the

** DBA administration application.

*/

ST_PRIVATE void

dmt_threatIntelMenu (Widget topLevel, umt_table_item ***table)

{

<... existing code ...>

	/* add after OOB menu item pulldown */

	// call umt_add_pulldown

	//	(*table,

	//	DBA_THREAT_ORDEROFBATTLE_AOB,

	//	DBA_THREAT_ORDEROFBATTLE,

	//	ìAirî, ëií, NO)

	/* oob-> air -> airfields */

	// call umt_add_button

	//	(*table,

	//	DBA_THREAT_ORDEROFBATTLE_AOB_AIR_BUTTON,

	//	DBA_THREAT_ORDEROFBATTLE,

	//	ìAirfields Wingî, ëAí, NO)

	// call umt_add_callback

	//	(*table,

	//	DBA_THREAT_ORDEROFBATTLE_AOB_AIR_CALLBACK,

	//	DBA_THREAT_ORDEROFBATTLE_AOB_AIR_BUTTON,

	//	iot_createAobDialog, (XtPointer) *toplevel)

	/* oob-> air -> fixed wing */

	// call umt_add_button

	//	(*table,

	//	DBA_THREAT_ORDEROFBATTLE_AOB_FIX_BUTTON,

	//	DBA_THREAT_ORDEROFBATTLE,

	//	ìFixed Wing ...î, ëFí, NO)

	// call umt_add_callback

	//	(*table,

	//	DBA_THREAT_ORDEROFBATTLE_AOB_FIX_CALLBACK,

	//	DBA_THREAT_ORDEROFBATTLE_AOB_FIX_BUTTON,

	//	iot_createAobDialog, (XtPointer) *toplevel)

	/* oob-> air -> rotary wing */

	// call umt_add_button

	//	(*table,

	//	DBA_THREAT_ORDEROFBATTLE_AOB_ROT_BUTTON,

	//	DBA_THREAT_ORDEROFBATTLE,

	//	ìRotary Wing ...î, ëRí, NO)

	// call umt_add_callback

	//	(*table,

	//	DBA_THREAT_ORDEROFBATTLE_AOB_ROT_CALLBACK,

	//	DBA_THREAT_ORDEROFBATTLE_AOB_ROT_BUTTON,

	//	iot_createAobDialog, (XtPointer) *toplevel)

	/* oob-> air -> specific aricraft */

	// call umt_add_button

	//	(*table,

	//	DBA_THREAT_ORDEROFBATTLE_AOB_SPEC_BUTTON,

	//	DBA_THREAT_ORDEROFBATTLE,

	//	ìSpecific Aircraft ...î, ëSí, NO)

	// call umt_add_callback

	//	(*table,

	//	DBA_THREAT_ORDEROFBATTLE_AOB_SPEC_CALLBACK,

	//	DBA_THREAT_ORDEROFBATTLE_AOB_SPEC_BUTTON,

	//	iot_createAobDialog, (XtPointer) *toplevel)

	<... existing code for Threat/Intel pulldown menu items ...>

}

dmt_default_defines.h

Purpose:	This file contains the definitions for the menu options for the DBA administration application.

	This file will be updated to delete the definitions for DBA_THREAT_ORDEROFBATTLE_AOB_BUTTON and

	DBA_THREAT_ORDEROFBATTLE_AOB_CALLBACK.

Exportability:	Protected

Interactions:	None	

Public Members PDL:	None

/*

** Setup Pulldown

*/

<... existing code ...>

#define DBA_SETUP_DEFAULTS_SCENARIOS_BUTTON	(DBA_FILE_TOTAL+22)

#define DBA_SETUP_DEFAULTS_SCENARIOS_CALLBACK 	(DBA_FILE_TOTAL+23)

#define DBA_SETUP_TOTAL	(DBA_FILE_TOTAL+24)

<... existing code ...>

/*

** Threat Pulldown

*/

<... existing code ...>

#define DBA_THREAT_ORDEROFBATTLE_AOB (DBA_DISPLAY_TOTAL+6)

#define DBA_THREAT_ORDEROFBATTLE_AOB_AIR_BUTTON

	(DBA_DISPLAY_TOTAL+7)

#define DBA_THREAT_ORDEROFBATTLE_AOB_AIR_CALLBACK

	(DBA_DISPLAY_TOTAL+8)

#define DBA_THREAT_ORDEROFBATTLE_AOB_FIX_BUTTON

	(DBA_DISPLAY_TOTAL+9)

#define DBA_THREAT_ORDEROFBATTLE_AOB_FIX_CALLBACK

	(DBA_DISPLAY_TOTAL+10)

#define DBA_THREAT_ORDEROFBATTLE_AOB_ROT_BUTTON

	(DBA_DISPLAY_TOTAL+11)

#define DBA_THREAT_ORDEROFBATTLE_AOB_ROT_CALLBACK

	(DBA_DISPLAY_TOTAL+12)

#define DBA_THREAT_ORDEROFBATTLE_AOB_SPEC_BUTTON

	(DBA_DISPLAY_TOTAL+13)

#define DBA_THREAT_ORDEROFBATTLE_AOB_SPEC_CALLBACK

	(DBA_DISPLAY_TOTAL+14)

<... modify existing code to update DBA_DISPLAY_TOTAL offsets for remaining threat menu items ...>

Interface Description

There are no interface design changes for this CSC.

Unit Test Plans and Procedures

MPM Threat Query

Test Environment:

The threat query capability will be tested using an MPM.

Dependencies:

MIDB database installed

GMI data

Assumptions:

DD_MENU contains updated threat queries

Test Cases:

Initiate query when MIDB database is not available.

Select Threat/Intel->OOB->Air

Select Threat/Intel->OOB->Air->Fixed Wing and press close.

Select Threat/Intel->OOB->SAM and press help.

Verification:

Verify that error message is displayed indicating that MIDB database is not available.

Verify pulldown menu contains Airfields, Fixed Wing, Rotary Wing, Specific Airfields are provided as menu items.

Verify Air - Fixed Wing dialog is removed from the display.

Verify help is displayed for the selection of a SAM threat query.

Test Steps:

Execute same test steps defined in DBA Threat Query.

DBA Threat Query

Test Environment:

The threat query capability will be tested using the DBA administration tool.

Dependencies:

MIDB database installed

GMI data

Assumptions:

DD_MENU contains updated threat queries

Test Cases:

Initiate query when MIDB database is not available.

Select Threat/Intel->OOB->Air

Select Threat/Intel->OOB->Air->Fixed Wing and press close.

Select Threat/Intel->OOB->SAM and press help.

Verification:

Verify that error message is displayed indicating that MIDB database is not available.

Verify pulldown menu contains Airfields, Fixed Wing, Rotary Wing, Specific Airfields are provided as menu items.

Verify Air - Fixed Wing dialog is removed from the display.

Verify help is displayed for the selection of a SAM threat query.

Test Steps:

Step�Action�Expected Results�Remarks��1�Bring up DBA administration tool����2�Tear off Threat/Intel menu����3�Select Air->Airfields menu item �Dialog scrolled list with airfield queries���4�Press Apply�Map display is populated the airfield threat data���5�In SQL, execute same airfield query�GMI data returned�The records returned from this step and the previous step should match��6�Select Air->Fixed Wing menu item�Dialog scrolled list with air fixed wing queries���7�Press Apply�Map display is populated the fixed wing threat data���8�In SQL, execute same fixed wing query�GMI data returned�The records returned from this step and the previous step should match��9�Select Air->Rotary Wing menu item�Dialog scrolled list with air rotary wing queries���10�Press Apply�Map display is populated the rotary wing threat data���11�In SQL, execute same rotary wing query�GMI data returned�The records returned from this step and the previous step should match��12�Select SAM menu item�Dialog scrolled list with SAM queries���13�Press Apply�Map displays SAM threats���14�In SQL, execute same SAM query�GMI data returned�The records returned from this step and the previous step should match��15�Select AAA menu item�Dialog scrolled list with AAA queries���16�Press Apply�Map displays AAA threats���17�In SQL, execute same AAA query�GMI data returned�The records returned from this step and the previous step should match��

Assumptions from Preliminary Design

The Object Hierarchy will be updated to map the schema of the MIDB threat tables. The Object Hierarchy will be updated to include objects which correspond to the GMI tables in the MIDB database.

Queries have been created and added to the menus. The threat queries will be updated (added to DD_MENU) to use the tables in the MIDB database.

Concerns/Questions/Issues from Preliminary Design

None

�Target Query CSC

High-Level Design Updates

The target queries will be changed from stored procedures to select queries executed upon request.

The following is the list of target queries being affect by this change:

TARGETS_DBA	- modify

TARGETS_USER	- modify

TARGETS_ALL	- delete

TARGETS_BE_NUMBER_EQ	- delete

TARGETS_COUNTRY_CODE_EQ	- delete

TARGETS_HIGH_PRECISION	- delete

TARGETS_RAAP	- delete

Database Schema

See the Target Application Interface database schema section for the TAMPS_PLANNER_TARGETS data table definition.

Control Flow

There is no control flow for this CSC.

Algorithms

There are no algorithms needed for this CSC.

Design Description

TARGETS_USER query

Purpose:	This target query retrieves all targets defined by mission planners in the TAMPS database. This query will be updated to use the TAMPS_PLANNER_TARGETS data table.

Exportability:	Public

Interactions:	TAMPS_PLANNER_TARGETS data table in TAMPS database

Current SQL:	

create procedure TARGETS_USER

@minlat float, @maxlat float, @minlon float, @maxlon float as

SELECT BEST=substring(TAMPS_TARGET.HITLIST,1,1),

IDB_GOLD=substring(TAMPS_TARGET.HITLIST,2,1),

TAMPS_TARGET.ACECAT,	TAMPS_TARGET.ADNCODE,

TAMPS_TARGET.ASSIGNED_TYPE,	TAMPS_TARGET.ATTACK_AXIS,

TAMPS_TARGET.BE_NUMBER,	TAMPS_TARGET.CATEGORY,

TAMPS_TARGET.CONFIDENCE,	TAMPS_TARGET.CONV_WPN_ALT_NAME,

TAMPS_TARGET.CONV_WPN_ALT_NUMBER,

TAMPS_TARGET.CONV_WPN_NAME,	TAMPS_TARGET.CONV_WPN_NUMBER,

TAMPS_TARGET.COUNTRY_CODE,	TAMPS_TARGET.CREATE_DATE,

TAMPS_TARGET.DATE_LAST_CHG,	TAMPS_TARGET.DESCRIPTION,

TAMPS_TARGET.ELEVATION,	TAMPS_TARGET.GRID_COORDINATES,

TAMPS_TARGET.GRID_DATUM,	TAMPS_TARGET.HARDNESS,

TAMPS_TARGET.HIGH_PRECISION,	TAMPS_TARGET.HORIZ_ACCURACY,

TAMPS_TARGET.ISLE_DGZ,	TAMPS_TARGET.LATITUDE,

TAMPS_TARGET.LAT_HEMIS,	TAMPS_TARGET.LAT_RADIANS,

TAMPS_TARGET.LENGTH,	TAMPS_TARGET.LOCATION_ERROR,

TAMPS_TARGET.LONGITUDE,	TAMPS_TARGET.LONG_AXIS,

TAMPS_TARGET.LONG_HEMIS, 	TAMPS_TARGET.LONG_RADIANS,

TAMPS_TARGET.PHOTO_CHIP_NUMBER,

TAMPS_TARGET.TARGET_ID,	TAMPS_TARGET.TARGET_NAME,

TAMPS_TARGET.TDD,	TAMPS_TARGET.TYPE,

TAMPS_TARGET.VERT_ACCURACY,	TAMPS_TARGET.WAC,

TAMPS_TARGET.WIDTH,	TAMPS_TARGET.WITHHOLD_FLAG,

DEST_PROB=str(TAMPS_TARGET.DEST_PROBABILITY, 5, 2)

from TAMPS_TARGET

where (TAMPS_TARGET.TYPE = ë2í)

and TAMPS_TARGET.HITLIST like ëB%í

and TAMPS_TARGET.LAT_RADIANS between @minlat and @maxlat

and TAMPS_TARGET.LONG_RADIANS between @minlon and @maxlon

Modified SQL:

create procedure TARGETS_USER

@minlat float, @maxlat float, @minlon float, @maxlon float as

SELECT BEST=substring(),

TAMPS_PLANNER_TARGETS.BE_NUMBER,	

TAMPS_PLANNER_TARGETS.CATEGORY,

TAMPS_PLANNER_TARGETS.COUNTRY_CODE,	

TAMPS_PLANNER_TARGETS.CREATE_DATE,

TAMPS_PLANNER_TARGETS.DATE_LAST_CHG,	

TAMPS_PLANNER_TARGETS.DESCRIPTION,

TAMPS_PLANNER_TARGETS.ELEVATION,	

TAMPS_PLANNER_TARGETS.GRID_COORDINATES,

TAMPS_PLANNER_TARGETS.GRID_DATUM,	

TAMPS_PLANNER_TARGETS.HEIGHT,

TAMPS_PLANNER_TARGETS.HORIZ_ACCURACY,

TAMPS_PLANNER_TARGETS.HORIZ_CONFIDENCE,	

TAMPS_PLANNER_TARGETS.HORIZ_ORIENT,	

TAMPS_PLANNER_TARGETS.LAT_RADIANS,

TAMPS_PLANNER_TARGETS.LENGTH,	

TAMPS_PLANNER_TARGETS.LONG_RADIANS,

TAMPS_PLANNER_TARGETS.OWNER,

TAMPS_PLANNER_TARGETS.OSUFFIX, 	

TAMPS_PLANNER_TARGETS.PHOTO_CHIP_NUMBER,

TAMPS_PLANNER_TARGETS.VERTICAL_ACCURACY,

TAMPS_PLANNER_TARGETS.VERTICAL_CONFIDENCE,

TAMPS_PLANNER_TARGETS.VERTICAL_ORIENT,

TAMPS_PLANNER_TARGETS.TARGET_ID,	

TAMPS_PLANNER_TARGETS.TARGET_NAME,

TAMPS_PLANNER_TARGETS.VERT_ACCURACY,	

TAMPS_PLANNER_TARGETS.WAC,

TAMPS_PLANNER_TARGETS.WIDTH,	

from TAMPS_PLANNER_TARGETS

where TAMPS_PLANNER_TARGETS.LAT_RADIANS between @minlat and @maxlat

and TAMPS_PLANNER_TARGETS.LONG_RADIANS between @minlon and @maxlon

TARGETS_DBA query

Purpose:	This target query retrieves all targets defined by DBA in the MIDB database. This query will be updated to use the TGT_DETAIL data table.

Exportability:	Public

Interactions:	TGT_DETAILS data table in MIDB database	

Current SQL:

create procedure TARGETS_DBA

@minlat float, @maxlat float, @minlon float, @maxlon float as

SELECT BEST=substring(TAMPS_TARGET.HITLIST,1,1),

IDB_GOLD=substring(TAMPS_TARGET.HITLIST,2,1),

TAMPS_TARGET.ACECAT,	TAMPS_TARGET.ADNCODE,

TAMPS_TARGET.ASSIGNED_TYPE,	TAMPS_TARGET.ATTACK_AXIS,

TAMPS_TARGET.BE_NUMBER,	TAMPS_TARGET.CATEGORY,

TAMPS_TARGET.CONFIDENCE,	TAMPS_TARGET.CONV_WPN_ALT_NAME,

TAMPS_TARGET.CONV_WPN_ALT_NUMBER,

TAMPS_TARGET.CONV_WPN_NAME,	TAMPS_TARGET.CONV_WPN_NUMBER,

TAMPS_TARGET.COUNTRY_CODE,	TAMPS_TARGET.CREATE_DATE,

TAMPS_TARGET.DATE_LAST_CHG,	TAMPS_TARGET.DESCRIPTION,

TAMPS_TARGET.ELEVATION,	TAMPS_TARGET.GRID_COORDINATES,

TAMPS_TARGET.GRID_DATUM,	TAMPS_TARGET.HARDNESS,

TAMPS_TARGET.HIGH_PRECISION,	TAMPS_TARGET.HORIZ_ACCURACY,

TAMPS_TARGET.ISLE_DGZ,	TAMPS_TARGET.LATITUDE,

TAMPS_TARGET.LAT_HEMIS,	TAMPS_TARGET.LAT_RADIANS,

TAMPS_TARGET.LENGTH,	TAMPS_TARGET.LOCATION_ERROR,

TAMPS_TARGET.LONGITUDE,	TAMPS_TARGET.LONG_AXIS,

TAMPS_TARGET.LONG_HEMIS, 	TAMPS_TARGET.LONG_RADIANS,

TAMPS_TARGET.PHOTO_CHIP_NUMBER,

TAMPS_TARGET.TARGET_ID,	TAMPS_TARGET.TARGET_NAME,

TAMPS_TARGET.TDD,	TAMPS_TARGET.TYPE,

TAMPS_TARGET.VERT_ACCURACY,	TAMPS_TARGET.WAC,

TAMPS_TARGET.WIDTH,	TAMPS_TARGET.WITHHOLD_FLAG,

DEST_PROB=str(TAMPS_TARGET.DEST_PROBABILITY, 5, 2)

from TAMPS_TARGET

where (TAMPS_TARGET.TYPE = ë1í)

and TAMPS_TARGET.HITLIST like ëB%í

and TAMPS_TARGET.LAT_RADIANS between @minlat and @maxlat

and TAMPS_TARGET.LONG_RADIANS between @minlon and @maxlon

Modified SQL:

create procedure TARGETS_DBA

@minlat float, @maxlat float, @minlon float, @maxlon float as

SELECT BEST=substring(TAMPS_TARGET.HITLIST,1,1),

IDB_GOLD=substring(TAMPS_TARGET.HITLIST,2,1),

TGT_DETAIL.AZIMUTH,	

TGT_DETAIL.BE_NUMBER,	

TGT_DETAIL.CATEGORY,

TGT_DETAIL.CC,	

TGT_DETAIL.COORD,

TGT_DETAIL.COORD_DATUM,	

TGT_DETAIL.DATETIME_CREATED,

TGT_DETAIL.DATETIME_LAST_CHG,	

TGT_DETAIL.ELEVATION,	

TGT_DETAIL.HARDNESS,

TGT_DETAIL.HEIGHT,

TGT_DETAIL.ILAT,

TGT_DETAIL.ILON,

TGT_DETAIL.LENGTH,		

TGT_DETAIL.OPER_STATUS,

TGT_DETAIL.RECORD_STATUS,

TGT_DETAIL.TGT_DETAIL_SK,	

TGT_DETAIL.TGT_DETAIL_NAME,

TGT_DETAIL.VERTICAL_ORIENT,	

TGT_DETAIL.WAC,

TGT_DETAIL.WIDTH,	

from TGT_DETAIL

where TGT_DETAIL.ILAT between @minlat and @maxlat

and TGT_DETAIL.ILON between @minlon and @maxlon

OH_ATTRIBUTES.BCP

Purpose:	This file is used to populate the OH_ATTRIBUTES data table in the TAMPS database. This file is automatically regenerated from the object defined in the Object Editor which will replace the TAMPS_TARGET entries with TAMPS_PLANNER_TARGETS entries.

Exportability:	Core

Interactions:	OH_ATTRIBUTE data table

DD_JOINS.BCP

Purpose:	This file is used to populate the DD_JOINS data table in the TAMPS database. This file is automatically regenerated from the object defined in the Object Editor.

Exportability:	Core

Interactions:	DD_JOINS data table

Interface Description

There are no interface design changes.

Unit Test Plans and Procedures

TARGETS_DBA query

Test Environment:

The target queries for the DBA will be tested using the DBA administration tool.

Dependencies:

TGT_DETAIL data table

select permission has been granted on data table

query has been updated

Assumptions:

None

Test Cases:

a. Initiate query when MIDB database is not available.

Verification:

a. Verify that error message is displayed indicating that MIDB database is not available.

Test Steps:

Step�Action�Expected Results�Remarks��1�Initiate TARGETS_DBA query�DBA targets are displayed within current geographic area��������

TARGETS_USER query

Test Environment:

The target queries for the user will be tested using an MPM.

Dependencies:

TAMPS_PLANNER_TARGETS data table created in database

Assumptions:

None

Test Cases:

a. Initiate query when data table is empty.

Verification:

a. Verify that no targets are displayed.

Test Steps:

Step�Action�Expected Results�Remarks��1�Create mission with user target data within specific geographic area�Mission is saved.���2�Initiate TARGETS_USER query�User targets are displayed���3�Clear target layer�Targets removed���4�Create mission with DBA targets within a specific geographic area�Mission is saved.���5�Initiate TARGETS_USER query�User targets from all missions are displayed���6�Clear target layer�Targets removed���7�Create mission with mixture of user and DBA targets within a specific geographic area�Mission is saved.���8�Initiate TARGETS_USER query�User targets from all missions are displayed����Functional Test Plans and Procedures

SOR 96-01a MIDB 2.0 Function and Unit Test Matrix���3.2.4.1 Target Data CSC, CT1098 (Ref. TAMPS 6.2 Design Notebook, 6 Aug. 1997)���

Reference�Requirements (Condensed Text)�Test Steps (Ref.)�Purify Results�Pure Coverage Percentage�Pass/Fail Criteria�Test Environment and Applicable (Function)��3.2.4.1.1�Supporting graphic display of query results.�1-44 pg 495-7 (4.2.18.7)���Satisfied requirement.�Test with Mission Planning Module; debugger in use. (mmt_featOKCallback)��3.2.4.1.2�Supporting textual display of query results.�1-44 pg 495-7 (4.2.18.7)���Satisfied requirement.�Test with Mission Planning Module; debugger in use. (mmt_featOKCallback) ��3.2.4.1.3�Supporting querying for data.�1-44 pg 495-7 (4.2.18.7)���Satisfied requirement.�Test with Mission Planning Module; debugger in use. (mmt_featOKCallback)��3.2.4.1.4�Supporting storage of target data.�1-44 pg 495-7 (4.2.18.7)���Correctly stores target data.�Test with Mission Planning Module; debugger in use. (adt_insertTargets)��3.2.4.1.5�Supporting retrieval of target data.�1-44 pg 495-7 (4.2.18.7)���Correctly retrieves target data.�Test with Mission Planning Module; debugger in use. (adt_retrieveTargets)��3.2.4.1.6�Supporting modification of target data.�1-44 pg 495-7 (4.2.18.7)���Correctly modifies target data.�Test with Mission Planning Module; debugger in use. (adt_retrieveTargets, adt_ insertTargets)��3.2.4.1.7�Defining a target.�1-44 pg 495-7 (4.2.18.7)���Verified geospatial coordinates and identifier.�Test with Mission Planning Module; debugger in use. (dat_tgData.c)��3.2.4.1.8�Capability to convert a coordinate.�1-44 pg 495-7 (4.2.18.7)���Correctly converts datum.�Test with Mission Planning Module; debugger in use. (btt_deftgt.c, btt_deftgtcb.c)��3.2.4.1.9�Performing datum conversions.�1-44 pg 495-7 (4.2.18.7)���No more than 1% computational error.�Test with Mission Planning Module; debugger in use. (btt_deftgt.c, btt_deftgtcb.c)��3.2.4.1.10�Displaying target location.�1-44 pg 495-7 (4.2.18.7)���Correct horizontal datum.�Test with Mission Planning Module; debugger in use. (btt_deftgt.c, btt_deftgtcb.c)��3.2.4.1.11�Defining target location.�1-44 pg 495-7 (4.2.18.7)���Target location coordinates to 1/100 of an arc-second.�Test with Mission Planning Module; debugger in use. (btt_deftgt.c, btt_deftgtcb.c)��3.2.4.1.12�Storing target location precision.�1-44 pg 495-7 (4.2.18.7)���Verify same precision as when target record was created.�Test with Mission Planning Module; debugger in use. (mmt_featOKCallback)��3.2.4.1.13�Retrieving target location precision.�1-44 pg 495-7 (4.2.18.7)���Verify same precision as when target record was stored.�Test with Mission Planning Module; debugger in use. (mmt_featOKCallback)��3.2.4.1.14�Displaying target location precision.�1-44 pg 495-7 (4.2.18.7)���Verify precision same as current application's selected level.�Test with Mission Planning Module; debugger in use. (btt_deftgt.c, btt_deftgtcb.c)��3.2.4.1.15�Capability to store horizontal datum.�1-44 pg 495-7 (4.2.18.7)���Correctly stores horizontal datum as defined.�Test with Mission Planning Module; debugger in use. (btt_deftgt.c, btt_deftgtcb.c)��3.2.4.1.16�Capability to retrieve horizontal datum.�1-44 pg 495-7 (4.2.18.7)���Correctly retrieves horizontal datum as defined.�Test with Mission Planning Module; debugger in use. (mmt_featOKCallback)��3.2.4.1.17�Capability to store target horizontal location accuracy.�1-44 pg 495-7 (4.2.18.7)���Correctly stores accuracy and unit of measurement.�Test with Mission Planning Module; debugger in use. (btt_deftgt.c, btt_deftgtcb.c)��3.2.4.1.18�Capability to retrieve target horizontal location accuracy.�1-44 pg 495-7 (4.2.18.7)���Correctly retrieves accuracy and unit of measurement.�Test with Mission Planning Module; debugger in use. (mmt_featOKCallback)��3.2.4.1.19�Capability to store target vertical location accuracy.�1-44 pg 495-7 (4.2.18.7)���Correctly stores accuracy and unit of measurement.�Test with Mission Planning Module; debugger in use. (btt_deftgt.c, btt_deftgtcb.c)��3.2.4.1.20�Capability to retrieve target vertical location accuracy.�1-44 pg 495-7 (4.2.18.7)���Correctly retrieves accuracy and unit of measurement.�Test with Mission Planning Module; debugger in use. (mmt_featOKCallback)��3.2.4.1.21�Capability to display target horizontal location accuracy.�1-44 pg 495-7 (4.2.18.7)���Correctly displays accuracy and unit of measurement.�Test with Mission Planning Module; debugger in use. (btt_deftgt.c, btt_deftgtcb.c)��3.2.4.1.22�Capability to display target vertical location accuracy.�1-44 pg 495-7 (4.2.18.7)���Correctly displays accuracy and unit of measurement.�Test with Mission Planning Module; debugger in use. (btt_deftgt.c, btt_deftgtcb.c)��3.2.4.1.23�Capability to store target confidence data.�1-44 pg 495-7 (4.2.18.7)���Correctly stores target's confidence data.�Test with Mission Planning Module; debugger in use. (btt_deftgt.c, btt_deftgtcb.c)��3.2.4.1.24�Capability to retrieve target confidence data.�1-44 pg 495-7 (4.2.18.7)���Correctly retrieves target's confidence data.�Test with Mission Planning Module; debugger in use. (adt_retrieveTargets)��3.2.4.1.25�Capability to display target confidence data.�1-44 pg 495-7 (4.2.18.7)���Correctly displays target's confidence data.�Test with Mission Planning Module; debugger in use. (btt_deftgt.c, btt_deftgtcb.c)��3.2.4.1.26�Storing target data from JTIM Core Extension.�1-44 pg 495-7 (4.2.18.7)���Correctly stores data.�Test with Mission Planning Module; debugger in use. (adt_insertTargets)��3.2.4.1.27�Retrieving target data from JTIM Core Extension.�1-44 pg 495-7 (4.2.18.7)���Correctly retrieves data.�Test with Mission Planning Module; debugger in use. (adt_retrieveTargets)��3.2.4.1.28�Displaying target data from JTIM Core Extension.�1-44 pg 495-7 (4.2.18.7)���Correctly displays data.�Test with Mission Planning Module; debugger in use. (btt_deftgt.c, btt_deftgtcb.c)��3.2.4.1.29�Differentiate TAMPS targets from other target records.�1-44 pg 495-7 (4.2.18.7)���Satisfied requirement.�Test with Mission Planning Module; debugger in use. (btt_deftgt.c, btt_deftgtcb.c)��3.2.4.1.30�Differentiate TAMPS targets from TAMPS DBA targets.�1-44 pg 495-7 (4.2.18.7)���Satisfied requirement.�Test with Mission Planning Module; debugger in use. (btt_deftgt.c, btt_deftgtcb.c)��3.2.4.1.31�Capability to associate targets and missions.�1-44 pg 495-7 (4.2.18.7)���Satisfied requirement.�Test with Mission Planning Module; debugger in use. (btt_deftgt.c, btt_deftgtcb.c)��

�Assumptions from Preliminary Design

The Object Hierarchy will be updated to map the schema of the MIDB target tables. The Object Hierarchy will be updated to include objects for TGT_DETAIL and TAMPS_PLANNER_TARGETS.

Queries have been created and added to the menus. The TARGETS_DBA query will be updated to use the TGT_DETAIL table in MIDB database and the TARGETS_USER query will be updated to use the TAMPS_PLANNER_TARGETS table in the TAMPS database.

Concerns/Questions/Issues from Preliminary Design

How are the JTIM targets to be differentiated from TAMPS targets ? Is there a condition setting to know the originator of the target data? and what field is it?

�Data Removal CSC

High-Level Design Updates

There are no updates to the high level design for this CSC.

Database Schema

The data table DD_DATASETS will be modified and schema changes are described in the Data Archive CSC.

Control Flow

There are no control flow changes for this CSC.

Algorithms

There are no algorithms for this CSC.

Design Description

dut_drmMMI.c

Purpose:	This file creates the MMI for the dataset removal tool.

Exportability:	Protected

Interactions:	utt_createDBMenu

Public Operations:	None

Private Operations:	dut_createDatasetRemovalDialog (Widget, char* char*)

Private Members:	None

Public Operation PDL:	None

Private Operation PDL:

/*

** This function creates the dataset removal dialog.

*/

ST_PROTECTED Widget

dut_createDatasetRemovalDialog(Widget toplevel, char *user, char *pass)

{

	char	whereClause[20];

	< ... existing code ... >

	// set whereClause = ìREMOVE_OK = ëYESíî

	/*

** add where clause as last parameter when creating the list of available datasets that

	** have remove privilege

	*/

	// dmt_menu = utt_createDBMenu (...., whereClause)

	< ... existing code ... >

}

Interface Description

There are no interface design changes for this CSC.

Unit Test Plans and Procedures

dut_drmMMI.c

Test Environment:

This CSC will be tested by executing the DBA administration tool.

Dependencies:

drmtool executable

DD_DATASETS schema has been updated

row has been added for MIDB database

Assumptions:

None

Test Cases:

Bring up data removal tool.

Verification:

Verify DBA can not remove the MIDB dataset.

Test Steps:

Step�Action�Expected Results�Remarks��1�Bring up DBA administration tool����2�Select Utilities->Data Removal

-> Dataset�Dataset removal tool is started - the MIDB dataset is not in the list of datasets that can be removed ���

Assumptions from Preliminary Design

Data removal of the MIDB is not allowed in a JMCIS environment due to the replication issue. Still true.

Concerns/Questions/Issues from Preliminary Design

should we allow dataset removal of the MIDB dataset? No, removing of the MIDB dataset will not be allowed.

does dataset removal remove the data from the JMCIS server MIDB database? Since there is no capability to remove the MIDB dataset, this is not an issue.

�Output Reports CSC

High-Level Design Updates

The target report will retrieve the data from the TAMPS_PLANNER_TARGETS data table. The report will contain the following information about the target:

	be_number	horizontal accuracy	name

	category	horizontal confidence	unit id

	country code	horizontal orientation	vertical accuracy

	datum	latitude	vertical confidence

	description	latitude hemisphere	vertical orientation

	elevation	length	width

	hardness	longitude

	height	longitude hemisphere

Since the Order of Battle report is being deleted, the prl_filter_obrpt.c source file is no longer needed.

Database Schema

There are no database schema changes for this CSC.

Control Flow

There is no control flow for this CSC.

Algorithms

There are no algorithms for this CSC.

Design Description

prl_target_sql.c

Purpose:	This unit provides a function to retrieve records from the TAMPS_PLANNER_TARGETS data table.

Exportability:	Core

Interactions:	No new interactions.

	

Public Operations:	None

Private Operations:	prl_target_sql (REPORT_STRUCT *tgt_query)

Private Members:	

static char SELECT_string []

This attribute defines the columns to be selected from the TAMPS_PLANNER_TARGETS data table for the select SQL statement. This attribute is being modified from using the TAMPS_TARGET data table.

static char FROM_string []

This attribute represents the table name for the select SQL statement. This string will use the TAMPS_PLANNER_TARGETS data table instead of TAMPS_TARGET.

static char LATITUDE_string []

This attribute represents the latitude bounding values for the SQL select statement. This string will use the TAMPS_PLANNER_TARGETS data table instead of TAMPS_TARGET.

static char LONGITUDE_string []

This attribute represents the longitude bounding values for the SQL select statement. This string will use the TAMPS_PLANNER_TARGETS data table instead of TAMPS_TARGET.

static char AOI_LL_LAT_string []

This attribute represents the target latitude value selected in the TAMPS_OP_AREA.

This string will use the TAMPS_PLANNER_TARGETS data table instead of TAMPS_TARGET.

static char AOI_LL_LONG_string []

This attribute represents the target longitude value selected in the TAMPS_OP_AREA.

This string will use the TAMPS_PLANNER_TARGETS data table instead of TAMPS_TARGET.

Public Operation PDL:	None

Private Operation PDL:

/*

** This function generates an SQL statement to retrieve records from the

** TAMPS_PLANNER_TARGETS data table.

*/

ST_PROTECTED char*

prl_target_sql (REPORT_STRUCT *tgt_query)

{

	double lat_min = 0.0;

	double lat_max = 0.0;

 	double long_min = 0.0;

	double long_max = 0.0;

	< ... existing code ... >

	/* generate sql statement when latitude/longitude min/max values are not null */

	if (strcmp(tgt_query->lat_min, ì\0î) && strcmp(tgt_query->lat_max, ì\0î) &&

	 strcmp(tgt_query->lon_min, ì\0î) && strcmp(tgt_query->lon_max, ì\0î)) {

	//	convert tgt_query->lat_min to latitude radians value, save in lat_min

	//	convert tgt_query->lon_min to longitude radians value, save in long_min

	//	convert tgt_query->lat_max to latitude radians value, save in lat_max

	//	convert tgt_query->lat_max to longitude radians value, save in long_max

		< ... existing code to build sql statement ...>

		// command_string = AND_string, LATITUDE_string,

		//	character string for lat_min, character string for lat_max,

		// 	AND_string, LONGITUDE_string,

		//	character string for lon_min, character string for lon_max

	}

	< ... existing code ... >

}

prl_target_column_array.h

Purpose:	This unit defines the heading data for the target report.

Exportability:	Core

Interactions:	None

	

Public Operations:	None

Private Operations:	None

Private Members:	

char*	target_column_array

This attribute defines the report column headings in mixed case.

char *	target_report_name_array

This attribute defines the report column headings in upper case.

char *	target_sort_name_array

This attribute defines how the data on the report is to be sorted.

char *	target_size_array

This attribute defines the character string size of the fields on the report.

int	target_type_arrary

This attribute defines the data type assigned to the fields on the report.

Public Operation PDL:	None

Private Operation PDL:

/*

** convert each data array to map to the TAMPS_PLANNER_TARGETS fields

*/

char *target_column_array [PRL_MAX_TARG_WEAP]

char *target_report_name_array [PRL_MAX_TARG_WEAP]

char *target_sort_name_array [PRL_MAX_TARG_WEAP]

char *target_size_array [PRL_MAX_TARG_WEAP]

int 	target_type_array [PRL_MAX_TARG_WEAP]

prl_format_target_land.c

Purpose:	This unit provides a function to create a target report defined with landscape page formatting.

Exportability:	Core

Interactions:	None.

	

Public Operations:	None

Private Operations:	prl_format_targrpt_land (LIST *, int *)

Private Members:	None

Public Operation PDL:	None

Private Operation PDL:

/*

** This function formats the target report in a landscape page orientation

*/

ST_PROTECTED char*

prl_format_targrpt_land (LIST *head_prt, int *size_array)

{

	< ... existing code for page formating ... >

	// update report headings to map to TAMPS_PLANNER_TARGETS column values

}	

prl_format_target_port.c

Purpose:	This unit provides a function to create a target report defined with portrait page formatting.

Exportability:	Core

Interactions:	None

	

Public Operations:	None

Private Operations:	prl_format_targrpt_port (LIST *, int *)

Private Members:	None

Public Operation PDL:	None

Private Operation PDL:

/*

** This function formats the target report in a portrait page orientation.

*/

ST_PROTECTED char*

prl_format_targrpt_port (LIST *head_prt, int *size_array)

{

	< ... existing code for page formating ... >

	// update report headings to map to TAMPS_PLANNER_TARGETS column values

}

prl_select_report.c

Purpose:	This unit provides the callback routines for the Output->Report MMI.

Exportability:	Core

Interactions:	None

	

Public Operations:	None

Private Operations:	prl_select_callback (Widget, caddr_t, caddr_t)

Private Members:	None

Public Operation PDL:	None

Private Operation PDL:

/*

** This function is the callback when a selection is made on the MMI.

*/

ST_PROTECTED char*

prl_select_callback (Widget widget, caddr_t client_data, caddr_t call_data)

{

	< ... existing code ... >

	// remove selection for Order of Battle report

}

/*

** This function is the callback when a report selection is made on the MMI.

*/

ST_PROTECTED char*

prl_report_callback (Widget widget, caddr_t client_data, caddr_t call_data)

{

	< ... existing code ... >

	// remove selection for Order of Battle report

}

	

Interface Description

There are no interface changes for this CSC.

Unit Test Plans and Procedures

Target Report

Test Envrionment:

The target report will be tested by using an MPM.

Dependencies:

TAMPS_PLANNER_TARGETS data table has been created

User targets have been defined

prl_target_sql.c

prl_format_target_land.c

prl_foramt_target_port.c

Assumptions:

None

Test Cases:

Select Target Report when there are no targets defined in the TAMPS_PLANNER_TARGETS data table.

Verification:

Verify that the report shows that the data table is empty.

Test Steps:

Step�Action�Expected Results�Remarks��1�Bring up MPM����2�Open mission new mission�New mission is initialized���3�Select Output->Reports�Report dialog is displayed���4�Select Target Report����5�Specify bounding area����6�Generate portrait format�Portrait target report where targets are within bounding area���7�Generate landscape format�Landscape target report where targets are within bounding area���

Assumptions from Preliminary Design

None

Concerns/Questions/Issues from Preliminary Design

None

�Utilities Menu CSC

High-Level Design Updates

The “Remote Update” and “IDB” submenu utilities will be removed from the ddt_mmi

Utilities Menu. Unless used elsewhere, all callback functions supporting these menus will be

removed. A “MIDB Tools” submenu will be added to the Utilities Menu. GOTS software will

be provided to support this new submenu’s utilities.

Database Schema

Control Flow

Algorithms

Design Description

The removal of the “Remote Update” and “IDB” submenus leaves several functions

obsolete. Below are the deletions and modifications required for this change. Rapid

Application of Air Power (RAAP) functions will be removed as part of the “Remote

Update” submenu removal. However, RAAP is obsolete for TAMPS 6.2 in whole so RAAP

functionality outside the scope of this CSC will also be removed. Code for the Utilities MIDB

Tools menu functions is provided by the government and is considered GOTS software. This

software is supported elswhere. Listed here are the modifications required to support the

Utilities MIDB Tools pulldown menu as part of the ddt_mmi Utilities Menu. Command lines

for this code are provided by the government. The callback and execution procedures for MIDB Tools require one new file containing two new functions. One function will serve as the MIDB callback and the other will create and exectute the command string.

/tamps/src/libs/dbase/dut/dut_runMidb.c

• This new file will contain two new functions, dut_midbCB and dut_runMidbCmd.

 dut_midbCB is the callback function for the MIDB Tools menu. It will obtain the MIDB

 comand string and midb_update flag; some of the MIDB commands require update ability

 and must access the MIDB server. dut_midbCB will check that the user has execute privalege

 for the function and if so will execute dut_runMidbCmd passing it the correct command

 string and midb_update flag. dut_runMidbCmd will set all MIDB environment variables by

 sourcing the SetMidbEnv.sh file. It well then check the midb_update flag to see if this

 function requires update access to the MIDB server. If the flag is TRUE then the DSQUERY

 environment variable will be set to the MIDB server name and the command string will be

 executed, else only the command string will be executed. The two new functions will look

 something like the following:

 dut_midbCB(Widget w, XtPointer client, XtPointer call)

 {

 struct midb * prt = (struct midb *) client

 /* check user privalege */

 if zrt_userHasPrivActive((&ptr_current _session->user,

 ZRT_DBA_NETWORK_DBA_PRIV) != ST_SUCCESS)

 display error msg “No pivalege for this function”

 else

 /* execute the dut_runMidbCmd */

 dut_runMidbCmd(ptr->run, ptr->flag)

 }

 dut_runMidbCmd(const char *cmd, Boolean midb_update)

 {

 cmd_str = strdup(“csh -c ‘source $MIDB_HOME/site_params/SetMidbEnv.sh;”);

 /* check if edit to MIDB is required */

 if (midb_update) {

 cmd_str = ult_strcat(cmd_str, “setenv DSQUERY “);

 cmd_str = ult_strcat(cmd_str, getMidbUpdateServer());

 cmd_str = ult_strcat(cmd_str, “;”);

 }

 cmd_str = ult_strcat(cmd_str, cmd);

 cmd_str = ult_strcat(cmd_str, “‘“);

 system(cmd_str);

 free(cmd_str);

 }

/tamps/src/libs/dbase/include/dut_priv_proto.h

• add the following function prototypes to this file:

 ST_PROTECTED void dut_midbCB(Widget, XtPointer, XtPointer)

 ST_PROTECTED void dut_runMidbCmd(const char *, Boolean)

/tamps/src/libs/dbase/include/dut_structs.h

• add the following structure definition to this file to support the callback command

 parameters:

 struct dut_midb_run_info {

 char * cmd;

 Boolean flag;

 }

/tamps/src/libs/dbase/dmt/dmt_menu.c:

• Remove all “Remote Update” and “IDB” pulldowns, buttons, and callbacks from

 the Utilities Pulldown section. This removes “dot”, raap”, “mwl”, and “dut” function

 calls.

• Remove “#include dot_priv_proto.h” reference and all “dot” function calls as part of

 “Remote Update” menu deletion.

• Remove ALL raap prototypes, definitions, function calls, variables, and if cases. This

 includes raap usage within the Display Pulldown section.

• Remove dut_init_indices, dut_init_ext, and dut_init_thf callbacks as part of the “IDB”

 menu deletion.

• Remove mwl_DBAEnvironmentCB callback and “#include mwl_prot_proto.h” as part of

 the “Remote Update” menu deletion.

• Add the follwing static struct lines near the top of dmt_menu.c

static struct midb_run_info query_info = {“iqu”, True};

static struct midb_run_info counts_info = {“counts”, False};

static struct midb_run_info cat_info = {“refdb cat”, False};

static struct midb_run_info conv_info = {“convert”, False};

static struct midb_run_info eqp_info = {“ refdb eqp”, False};

static struct midb_run_info cty_info = {“refdb cty”, False};

static struct midb_run_info genref_info = {“reflib gen”, False};

static struct midb_run_info dex_info = {“Ida.functions”, True};

static struct midb_run_info dbautil_info = {“DBA.pl”, True};

static struct midb_run_info chgusrdef_info = {“changedef”, False};

• Add the following MIDB Tools pulldown, submenu buttons, and callbacks to the end of the

 Utilities pulldown section in this file.

(void) umt_add_pulldown(*table,

 DBA_UTIL_MIDB,

 DB_UTILITIES,

 "MIDB Tools", 'M', NO);

 (void) umt_add_pulldown(*table,

 DBA_UTIL_MIDB_DATABASE,

 DBA_UTIL_MIDB,

 "Database", 'D', NO);

 (void) umt_add_button (*table,

 DBA_UTIL_MIDB_DATABASE_QUERY,

 DBA_UTIL_MIDB_DATABASE,

 "Query ...",

 NULL, 'Q', NO);

 (void) umt_add_callback (*table,

 DBA_UTIL_MIDB_DATABASE_QUERY_CALLBACK,

 DBA_UTIL_MIDB_DATABASE_QUERY,

 dut_midbCB, (XtPointer) &query_info);

 (void) umt_add_button (*table,

 DBA_UTIL_MIDB_DATABASE_COUNTS,

 DBA_UTIL_MIDB_DATABASE,

 "Counts ...",

 NULL, 'C', NO);

 (void) umt_add_callback (*table,

 DBA_UTIL_MIDB_DATABASE_COUNTS_CALLBACK,

 DBA_UTIL_MIDB_DATABASE_COUNTS,

 dut_midbCB, (XtPointer) &counts_info);

 (void) umt_add_pulldown(*table,

 DBA_UTIL_MIDB_REFERENCE,

 DBA_UTIL_MIDB,

 "Reference", 'R', NO);

 (void) umt_add_button (*table,

 DBA_UTIL_MIDB_REFERENCE_CAT_CODES,

 DBA_UTIL_MIDB_REFERENCE,

 "Category Codes ...",

 NULL, 'C', NO);

 (void) umt_add_callback (*table,

 DBA_UTIL_MIDB_REFERENCE_CAT_CODES_CALLBACK,

 DBA_UTIL_MIDB_REFERENCE_CAT_CODES,

 dut_midbCB, (XtPointer) &cat_info);

 (void) umt_add_button (*table,

 DBA_UTIL_MIDB_REFERENCE_CONVERSION,

 DBA_UTIL_MIDB_REFERENCE,

 "Conversion ...",

 NULL, 'v', NO);

 (void) umt_add_callback (*table,

 DBA_UTIL_MIDB_REFERENCE_CONVERSION_CALLBACK,

 DBA_UTIL_MIDB_REFERENCE_CONVERSION,

 dut_midbCB, (XtPointer) &conv_info);

 (void) umt_add_button (*table,

 DBA_UTIL_MIDB_REFERENCE_EQUIP_CODES,

 DBA_UTIL_MIDB_REFERENCE,

 "Equipment ...",

 NULL, 'E', NO);

 (void) umt_add_callback (*table,

 DBA_UTIL_MIDB_REFERENCE_EQUIP_CODES_CALLBACK,

 DBA_UTIL_MIDB_REFERENCE_EQUIP_CODES,

 dut_midbCB,(XtPointer) &eqp_info);

 (void) umt_add_button (*table,

 DBA_UTIL_MIDB_REFERENCE_COUNTRY_CODES,

 DBA_UTIL_MIDB_REFERENCE,

 "Country Codes ...",

 NULL, 't', NO);

 (void) umt_add_callback (*table,

 DBA_UTIL_MIDB_REFERENCE_COUNTRY_CODES_CALLBACK,

 DBA_UTIL_MIDB_REFERENCE_COUNTRY_CODES,

 dut_midbCB, (XtPointer) &cty_info);

 (void) umt_add_button (*table,

 DBA_UTIL_MIDB_REFERENCE_GEN_REFERENCE,

 DBA_UTIL_MIDB_REFERENCE,

 "General Reference ...",

 NULL, 'G', NO);

 (void) umt_add_callback (*table,

 DBA_UTIL_MIDB_REFERENCE_GEN_REFERENCE_CALLBACK,

 DBA_UTIL_MIDB_REFERENCE_GEN_REFERENCE,

 dut_midbCB, (XtPointer) &genref_info);

 (void) umt_add_pulldown(*table,

 DBA_UTIL_MIDB_DBADM,

 DBA_UTIL_MIDB,

 "Database Admin", 'A', NO);

 (void) umt_add_button (*table,

 DBA_UTIL_MIDB_DBADM_DEX,

 DBA_UTIL_MIDB_DBADM,

 "Data Exchange ...",

 NULL, 'x', NO);

 (void) umt_add_callback (*table,

 DBA_UTIL_MIDB_DBADM_DEX_CALLBACK,

 DBA_UTIL_MIDB_DBADM_DEX,

 dut_midbCB, (XtPointer) &dex_info);

 (void) umt_add_button (*table,

 DBA_UTIL_MIDB_DBADM_DBA_UTILITY,

 DBA_UTIL_MIDB_DBADM,

 "DBA Utility ...",

 NULL, 'U', NO);

 (void) umt_add_callback (*table,

 DBA_UTIL_MIDB_DBADM_DBA_UTILITY_CALLBACK,

 DBA_UTIL_MIDB_DBADM_DBA_UTILITY,

 dut_midbCB, (XtPointer) &dbautil_info);

 (void) umt_add_button (*table,

 DBA_UTIL_MIDB_CHG_USR_DEFAULTS,

 DBA_UTIL_MIDB,

 "Change User Defaults ...",

 NULL, 'D', NO);

 (void) umt_add_callback (*table,

 DBA_UTIL_MIDB_CHG_USR_DEFAULTS_CALLBACK,

 DBA_UTIL_MIDB_CHG_USR_DEFAULTS,

 dut_midbCB, (XtPointer) &chgusrdef_info);

 return;

}

/tamps/src/libs/dbase:

• Remove the dot directory and all of its files.

/tamps/src/libs/dbase/include:

• Remove dot_obrep_struct.h, dot_priv_proto.h, dot_request_defines.h, and

 dot_request_struct.h files.

/tamps/include/dbase:

• Remove dot_defines.h, dot_proto.h, and dot_struct.h files.

/tamps/src/libs/dbase/dut:

• Remove dut_idb.c file

/tamps/src/libs/dbase/include/dut_priv_proto.h:

• Remove dut_init_indices, dut_init_ext, and dut_init_thf prototypes.

/tamps/include/dbase/dut_scr.h

• Remove DUT_INITTHF, DUT_INITINDX, and DUT_INITEXT #defines.

/tamps/src/libs/maps/mwl:

• Remove mwl_DBAEnvironmentCB.c file.

/tamps/include_prot/maps/mwl_prot_proto.h:

• Remove mwl_DBAEnvironmentCB prototype.

/tamps/src/libs/system/sit/sit_defaultMenu.c:

• Remove all “raap” and “sit_raap” prototypes, definitions, function calls, variables, and if

 cases.

/tamps/src/libs/system/include/sit_priv_proto.h:

• Remove sit_raap_activateImageryDialog prototype.

/tamps/include/system/sit/sit_default_defines.h:

• Remove “MPM_DISPLAY_RAAPIMAGERY_*” #defines.

/tamps/include/help/thc_defines.h:

• Remove “THC_RAAP_*” #defines.

/tamps/include_prot/dbase/dmt_default_defines.h:

• Remove the following #defines:

 “DBA_DISPLAY_RAAPIMAGERY_*”

 “DBA_UTIL_REMOTE_UPDATE_*”

 “DBA_UTIL_TIDB_*”

 “DBA_UTIL_HITLIST”

 “DBA_UTIL_HITLIST_CALLBACK”

• Add the following defines to the Utilities Pulldown section to support the MIDB Tools

 submenu additions within dmt_menu.c:

 #define DBA_UTIL_MIDB					(DBA_THREAT_TOTAL+28)

 #define DBA_UTIL_MIDB_DATABASE			(DBA_THREAT_TOTAL+29)

 #define DBA_UTIL_MIDB_DATABASE_QUERY		(DBA_THREAT_TOTAL+31)

 #define DBA_UTIL_MIDB_DATABASE_QUERY_CALLBACK			(. . .)

 #define DBA_UTIL_MIDB_DATABASE_COUNTS

 #define DBA_UTIL_MIDB_DATABASE_COUNTS_CALLBACK

 #define DBA_UTIL_MIDB_REFERENCE

 #define DBA_UTIL_MIDB_REFERENCE_CAT_CODES

 #define DBA_UTIL_MIDB_REFERENCE_CAT_CODES_CALLBACK

 #define DBA_UTIL_MIDB_REFERENCE_CONVERSION

 #define DBA_UTIL_MIDB_REFERENCE_CONVERSION_CALLBACK

 #define DBA_UTIL_MIDB_REFERENCE_EQUIP_CODES

 #define DBA_UTIL_MIDB_REFERENCE_EQUIP_CODES_CALLBACK

 #define DBA_UTIL_MIDB_REFERENCE_COUNTRY_CODES

 #define DBA_UTIL_MIDB_REFERENCE_COUNTRY_CODES_CALLBACK

 #define DBA_UTIL_MIDB_REFERENCE_GEN_REFERENCE

 #define DBA_UTIL_MIDB_REFERENCE_GEN_REFERENCE_CALLBACK

 #define DBA_UTIL_MIDB_DBADM

 #define DBA_UTIL_MIDB_DBADM_DEX

 #define DBA_UTIL_MIDB_DBADM_DEX_CALLBACK

 #define DBA_UTIL_MIDB_DBADM_DBA_UTILITY

 #define DBA_UTIL_MIDB_DBADM_DBA_UTILITY_CALLBACK

 #define DBA_UTIL_MIDB_CHG_USR_DEFAULTS

 #define DBA_UTIL_MIDB_CHG_USR_DEFAULTS_CALLBACK

 #define DBA_UTILITIES_TOTAL				(DBA_THREAT_TOTAL+53)

Interface Description

Both Remote Update and IDB will no longer appear under the DDT_MMI Utilities menu.

The new MIDB Tools submenu and menus will appear as follows:

MIDB Tools ->

 Database ->

 Query ...

 Counts ...

 Reference ->

 Category Codes ...

 Conversion ...

 Equipment ...

 Country Codes ...

 General Reference ...

 Database Admin ->

 Data Exchange ...

 DBA Utility ...

 Change User Defaults ...

Unit Test Plans and Procedures

�Function Test Plans and Procedures

SOR 96-01a MIDB 2.0 Function Test Matrix���3.2.6.2 Database Utilities CSC, CT2825, CT2990, CT3020 (Ref. TAMPS 6.2 Design Notebook, 6 Aug. 1997)����

Reference�Requirements (Condensed Text)�Test Steps (Ref.)�Purify Results�Pure Coverage Percentage�Pass/Fail Criteria�Test Environment and Applicable (Function)��3.2.6.2.1�Supporting backup of tactical updates made to GMI data in local MIDB.�1-12 pg 309-10 (4.2.11.7.5)���Verification requirement (4.2.11.7.4).�TAMPS system with MIDB loaded. Privileged user.��3.2.6.2.2�Supporting restoration of tactical updates made to GMI data in local MIDB GMI.�1-12 pg 309-10 (4.2.11.7.5)���Verification requirement (4.2.11.7.4).�TAMPS system with MIDB loaded. Privileged user.��3.2.6.2.3�Sizing information on GMI data in MIDB.����Satisfied requirement.���3.2.6.2.4�Sizing information on target data in MIDB GMI.����Satisfied requirement.���3.2.6.2.5�Sizing information of reference data in MIDB.����Satisfied requirement.���3.2.6.2.6�Supporting deletion of GMI data from MIDB.�1-12 pg 309-10 (4.2.11.7.5)���Verification requirement (4.2.11.7.4).�TAMPS system with MIDB loaded. Privileged user.��3.2.6.2.7�Supporting deletion of target data from MIDB.�1-12 pg 309-10 (4.2.11.7.5)���Verification requirement (4.2.11.7.4).�TAMPS system with MIDB loaded. Privileged user.��3.2.6.2.8�Deleted�������

��Application Interface CSC

High-Level Design Updates

The dit_deleteHandle function has been changed to use only one input parameter, UZT_HANDLE, and the return parameter has been changed from DIT_STATUS to void. It was determined that the enumeration parameter dit_midbDataType would not be needed.

Another delete handle capability has been added, dit_deleteHandleData, which has one input parameter, LIST * pointer and returns void *. This function provides the capability to free the memory allocated by the dit_getMidbData and dit_getTargets functions. The input parameter to this delete function is the output LIST pointer from the get data function.

The dit_createMidbData function has changed to include another input parameter. The new parameter is used to return the surrogate key value of the newly created MIDB record.

A complete set of public defines has been created to represent the field names and character length of each field used in the GMI tables in the MIDB database. The character length value is defined in terms of the database column size and 1 more character is added for the null terminator in character strings.

The public type DIT_STATUS was modified to define more error condition values.

The public type dit_midbDataType has been expanded to define new individual tables and selected views.

Control Flow

Get MIDB Data

The dit_getMidbData control flow shows that the function connects to the database, determines the type of data to be retrieved, builds an sql query and returns the data found. If no records match the query, a status of DIT_NO_DATA_FOUND is returned and the returnData parameter is a null list. At least one value must be defined in the selectHandle, otherwise a status of DIT_MISSING DATA_ERROR is returned.

The following error messages can occur:

DIT_INVALID_DATA_OBJECT

DIT_MIDB_NOT_INSTALLED

DIT_NULL_HANDLE

DIT_NO_DATA_FOUND

DIT_QUERY_ERROR

�

�

�

Create/Modify MIDB Data

The dit_createMidbData and dit_modifyMidbData control flow shows that these functions connect to the database, determine the type of data chosen, builds an sql modification statement, executes the sql statement and returns status. The control flow for the create and modify are exactly the same, except for building the correct sql statement and the return status type.

The following error messages can occur:

DIT_INVALID_DATA_OBJECT

DIT_MIDB_NOT_INSTALLED

DIT_NULL_HANDLE

DIT_CREATE_DATA_ERROR (for create)

DIT_MODIFY_DATA_ERROR (for modify)

�

�

Algorithms

Data Flows

The data flows which describe access to the MIDB database. Each flow identifies the data passed in terms to retrieving or manipulating equipment data. The same data flow for get, create and modify would be used when requesting to access the other MIDB objects (facility, unit, ...)

Get MIDB Data

The dit_getMidbData interface is used to retrieve data from the MIDB database. The type of data to be returned is defined by the dit_midbDataTypes function parameter. The column values to be returned from the MIDB object is defined in the query columns in the first UZT_HANDLE function parameter. The limits on what data is to be returned is defined in the query conditions in the second UZT_HANDLE function parameter. The data found that matches the query conditions is returned in a linked list, where each item in the list is a UZT_HANDLE that corresponds to a record in the MIDB object. Completion status of the retrieve is also returned.

 An sql select statement is generated to retrieve record(s) from an MIDB object defined by the column and column values using both UZT_HANDLEs.

�

Create MIDB Data

The dit_createMidbData interface is used to add a record to an object in the MIDB database. The type of data to be added is defined by the dit_midbDataTypes function parameter. The values of the record to be added for the MIDB object is defined in UZT_HANDLE function parameter. The surrogate key of the new record and the completion status of the create are returned.

An sql insert statement is generated to add a record to an MIDB object defined from the column and column values using the UZT_HANDLE.

�

Modify MIDB Data

The dit_modifyMidbData interface is used to modify the values of an object in the MIDB database. The type of data to be modified is defined by the dit_midbDataTypes function parameter. The values to be changed in the record of an MIDB object are defined in the UZT_HANDLE function parameter. The surrogate key of the record to modify is also provided by the calling function. The completion status of the modify operation is returned.

An sql update statement is generated to modify a record of an MIDB object defined by the column and column values using the UZT_HANDLE.

�

Design Description

dit_createHandle

Purpose:	This function provides the capability to define an object which can be used to request or set values which will be used in sql queries/edits against the MIDB schema objects. The input parameters define the type of handle to be created. The dataType parameter specifies the MIDB schema object to be associated with the handle object. The itemType parameter specifies whether the handle object will be used to identify the parts of the sql statement. When itemType is set to DIT_COLUMN_FIELDS this represents the select clause which identifies what columns to retrieve. When itemType is set to DIT_DATA_FIELDS this represents the where clause which identifies what columns are used to limit the data retrieved. Also, a handle of this type is used in the edit (create or modify) DIT functions. If a handle could not be created, then a NULL value is returned by the function call.

Exportability: 	Public

Interactions:	uzt_createHandle

	uzt_coreSetValues

Public Operations:	UZT_HANDLE 	dit_createHandle

		(enum dit_midbDataType dataType,

		 enum dit_itemType itemType)

Private Operations:

UZT_HANDLE	dit_createElintSelectHandle ()

UZT_HANDLE	dit_createElintDataHandle ()

UZT_HANDLE	dit_createEqpSelectHandle (enum dit_midbDataType dataType)

UZT_HANDLE	dit_createEqpDataHandle (enum dit_midbDataType dataType)

UZT_HANDLE	dit_createEqpIdxSelectHandle (enum dit_midbDataType dataType)

UZT_HANDLE	dit_createEqpIdxDataHandle (enum dit_midbDataType dataType)

UZT_HANDLE	dit_createFacSelectHandle (enum dit_midbDataType dataType)

UZT_HANDLE	dit_createFacDataHandle (enum dit_midbDataType dataType)

UZT_HANDLE	dit_createObsSelectHandle (enum dit_midbDataType dataType)

UZT_HANDLE	dit_createObsDataHandle (enum dit_midbDataType dataType

UZT_HANDLE	dit_createObsElnotSelectHandle ()

UZT_HANDLE	dit_createObsElnotDataHandle ()

UZT_HANDLE	dit_createObsParSelectHandle ()

UZT_HANDLE	dit_createObsParDataHandle ()

UZT_HANDLE	dit_createObsReportSelectHandle ()

UZT_HANDLE	dit_createObsReportDataHandle ()

UZT_HANDLE	dit_createRmkSelectHandle (enum dit_midbDataType dataType)

UZT_HANDLE	dit_createRmkDataHandle (enum dit_midbDataType dataType)

UZT_HANDLE	dit_createTgtSelectHandle (enum dit_midbDataType dataType)

UZT_HANDLE	dit_createTgtDataHandle (enum dit_midbDataType dataType)

UZT_HANDLE	dit_createTrackSelectHandle (enum dit_midbDataType dataType)

UZT_HANDLE	dit_createTrackDataHandle (enum dit_midbDataType dataType)

UZT_HANDLE	dit_createTrackElintSelectHandle ()

UZT_HANDLE	dit_createTrackElintDataHandle ()

UZT_HANDLE	dit_createTrackLocSelectHandle ()

UZT_HANDLE	dit_createTrackLocDataHandle ()

UZT_HANDLE	dit_createUnitSelectHandle (enum dit_midbDataType dataType)

UZT_HANDLE	dit_createUnitDataHandle (enum dit_midbDataType dataType)

Public Operation PDL:

//

// This function returns a handle object which represents a pointer to a structure

// corresponding to the dataType and itemType values. If the handle could not be created,

// a NULL value is returned.

//

ST_PUBLIC UZT_HANDLE dit_createHandle (enum dit_midbDataType dataType,

	enum dit_itemType itemType)

{

	UZT_HANDLE handle = NULL;

	// for (dataType) /* create the appropriate handle object */

	// 	case DIT_EQP:

	//	case DIT_EQP_BY_FAC:

	//	case DIT_EQP_BY_TRACK:

	//	case DIT_EQP_BY_UNIT:

	//	call create equipment handle with dataType parameter based on itemType

	//	break;

	// 	case DIT_EQP_IDX:

	//	case DIT_EQP_IDX_BY_FAC:

	//	call create eqp index handle with dataType parameter based on itemType

	//	break;

	// 	case DIT_FAC:

	//	case DIT_FAC_BY_EQP:

	//	case DIT_FAC_BY_EQP_IDX:

	//	case DIT_FAC_BY_TARGET:

	//	case DIT_FAC_BY_TRACK:

	//	case DIT_FAC_BY_UNIT:

	//	call create facility handle with dataType parameter based on itemType

	// 	break;

	

	//	case DIT_OBS:

	//	case DIT_OBS_BY_TRACK:

	//		call create observation handle with dataType parameter based on itemType

	//		break;

	//	case DIT_TARGET:

	//	case DIT_TARGET_BY_FAC:

	//	call create target handle with dataType parameter based on itemType

	//	break;

	//	case DIT_TRACK:

	//	case DIT_TRACK_BY_EQP:

	//	case DIT_TRACK_BY_FAC:

	//	case DIT_TRACK_BY_OBS:

	//	case DIT_TRACK_BY_UNIT:

	//	call create track handle with dataType parameter based on itemType

	//	break;

	// 	case DIT_UNIT:

	//	case DIT_UNIT_BY_EQP:

	//	case DIT_UNIT_BY_FAC:

	//	case DIT_UNIT_BY_TRACK:

	//	call create unit handle with dataType parameter based on itemType

	//	break;

	//	case DIT_EQP_ELINT_MODE_MODE:

	//	case DIT_OBS_ELNOT:

	//	case DIT_OBS_PARAMETERS:

	//	case DIT_OBS_REPORT:

	//	case DIT_REMARKS:

	//	case DIT_TRACK_ELINT_MODE:

	//	case DIT_TRACK_LOC:

	//	call create {object} handle with dataType parameter based on itemType

	// endfor

	// return handle

}

Private Operation PDL:

Each of the private select handle operations perform the same steps to create a handle object. The difference between each private operation is the allocation the specific structure to be used by the handle and the name of the handle. For example, dataType equal to DIT_FACILITY would allocate the dit_facilitySELECT_OBJ_T and the handle name would be DIT_FAC_SELECT_HANDLE_NAME.

//

// This function creates a handle object which will be used to specify the select columns

// used in an sql query. If the handle could not be created, a null value is returned.

// Default values are assigned to each data field in the structure.

//

ST_PROTECTED UZT_HANDLE	

dit_create{obj}SelectHandle (enum dit_midbDataType dataType)

{

	UZT_HANDLE handle = NULL;

	// allocate select structure object

	// if (structure not allocated)

	//	then

	//	log DIT_MEMORY_ERROR message

	//	return null handle

	// endif

	// define handle parameters (type, name, and data structure) based on dataType

	// call uzt_createHandle with handle parameters

	// if (error on handle creation)

	//	then

	//		log DIT_CREATE_HANDLE_ERROR message

	//		free allocated structure

	//		return null handle

	// endif

	// set all select structure fields to default values

	// call uzt_coreSetValues

	// return handle

}

//

// This function creates a handle object which will be used to specify columns and

// the associated values used in an sql statement. For an sql query, the handle object

// defines the where clause which identifies what columns are used to limit the data

// retrieved. For an sql update statement, the handle object defines the values to used to

// update a specific record in the MIDB object. For an sql insert statement, the handle

// object defines the values for the new record in the MIDB object.

//

ST_PROTECTED UZT_HANDLE	

dit_create{obj}DataHandle (enum dit_midbDataType dataType)

{

	UZT_HANDLE handle = NULL;

	// allocate data structure object

	// if (structure not allocated)

	//	then

	//	log DIT_MEMORY_ERROR message

	//	return null handle

	// endif

	// define handle parameters (type, name, and data structure) based on dataType

	// call uzt_createHandle with handle parameters

	// if (error on handle creation)

	// 	then

	//		log DIT_CREATE_HANDLE_ERROR message

	//		return null handle

	// endif

	// return handle

}

dit_deleteHandle and dit_deleteHandleData

Purpose:	These operations provide the capability to destroy the a handle and the list of handles that are created when retrieving and editing GMI data in the MIDB database.

Exportability: 	Public

Interactions:	uzt_destroyHandle

Public Operations:	void 	dit_deleteHandle (UZT_HANDLE handle)

	void	dit_deleteHandleData (LIST * data)

Private Operations:	None

Public Operation PDL:

//

// This function frees the memory allocated to the handle. If the handle is null,

// the function returns.

//

ST_PUBLIC void dit_deleteHandle (UZT_HANDLE handle)

{

	void * data = NULL;

	// if (handle != NULL)

	// 	then

	// 	call uzt_destroyHandle with handle value to return data structure

	// 	if (data is not null)

	//	then free data structure

	//	endif

	// endif

}

//

// This function frees all the handles associated with the list and then frees the memory

// allocated to the list structure. If the list is null, the function returns.

//

ST_PUBLIC void dit_deleteHandleData (LIST * data)

{

	// if (data != NULL)

	//	then

	// 	loop (through data)

	// 	get the handle from the list

	//		call dit_deleteHandle to free the memory

	// 	endloop

	// 	free the memory allocated to the list structure

	// endif

}

Private Operation PDL:	None

dit_getMidbData

Purpose:	This function provides the capability to programmatically retrieve records from a GMI object (table or a view.)

Exportability: 	Public

Interactions:	uzt_coreGetStruct

Public Operations:	DIT_STATUS	dit_getMidbData

		 (enum dit_midbDataType dataType,

		UZT_HANDLE selectHandle,

		UZT_HANDLE queryHandle,

		LIST **returnData)

Private Operations:	None

Public Operation PDL:

//

// This function provides the capability to retrieve GMI data from the MIDB database.

// The records are returned in the LIST **returnData parameter. The list contains

// UZT_HANDLES which can be used to access the individual records retrieved from the

// database. If no records were found to match the query, the status return value is set to

// DIT_NO_DATA_FOUND and the returnData parameter is an empty list. Each handle

// in the list represents one record from the MIDB schema object. The dataType

// parameter specifies which MIDB schema object, the selectHandle parameter specifies

// which fields to retrieve from the MIDB schema object, and the queryHandle parameter

// specifies fields to limit which records are returned.

//

ST_PUBLIC DIT_STATUS	

dit_getMidbData (enum dit_midbDataType dataType, UZT_HANDLE selectHandle,

	UZT_HANDLE queryHandle, LIST **returnData)

{

	DIT_STATUS status = DIT_SUCCESS;

	// if (selectHandle is null)

	//	log error message about null data handle

	//	return DIT_NULL_HANDLE

	// endif

	// open database connection

	// if (database not open)	

	//	log error message about MIDB database not available

	//	return DIT_MIDB_NOT_INSTALLED

	// end if

	// determine which MIDB object is being requested

	// for (dataType)

	// 	case DIT_EQP:

	// 	case DIT_EQP_BY_FAC:

	// 	case DIT_EQP_BY_TRACK:

	// 	case DIT_EQP_BY_UNIT:

	// 	case DIT_EQP_ELINT_MODE:

	//	dit_Equipment_c eqp(dbprocess, DIT_SELECT, dataType)

	//	call eqp.GetData (selectHandle, queryHandle, returnData)

	//	break;

	// 	case DIT_EQP_IDX:

	// 	case DIT_EQP_IDX_BY_FAC:

	//	dit_EquipmentIndex_c idx(dbprocess, DIT_SELECT, dataType)

	//	call idx.GetData (selectHandle, queryHandle, returnData)

	//	break;

	// 	case DIT_FAC:

	// 	case DIT_FAC_BY_EQP:

	// 	case DIT_FAC_BY_EQP_IDX:

	// 	case DIT_FAC_BY_TRACK:

	// 	case DIT_FAC_BY_UNIT:

	//	dit_Facility_c fac(dbprocess, DIT_SELECT, dataType)

	//	call fac.GetData (selectHandle, queryHandle, returnData)

	//	break;

	// 	case DIT_OBS:

	// 	case DIT_OBS_BY_TRACK:

	// 	case DIT_OBS_ELNOT:

	// 	case DIT_OBS_PARAMETERS:

	// 	case DIT_OBS_REPORT:

	//	dit_Observation_c obs(dbprocess, DIT_SELECT, dataType)

	//	call obs.GetData(selectHandle, queryHandle, returnData)

	//	break;

	// 	case DIT_REMARKS:

	//	dit_Remarks_c rmk(dbprocess, DIT_SELECT, dataType)

	//	call rmk.GetData(selectHandle, queryHandle, returnData)

	//	break;

	// 	case DIT_TARGET:

	// 	case DIT_TARGET_BY_FAC:

	//	dit_Target_c target(dbprocess, DIT_ SELECT, dataType)

	//	call target.GetData (selectHandle, queryHandle, returnData)

	//	break;

	// 	case DIT_TRACK:

	// 	case DIT_TRACK_BY_EQP:

	// 	case DIT_TRACK_BY_FAC:

	//	case DIT_TRACK_BY_OBS:

	//	case DIT_TRACK_BY_UNIT:

	// 	case DIT_TRACK_ELINT_MODE:

	// 	case DIT_TRACK_LOC:

	//	dit_Track_c track(dbprocess, DIT_SELECT, dataType)

	//	call track.GetData (selectHandle, queryHandle, returnData)

	//	break;

	// 	case DIT_UNIT:

	// 	case DIT_UNIT_BY_EQP:

	// 	case DIT_UNIT_BY_FAC:

	//	case DIT_UNIT_BY_TRACK:

	//	dit_Unit_c unit(dbprocess, DIT_SELECT, dataType)

	// 	call unit.GetData (selectHandle, queryHandle, returnData)

	//	break;

	// endfor

	// check for errors from GetData function

	// if (no errors)

	// 	then set returnSk to dataSK

	// end if

	// close database connection

	// return status

}

Private Operation PDL:	None

dit_createMidbData

Purpose:	This function provides the capability to programmatically create a record in a GMI table.

Exportability: 	Public

Interactions:	uzt_coreGetStruct

Public Operations:	DIT_STATUS	dit_createMidbData

		(enum dit_midbDataType dataType,

		UZT_HANDLE handle, char *returnSK)

Private Operations:	None

Public Operation PDL:

//

// This function provides the capability to create a GMI record in the MIDB database.

// The dataType parameter specifies which GMI object and the handle parameter specifies

// the fields and values of the new record. The returnSK parameter is a pointer which

// represents surrogate key of the new record that was generated.

// When creating a new record based on the surrogate key of another record the input

// handle will contain the required surrogate key. For example,when dataType set to

// DIT_FAC_BY_UNIT, the handle must have the surrogate key of the unit specified in

// order to create tie records between the facility and unit objects.

//

ST_PUBLIC DIT_STATUS

dit_createMidbData (enum dit_midbDataType dataType,

	UZT_HANDLE handle, char *returnSK)

{

	DIT_STATUS status = DIT_SUCCESS;

	char	dataSK[dit_SK_LEN] = {ë\0í};

	// if (handle is null)

	//	log error message about null data handle

	//	return DIT_NULL_HANDLE

	// endif

	// open database connection

	// if (database not open)	

	//	log error message about MIDB database not available

	//	return DIT_MIDB_NOT_INSTALLED

	// end if

	/* determine which MIDB object is creating a new record */

	// for (dataType)

	// 	case DIT_EQP:

	// 	case DIT_EQP_BY_FAC:

	//	case DIT_EQP_BY_TRACK:

	// 	case DIT_EQP_BY_UNIT:

	// 	case DIT_EQP_ELINT_MODE:

	//	dit_Equipment_c eqp(dbprocess, DIT_INSERT, dataType)

	//	call status = eqp.EditData (handle, dataSK)

	//	break;

	//	case DIT_EQP_IDX:

	//	case DIT_EQP_IDX_BY_FAC:

	//	dit_EquipmentIndex_c idx(dbprocess, DIT_INSERT, dataType)

	//	call status = idx.EditData (handle, dataSK)

	//	break;

	// 	case DIT_FAC:

	// 	case DIT_FAC_BY_EQP:

	//	case DIT_FAC_BY_EQP_IDX:

	//	case DIT_FAC_BY_TARGET:

	//	case DIT_FAC_BY_TRACK:

	// 	case DIT_FAC_BY_UNIT:

	//	dit_Facility_c fac(dbprocess, DIT_INSERT, dataType)

	//	call status = fac.EditData (handle, dataSK)

	//	break;

	// 	case DIT_OBS:

	// 	case DIT_OBS_BY_TRACK:

	// 	case DIT_OBS_ELNOT:

	// 	case DIT_OBS_PAR:

	// 	case DIT_OBS_REPORT:

	//	dit_Observation_c obs(dbprocess, DIT_INSERT, dataType)

	//	call status = obs.EditData (handle, dataSK)

	//	break;

	// 	case DIT_REMARKS:

	//	dit_Remarks_c rmk(dbprocess, DIT_INSERT, dataType)

	//	call status = rmk.EditData (handle, dataSK)

	//	break;

	// 	case DIT_TARGET:

	// 	case DIT_TARGET_BY_FAC:

	//	dit_Target_c target(dbprocess, DIT_INSERT, dataType)

	//	call status = target.EditData (handle, dataSK)

	//	break;

	// 	case DIT_TRACK:

	// 	case DIT_TRACK_BY_EQP:

	//	case DIT_TRACK_BY_FAC:

	// 	case DIT_TRACK_BY_OBS:

	//	case DIT_TRACK_BY_UNIT:

	// 	case DIT_TRACK_ELINT_MODE:

	// 	case DIT_TRACK_LOC:

	//	dit_Track_c track(dbprocess, DIT_INSERT, dataType)

	//	call status = track.EditData (handle, dataSK)

	//	break;

	// 	case DIT_UNIT:

	// 	case DIT_UNIT_BY_EQP:

	//	case DIT_UNIT_BY_FAC:

	//	case DIT_UNIT_BY_TRACK:

	//	dit_Unit_c unit(dbprocess, DIT_INSERT, dataType)

	//	call status = unit.EditData (handle, dataSK)

	//	break;

	// endfor

	// check for errors from get functions

	// close database connection

	// set returnSk to dataSK

	// return status

}

Private Operation PDL:	None

dit_modifyMidbData

Purpose:	This function provides the capability to programmatically modify a record in a GMI table. The surrogate key for the record being modified is required and is not modifiable. Only dataType enumerations for single table is allowed.

Exportability: 	Public

Interactions:	uzt_coreGetStruct

Public Operations:	DIT_STATUS	dit_modifyMidbData

		(enum dit_midbDataType dataType,

		char *dataSK, UZT_HANDLE handle)

Private Operations:	None.

Public Operation PDL:

//

// This function is used to modify a single record of an MIDB object. The surrogate key

// identifies the specific record in the MIDB object. The handle provides the fields and

// corresponding values which will be updated in the record.

//

ST_PUBLIC DIT_STATUS

dit_modifyMidbData (enum dit_midbDataType dataType, char *dataSK,

	UZT_HANDLE handle)

{

	DIT_STATUS status = DIT_SUCCESS;

	// if (dataSK == 0)

	//	log error message about surrogate key being zero

	//	return DIT_INVALID_SK_VALUE

	// endif

	// if (handle is null)

	//	log error message about null data handle

	//	return DIT_NULL_HANDLE

	// endif

	// open database connection

	// if (database not open)	

	//	log error message about MIDB database not available

	//	return DIT_MIDB_NOT_INSTALLED

	// end if

	/* to determine which MIDB object is updating a record */

	// for (dataType)

	// 	case DIT_EQP:

	// 	case DIT_EQP_ELINT_MODE:

	//	dit_Equipment_c eqp(dbprocess, DIT_UPDATE, dataType)

	//	call status = eqp.EditData (handle, dataSK)

	//	break;

	// 	case DIT_EQP_IDX:

	//	dit_EquipmentIndex_c idx(dbprocess, DIT_UPDATE, dataType)

	//	call status = idx.EditData (handle, dataSK)

	//	break;

	// 	case DIT_FAC:

	//	dit_Facility_c fac(dbprocess, DIT_UPDATE, dataType)

	//	call status = fac.EditData (handle, dataSK)

	//	break;

	// 	case DIT_OBS:

	// 	case DIT_OBS_ELNOT:

	// 	case DIT_OBS_PARAMETERS:

	// 	case DIT_OBS_REPORT:

	//	dit_Observation_c obs(dbprocess, DIT_UPDATE, dataType)

	//	call status = obs.EditData (handle, dataSK)

	//	break;

	// 	case DIT_REMARKS:

	//	dit_Remarks_c rmk(dbprocess, DIT_UPDATE, dataType)

	//	call status = rmk.EditData (handle, dataSK)

	//	break;

	// 	case DIT_TARGET:

	//	dit_Target_c target(dbprocess, DIT_UPDATE, dataType)

	//	call status = target.EditData (handle, dataSK)

	//	break;

	// 	case DIT_TRACK:

	// 	case DIT_TRACK_ELINT_MODE:

	// 	case DIT_TRACK_LOC:

	//	dit_Track_c track(dbprocess, DIT_UPDATE, dataType)

	//	call status = track.EditData (handle, dataSK)

	//	break;

	// 	case DIT_UNIT:

	//	dit_Unit_c unit(dbprocess, DIT_UPDATE, dataType)

	//	call status = unit.EditData (handle, dataSK)

	//	break;

	//	default:

	//	set status to DIT_INVALID_DATA_OBJECT

	// endfor

	// check for errors from get functions

	// close database connection

	// return status

}

Private Operation PDL: 	None

dit_sqlStmt_c

Purpose:	This class provides operations and attributes to build various sql statements. The AddItem functions provide the capability to include different types to the sql statement. The type of sql statement build in determined when the class is instantiated.

Exportability: 	Protected

Interactions:	None.

Public Operations:		dit_sqlStmt_c (enum dit_optionType inOption)

	void 	AddItem (char* name)

	void 	AddItem (char* name, char* value, int valLen)

	void	AddItem (char* name, int value)

	void	AddItem (char* name, float value)

	void	AddItem (char* name, char* operator,

			float value)

	RWCString	BuildStmt (char* tableName)

	DIT_STATUS CreateObjectTie (char* objName1, int objSK1,

		char* objName2, int objSK2)

Private Operations:	None

Private Members:

RWCString	delimiter

This attribute identifies the delimiter used between fields of the sql statement. For the select statement the delimiter is “ and ” and for the insert and update statements the delimiter is “,”.

RWCString	nameList

This attribute contains the fields which are requested in the select sql statement or the fields which contain data for the insert sql statement.

RWCString	partialStr

This attribute identifies the last half of the sql statatment, for select statement it is the ‘where’ clause, for insert statement it is the’ values’ clause’and for the update statement it is the ‘set’ clause.

dit_optionType	option

This attribute identifies the type of sql statement (select, insert or update) that will be constructed.

Public Operation PDL:

//

// This operation is the constructor which is used to instantiate the class. The input

// parameter identifies the type of sql statement which will be returned by the BuildStmt

// operation.

//

dit_sqlStmt_c (enum dit_optionType inOption)

{

	// save inOption in private attribute option

	// for (inOption)

	// 	case DIT_INSERT:

	//	initialize private attribute strings itemList and partialStr

	//	set delimiter to “ , ”

	//	break;

	// 	case DIT_SELECT:

	//	initialize private attribute strings itemList and partialStr

	//	set delimiter to “ and ”

	//	break;

	// 	case DIT_UPDATE:

	//	initialize private attribute strings itemList and partialStr

	//	set delimiter to “ , ”

	//	break;

	// endfor

}

//

// This function is used to build the sql statement and the return value is the the completed

// statement.

//

RWCString	BuildStmt (char * tableName)

{

	RWCString stmt;

	// for (option)

	// 	case DIT_INSERT:

	//	build insert sql statement from itemList which contains the fields of the

	//	object and partialStr which contains the ‘values’ clause

	//	break;

	// 	case DIT_SELECT:

	//	build select sql statement from itemList which contains the fields to retrieve

	//	and partialStr which contains the ‘where’ clause

	//	break;

	// 	case DIT_UPDATE:

	//	build update sql statement from partialStr which contains the ‘set’ clause

	//	and the value stored in attribute ‘sk’ for the ‘where’ clause

	//	break;

	// endfor

	// return stmt;

}

//

// This function is used to add a field to the select sql statment or to the fields identified in

// the insert sql statement.

//

void	AddItem (char* name)

{

	// Add name to itemList string

}

//

// This function is used to add a character field to the ‘where’ clause of the select sql

// statement, ‘set’ clause of the update sql statement or the ‘values’ clause of the insert

// statement.

//

void	AddItem (char* name, char* value, int valLen)

{

	// determine the length of the character string

	// if (length of value > 0)

	// 	for (option)

	// 	case DIT_INSERT:

	//		add name to nameList

	//	add ‘value’ to partialStr

	//	break;

	// 	case DIT_SELECT:

	//	if (length of value < valLen)

	//	then add name = ‘value’ to partialStr

	//	else add name Like ‘value%’ to partialStr

	//	break;

	// 	case DIT_UPDATE:

	//	add name = ‘value’ to partialStr

	//	break;

	//	 endfor

	//	add delimiter to partialStr

	// endif

}

//

// This function is used to add an integer field to the ‘where’ clause of the select sql

// statement, ‘set’ clause of the update sql statement or the ‘values’ clause of the insert

// statement.

//

void	AddItem (char* name, int value)

{

	RWCString temp;

	// convert integer value to ascii string and save in temp

	// for (option)

	// 	case DIT_INSERT:

	//	add temp to partialStr

	//	break;

	// 	case DIT_SELECT:

	// 	case DIT_UPDATE:

	//	add name = ‘temp’ to partialStr

	//	add delimiter to partialStr

	//	break;

	// endfor

}

//

// This function is used to add a float field to the ‘where’ clause of the select sql

// statement, ‘set’ clause of the update sql statement or the ‘values’ clause of the insert

// statement.

//

void	AddItem (char* name, float value)

{

	RWCString temp;

	// convert float value to ascii string and save in temp

	// for (option)

	// 	case DIT_INSERT:

	//	add temp to partialStr

	//	break;

	// 	case DIT_SELECT:

	// 	case DIT_UPDATE:

	//	add name = ‘temp’ to partialStr

	//	add delimiter to partialStr

	//	break;

	// endfor

}

//

// This function is used to add a double field to the ‘where’ clause of the select sql

// statement, ’set’ clause of the update sql statement or the ‘values’ clause of the insert

// statement.

//

void	AddItem (char* name, double value)

{

	RWCString temp;

	// convert double value to ascii string and save in temp

	// for (option)

	// 	case DIT_INSERT:

	//	add temp to partialStr

	//	break;

	// 	case DIT_SELECT:

	// 	case DIT_UPDATE:

	//	add name = ‘temp’ to partialStr

	//	break;

	// endfor

	// add delimiter to partialStr

}

//

// This function is used to add float field with a special operator to the ‘where’ clause of

// the select sql statement. This would be used to add latitude/longitude fields to query for

// data within a bounding area.

//

void	AddItem (char* name, char* operator, float value)

{

	RWCString temp;

	// convert float value to ascii string and save in temp

	// for (option)

	// 	case DIT_INSERT: // these options are not available

	// 	case DIT_UPDATE:

	//	break;

	// 	case DIT_SELECT:

	//	add name, operation, temp to to partialStr

	//	add delimiter to partialStr

	//	break;

	// endfor

}

//

// This function creates the tie table records for two MIDB objects using the surrogate keys

// from each object record. The objName parameters identify the MIDB Tie tables and the

// objSK parameters identify the surrogate key values which correspond to individual records

// in the MIDB object tables.

//

DIT_STATUS CreateObjectTie (char* objName1, int objSK1,

	char* objName2, int objSK2)

{

	DIT_STATUS status = DIT_SUCCESS;

	// generate TIE table sql insert for objName1 using objSk1 and objSk2

	// execute sql statement

	// if (sql error)

	//	log error message about which sql error occurred during create

	//	return DIT_CREATE_DATA_ERROR

	// endif

	// generate TIE table sql insert for objName2 using objSk2 and objSk1

	// execute sql statement

	// if (sql error)

	//	log error message about which sql error occurred during create

	//	return DIT_CREATE_DATA_ERROR

	// endif

	// return status

}

Private Operation PDL:	None

dit_Aka_c

Purpose:	This class provides operations and attributes to access a GMI AKA table based on the inDataType input parameter.

Exportability: 	Protected

Interactions:	dit_sqlStmt_c

Public Operations:		dit_Aka_c (DBPROCESS *dbproc,

			enum dit_optionType optionType,

			enum dit_midbDataType inDataType)

	DIT_STATUS GetData (int dataSK, char* aka, char* akaType)

	DIT_STATUS EditData (char* aka, char* akaType, int* dataSK)

Private Operations:	None.

Private Members:

dit_midbDataType	dataType

This attribute identifies the type of midb data to be processed by this class.

RWCString	skName

This attribute identifies the surrogate key name associated with the dataType. For a dataType of DIT_FAC, the skName would be set to DIT_FAC_SK (which is “fac_sk”).

DBPROCESS	*dbproc

This attribute is a pointer to the active database process.

Public Operation PDL:

//

// This function is the constructor which is used to instantiate the class. The optionType

// parameter specifies the type of sql statement to used and the inDataType parameter

// specifies which GMI AKA table to use.

//

dit_Aka_c (DBPROCESS *dbproc, enum dit_optionType optionType,

enum dit_midbDataType inDataType)

	: dit_sqlStmt_c (optionType)

{

	// save inDataType in private attribute dataType

	// for (dataType)

	//	case DIT_EQP:

	//	case DIT_EQP_ELINT_MODE:

	//	case DIT_FAC_BY_EQP:

	// 	case DIT_TRACK_BY_EQP:

	//	case DIT_UNIT_BY_EQP:

	//	set tableName to “EQP_AKA”

	//	set skName to DIT_EQP_SK

	//	break;

	//	case DIT_EQP_IDX:

	//	case DIT_FAC_BY_EQP_IDX:

	//		set tableName to “EQP_IDX_AKA”

	//		set skName to DIT_EQP_IDX_SK

	//		break;

	//	case DIT_FAC:

	//	case DIT_EQP_BY_FAC:

	//	case DIT_EQP_IDX_BY_FAC:

	//	case DIT_TARGET_BY_FAC:

	//	case DIT_TRACK_BY_FAC:

	//	case DIT_UNIT_BY_FAC:

	//		set tableName to “FAC_AKA”

	//		set skName to DIT_FAC_SK

	//		break;

	//	case DIT_OBS:

	//	case DIT_TRACK_BY_OBS:

	//		set tableName to “OBS_AKA”

	//		set skName to DIT_OBS_SK

	//		break;

	//	case DIT_TARGET:

	//	case DIT_FAC_BY_TARGET:

	//		set tableName to “TGT_DETAIL_AKA”

	//		set skName to DIT_TGT_DETAIL_SK

	//		break;

	//	case DIT_TRACK:

	//	case DIT_EQP_BY_TRACK:

	//	case DIT_FAC_BY_TRACK:

	//	case DIT_OBS_BY_TRACK:

	//	case DIT_UNIT_BY_TRACK:

	//		set tableName to “TRACK_AKA”

	//		set skName to DIT_TRACK_SK

	//		break;

	//	case DIT_UNIT:

	//	case DIT_EQP_BY_UNIT:

	//	case DIT_FAC_BY_UNIT:

	//	case DIT_TRACK_BY_UNIT:

	//		set tableName to “UNIT_AKA”

	//		set skName to DIT_UNIT_SK

	//		break;

	// endfor

}

//

// This function retrieves GMI AKA data from the MIDB database. The aka and akaType

// fields are retrieved based on the value of the dataSk. The data values will be null if there

// are no records which matches the surrogate key value.

//

DIT_STATUS GetData (int dataSk, char* aka, char* akaType)

{

	// call AddItem (dit_AKA)

	// call AddItem (dit_AKA_TYPE)

	// call AddItem (skName, dataSk)

	// call BuildStmt(tableName)

	// execute sql statement

	// if (no data found)

	//	log error message

	//	return DIT_NO_DATA_FOUND

	// endif

	// if (sql errors)

	//	log error message

	//	return DIT_QUERY_ERROR

	// endif

	// set aka and akaType with database values

	// return status

}

//

// This function edits the GMI AKA table in the MIDB database. This function is called

// to insert an aka record when the dataSK is 0 and to update an aka record when the

// dataSK is non-zero.

//

DIT_STATUS EditData (char* aka, char* akaType, int dataSK)

{

	DIT_STATUS status = DIT_SUCCESS;

	int returnSK = 0;

	// if (aka != NULL)

	// 	then call AddItem (DIT_AKA, aka)

	// if (akaType != NULL)

	// 	then call AddItem (DIT_AKA_TYPE, akaType)

	// if (dataSK == 0)

	//	then generate new surrogate key value and set in returnSK

	//	else call AddItem (skName, dataSK)

	// end if

	// call BuildStmt (tableName)

	// execute sql statement

	// if (sql error)

	//	if (dataSK == 0)

	//		log error message about which sql error occurred during create

	//		return DIT_CREATE_DATA_ERROR

	//	else

	//		if (sql error == row not found)

	//		log error message about invalid surrogate key

	//		return DIT_INVALID_SK_ERROR

	//		else

	//		log error message about which sql error occurred during modify

	//		return DIT_MODIFY_DATA_ERROR

	/		endif

	//	endif

	// endif

	// return status

}

Private Operation PDL:	None.

dit_midbBase_c

Purpose:	This class provides operations and attributes to process the common data for the GMI tables.

Exportability: 	Protected

Interactions:	dit_sqlStmt_c

Public Operations:		dit_midbBase_c (DBPROCESS *inDbproc,

		enum dit_optionType optionType,

		enum dit_midbDataType inDataType)

	DIT_STATUS	Set (dit_midbSELECT_OBJ_T *rec)

	DIT_STATUS	Set (dit_midbDATA_OBJ_T *rec)

	DIT_STATUS	Set (dit_midbLocationSELECT_OBJ_T *rec)

	DIT_STATUS	Set (dit_midbLocationDATA_OBJ_T *rec)

Private Operations:	None

Protected Members:

dit_midbDataType	dataType

This attribute identifies the type of midb data to be processed by this class.

dit_optionType	option

This attribute identifies the type of sql statement (select, insert or update) that will be constructed.

RWCString	skName

This attribute identifies the surrogate key associated with the dataType value.

RWCString	tableName

This attribute identifies the GMI table name or the view to use in the sql statement.

Boolean	akaSelect

This attribute identifies when the associated AKA table is to be accessed to return the aka field.

Boolean	akaData

This attribute identifies when the AKA table is to be updated.

char	aka [dit_AKA_LEN]

char	akaType [dit_AKA_TYPE_LEN]

These attibutes are used when the aka field is retrieved from the associated AKA table.

DBPROCESS	*dbproc

This attribute is a pointer to the active database process.

Private Members:

Public Operation PDL:

//

// This function is the constructor which is used to instantiate the class. The optionType

// parameter specifies the type of sql statement to used and the inDataType parameter

// specifies which GMI table or view to use.

//

dit_midbBase_c (DBPROCESS *inDbproc, enum dit_optionType optionType,

	enum dit_midbDataType inDataType)

	: public dit_sqlStmt_c (optionType)

{

	/* initialize protected attributes */

	// set dataType to inDataType

	// set optionType to option

	// set akaSelect to FALSE

	// set akaData to FALSE

	// set aka[0] = {ë\0’}

	// set akaType[0] = {ë\0’}

	// set dbproc = inDbproc

}

//

// This function accesses each field from the data structure and verifies that data has been

// specified. Fields which contain data are added to the sql statement.

//

DIT_STATUS Set (dit_midbSELECT_OBJ_T *rec)

{

	// check each field in data structure and add selected items to dit_sqlStmt_c

	// if (missing required data)

	//	log error message about which sql error occurred

	//	return DIT_MISSING_DATA_ERROR

	// endif

	// if (aka field used)

	//	set akaSelect to TRUE

	//	if (sk not used)

	//		call AddItem (skName)

	//	endif

	// endif

}

//

// This function accesses each field from the data structure and verifies that data has been

// defined. Fields which contain data are added to the sql statement.

//

DIT_STATUS Set (dit_midbDATA_OBJ_T *rec)

{

	// check each field in data structure and add defined fields to dit_sqlStmt_c

	// if (missing required data)

	//	log error message about which sql error occurred

	//	return DIT_MISSING_DATA_ERROR

	// endif

	// if (aka field used)

	//	then set akaData to TRUE

}

//

// This function accesses each field from the data structure and verifies that data has been

// specified. Fields which contain data are added to the sql statement.

//

DIT_STATUS Set (dit_midbLocationSELECT_OBJ_T *rec)

{

	// check each field in data structure and add selected items to dit_sqlStmt_c

	// if (missing required data)

	//	log error message about which sql error occurred

	//	return DIT_MISSING_DATA_ERROR

	// endif

}

//

// This function accesses each field from the data structure and verifies that data has been

// defined. Fields which contain data are added to the sql statement.

//

DIT_STATUS Set (dit_midbLocationDATA_OBJ_T *rec)

{

	// check each field in data structure and add defined fields to dit_sqlStmt_c

	// if (missing required data)

	//	log error message about which sql error occurred

	//	return DIT_MISSING_DATA_ERROR

	// endif

}

Private Operation PDL:	None

dit_Equipment_c

Purpose:	This class provides operations and attributes to access the GMI Equipment table or related Equipment views in the MIDB database. The class is instantiated with optionType to define the sql operation and with dataType to define the table or view on which the sql operation accesses.

Exportability: 	Protected

Interactions:	dit_sqlStmt_c

	dit_midbBase_c

Public Operations:		dit_Equipment_c (DBPROCESS *inDbproc,

				enum dit_optionType optionType,

				enum dit_midbDataType inDataType)

	DIT_STATUS 	GetData (UZT_HANDLE selectHandle,

			UZT_HANDLE queryHandle,

			LIST **returnData);

	DIT_STATUS 	EditData (UZT_HANDLE dataHandle,

			char* dataSK)

Private Operations:	DIT_STATUS	SetSelect (dit_EquipmentSELECT_OBJ_T

 				*rec)

	DIT_STATUS	SetData (dit_EquipmentDATA_OBJ_T *rec)

	DIT_STATUS	CreateData (dit_EquipmentDATA_OBJ_T *rec,

			char *dataSK)

	DIT_STATUS	ModifyData (char *dataSK)

Private Members:	None

Public Operation PDL:

//

// This function is the constructor which is used to instantiate the class. The optionType

// parameter specifies the type of sql statement to used and the inDataType parameter

// specifies which GMI table or view to use.

//

dit_Equipment_c (DBPROCESS *inDbproc, enum dit_optionType optionType,

	enum dit_midbDataType inDataType)

	: public dit_midbBase_c (inDbproc, optionType, inDataType)

	// set akaSelect to FALSE

	// set akaData to FALSE

	// for (dataType)

	//	case DIT_EQP:

	//	set tableName to “EQP”

	//	set skName to DIT_EQP_SK

	//	break;

	//	case DIT_EQP_ELINT_MODE:

	//	set tableName to “EQP_ELINT_MODE”

	//	set skName to DIT_EQP_ELINT_SK

	//	break;

	//	case DIT_EQP_BY_FAC:

	//	set tableName to “FAC_EQP_SUBVIEW”

	//	set skName to DIT_EQP_SK

	//	break;

	// 	case DIT_EQP_BY_TRACK:

	//	set tableName to “TRACK_EQP_SUBVIEW”

	//	set skName to DIT_EQP_SK

	//	break;

	//	case DIT_EQP_BY_UNIT:

	//	set tableName to “UNIT_EQP_SUBVIEW”

	//	set skName to DIT_EQP_SK

	//	break;

	// endfor

}

//

// This function retrieves GMI data from the MIDB database. The selectHandle specifies

// the fields to be retrieved, the queryHandle specifies the conditions to limit what data is

// returned by the sql query. The returnData parameter is a list of UZT_HANDLES

// which represents each record found by the query. The list parameter will be null if there

// are no records which match the selection criteria and status value will be

// DIT_NO_DATA_FOUND.

//

DIT_STATUS GetData (UZT_HANDLE selectHandle, UZT_HANDLE queryHandle,

	LIST **returnData)

{

	DIT_STATUS status = DIT_SUCCESS;

	dit_EquipmentSELECT_OBJ_T *selectData = NULL;

	dit_EquipmentDATA_OBJ_T *queryData = NULL;

	// /* retrieve select structure from handle object into selectData */

	// call uzt_coreGetStruct to get selectData

	// if (selectData is not null)

	//	then call SetSelect with selectData

	//	else return DIT_MISSING_DATA_ERROR

	// endif

	// if (selectHandle type does not match data type)

	//	return DIT_INVALID_DATA_OBJECT

	// endif

	// for (dataType)

	//	case DIT_EQP:

	//		break;

	// 	case DIT_EQP_BY_FAC:

	//	case DIT_EQP_BY_TRACK:

	//	case DIT_EQP_BY_UNIT:

	//	 if (join record surrogate key is not provided)

	//		log error message for missing data

	//		return DIT_MISSING_DATA_ERROR

	//	endif

	//	break;

	//	default:

	// end for

	// if (queryHandle is not null)

	//	/* retrieve data structure from handle object into queryData */

	//	call uzt_coreGetStruct to get queryData

	//	if (queryData is not null)

	//		then call SetData (queryData)

	//		else return DIT_MISSING_DATA_ERROR

	//	endif

	// endif

	// create list for returnData

	// if (memory error)

	//	then return DIT_MEMORY_ERROR

	// endif

	// build sql select statement

	// call BuildStmt (tableName)

	// execute sql statement

	// if (sql error)

	//	log error message about sql error

	//	return DIT_QUERY_ERROR

	// end if

	// if (no rows found)

	//	then return DIT_NO_DATA_FOUND

	//	else

	//		for (all rows found)

	//		fetch row of data

	//		if error on fetch then return sql error

	//		create handle object

	//		fill data values from sql fetch into handle object and add to list

	//		if (akaSelect)

	//			get surrogate key for this record save in recSk

	//			call myAka dit_Aka_c (option, dataType)

	//			call myAka.GetData (recSk, aka, akaType)

	//			save aka and akaType in handle object

	//		endif

	//		endfor

	// endif

	// return status

}

//

// This function edits the GMI table in the MIDB database. This function is called to

// insert a row into the table when the dataSK is 0 and to update a row in the table when

// the dataSK is non-zero. If the handle object does not contain all the required fields to

// add/modify a reocrd, then DIT_MISSING_DATA_ERROR is returned.

//

DIT_STATUS EditData (UZT_HANDLE dataHandle, char* dataSK)

{

	dit_EqpuipmentDATA_OBJ_T *data = NULL; // data structure

	DIT_STATUS status = DIT_SUCCESS;

	int returnSK = 0;

	// call uzt_coreGetStruct to get data structure

	// call SetData (data)

	// if (missing required data)

	//	log error message about what data is missing

	//	set dataSK to 0

	//	return DIT_MISSING_DATA_ERROR

	// endif

	// if (handle type does not match data type)

	//	log error message about using incorrect handle with this data type

	//	set dataSK to 0

	//	return DIT_INVALID_DATA_OBJECT

	// endif

	// if (dataSK == 0)

	//	call CreateData (data, returnSK)

	//	if (no errors on create)

	//		then dataSK = returnSK

	//		else dataSK = 0

	//	else

	//	call ModifyData (dataSK)

	// end if

	// return status

}

Private Operation PDL:

//

// This function accesses each field from the data structure and verifies that data has been

// specified. Fields which contain data are added to the sql statement. This function is

// called by GetData.

//

DIT_STATUS SetSelect (dit_EquipmentSELECT_OBJ_T *rec)

{

	DIT_STATUS status = DIT_SUCCESS;

	// check each field in data structure and add selected items to dit_sqlStmt_c

	// if (no data selected)

	//	log error message about what data is missing to record

	//	return DIT_EMPTY_DATA_OBJECT

	// endif

	// call dit_midbBase_c.Set (rec.common)

	// call dit_midbBase_c.Set (rec.location)

	// return status

}

//

// This function accesses each field from the data structure and verifies that data has been

// defined. Fields which contain data are added to the sql statement. This function is

// called by EditData.

//

DIT_STATUS SetData (dit_EquipmentDATA_OBJ_T *rec)

{

	DIT_STATUS status = DIT_SUCCESS;

	// check each field in data structure and add defined fields to dit_sqlStmt_c

	// if (missing required data)

	//	log error message about which sql error occurred during modify

	//	return DIT_MISSING_DATA_ERROR

	// endif

	// call dit_midbBase_c.Set (rec.common)

	// call dit_midbBase_c.Set (rec.location)

	// return status

}

//

// This function adds a record to a GMI object in the MIDB database using the handle object.

// If the handle object does not contain the surrogate key to add the record, then

// DIT_MISSING_DATA_ERROR is returned. If an sql error occurs when the record

// is added to the database, then a status of DIT_CREATE_DATA_ERROR is returned.

//

DIT_STATUS CreateData (dit_EquipmentDATA_OBJ_T *rec, char* dataSK)

{

	DIT_STATUS status = DIT_SUCCESS;

	int returnSK = 0;

	// if (dataType == DIT_EQP_BY_FAC, DIT_EQP_BY_TRACK,

	// 	DIT_EQP_BY_UNIT)

	// 	if (join record surrogate key is not provided)

	//		log error message for missing data

	//		return DIT_MISSING_DATA_ERROR

	//	endif

	// 	if (join record surrogate key does not exist in the database table)

	//		log error message for missing data

	//		return DIT_NO_DATA_FOUND

	//	endif

	//

	// endif

	// generate new record surrogate key value and set in returnSK

	// call AddItem (skName, returnSK)

	// build sql statement from fields defined in handle by calling AddItem

	// call BuildStmt (tableName)

	// execute sql statement

	// if (sql error)

	//	log error message about which sql error occurred

	//	return DIT_CREATE_DATA_ERROR

	// endif

	// if (dataType == DIT_EQP_BY_FAC, DIT_EQP_BY_TRACK,

	// 	DIT_EQP_BY_UNIT)

	/*		using rec.{obj}sk as the join record sk, create tie table records in each

	** 		GMI Tie object

	*/

	// 	call CreateObjectTie (new record tie table name, returnSk,

	//		join record tie table name, join record surrogate key)

	// 	if (error on occurred while creating the record tie)

	//		delete record just inserted

	//		log error message about which sql error occurred during create

	//		set returnSk to 0

	//		return DIT_CREATE_DATA_ERROR

	// 	endif

	// endif

	// if (akaData)

	//	int recSk = 0;

	//	generate surrogate key for this record save in recSk

	//	call myAka dit_Aka_c (option, dataType)

	//	call myAka.AddItem (“eqp_aka_sk”, recSk)

	//	call myAka.AddItem (DIT_AKA, rec.aka)

	//	call myAka.AddItem (DIT_AKA_TYPE, rec.aka_type)

	//	call myAka.BuildStmt (tableName & AKA)

	//	execute sql statement

	//	process sql errors

	// endif

	// set dataSK = returnSK

	// return status

}

// This function modifies a record in a GMI object in the MIDB database using the surrogate

// key and the field values defined in the handle. If an sql error occurs when the record is

// modified, then a status of DIT_MODIFY_DATA_ERROR is returned.

//

DIT_STATUS ModifyData (int dataSK)

{

	DIT_STATUS status = DIT_SUCCESS;

	// build sql statement from fields defined in handle by calling AddItem

	// call BuildStmt (tableName)

	// execute sql statement

	// if (sql error)

	//	log error message about which sql error occurred during modify

	//	return DIT_MODIFY_DATA_ERROR

	// endif

	// if (akaData)

	//	int recSk = 0;

	//

	//	call myAka dit_Aka_c (option, dataType)

	//	call myAka.AddItem (“eqp_aka_sk”, dataSK)

	//	call myAka.AddItem (DIT_AKA, rec.aka)

	//	call myAka.AddItem (DIT_AKA_TYPE, rec.aka_type)

	//	call myAka.BuildStmt (tableName & AKA)

	//	execute sql statement

	//	process sql errors

	// endif

	// return status

}

dit_EquipmentIndex_c

Purpose:	This class provides operations and attributes to access the GMI Equipment Index table or related Equipment views in the MIDB database. The class is instantiated with optionType to define the sql operation and with dataType to define the table or view on which the sql operation accesses.

Exportability: 	Protected

Interactions:	dit_sqlStmt_c

Public Operations:	dit_EquipmentIndex_c (DBPROCESS *inDbproc,

		enum dit_optionType optionType,

		enum dit_midbDataType inDataType)

	DIT_STATUS 	GetData (UZT_HANDLE selectHandle,

			UZT_HANDLE queryHandle,

			LIST **returnData)

	DIT_STATUS	 EditData (UZT_HANDLE dataHandle,

		char* dataSK);

Private Operations:	DIT_STATUS	SetSelect (dit_EqpIndexSELECT_OBJ_T *rec)

	DIT_STATUS	SetData (dit_EqpIndexDATA_OBJ_T *rec)

	DIT_STATUS	CreateData (dit_EqpIndexDATA_OBJ_T *rec,

			char *dataSK)

	DIT_STATUS	ModifyData (char *dataSK)

Private Members:	None

Public Operation PDL:

//

// This function is the constructor which is used to instantiate the class. The optionType

// parameter specifies the type of sql statement to used and the inDataType parameter

// specifies which GMI table or view to use.

//

dit_EquipmentIndex_c (DBPROCESS *inDbproc, enum dit_optionType optionType,

	enum dit_midbDataType inDataType)

	: public dit_midbBase_c (inDbproc, optionType, inDataType)

	// set skName to DIT_EQP_IDX_SK

	// for (dataType)

	//	case DIT_EQP_IDX:

	//	set tableName to “EQP_IDX”

	//	break;

	//	case DIT_EQP_IDX_BY_FAC:

	//	set tableName to “FAC_EQP_IDX_SUBVIEW”

	//	break;

	// endfor

}

Each public and private operation in this class perform the same steps to get, create, and modify Equipment Index data as described in the public and private opeations in dit_Equipment_c class. The difference in the public and private operations is the data structure in the UZT_HANDLE changes according to the MIDB object specified. For dit_EquipmentIndex_c the UZT_HANDLEs contain the following two data structures: dit_EqpIndexSELECT_OBJ_T and dit_EqpIndexDATA_OBJ_T.

Private Operation PDL:	See Private Operation PDL in dit_Equipment_c section

	for examples of the SetSelect, SetData, CreateData and

	ModifyData operations.

dit_Facility_c

Purpose:	This class provides operations and attributes to access the GMI Facility table or related Equipment views in the MIDB database. The class is instantiated with optionType to define the sql operation and with dataType to define the table or view on which the sql operation accesses.

Exportability: 	Protected

Interactions:	dit_sqlStmt_c

	dit_midbBase_c

Public Operations:		dit_Facility_c (DBPROCESS *inDbproc,

			enum dit_optionType optionType,

			enum dit_midbDataType inDataType)

	DIT_STATUS 	GetData (UZT_HANDLE selectHandle,

			UZT_HANDLE queryHandle,

			LIST **returnData)

	DIT_STATUS 	EditData (UZT_HANDLE dataHandle,

				char* dataSK);

Private Operations:	DIT_STATUS	SetSelect (dit_FacilitySELECT_OBJ_T *rec)

	DIT_STATUS	SetData (dit_FacilityDATA_OBJ_T *rec)

	DIT_STATUS	CreateData (dit_FacilityDATA_OBJ_T *rec,

			char *dataSK)

	DIT_STATUS	ModifyData (char *dataSK)

Private Members:	None

Public Operation PDL:

//

// This function is the constructor which is used to instantiate the class. The optionType

// parameter specifies the type of sql statement to used and the inDataType parameter

// specifies which GMI table or view to use.

//

dit_Facility_c (DBPROCESS *dbproc, enum dit_optionType optionType,

	enum dit_midbDataType inDataType)

	: public dit_midbBase_c (optionType, inDataType)

	// save inDataType in dataType

	// save optionType in option

	// set akaSelect to FALSE

	// set akaData to FALSE

	// set skName to DIT_FAC_SK

	// for (dataType)

	//	case DIT_FAC:

	//	set tableName to “FAC”

	//	break;

	//	case DIT_FAC_BY_EQP:

	//	set tableName to “EQP_FAC_SUBVIEW”

	//	break;

	//	case DIT_FAC_BY_EQP_IDX:

	//	set tableName to “EQP_IDX_FAC_SUBVIEW”

	//	break;

	//	case DIT_FAC_BY_TARGET:

	//	set tableName to “TGT_DETAIL_FAC_SUBVIEW”

	//	break;

	//	case DIT_FAC_BY_TRACK:

	//	set tableName to “TRACK_FAC_SUBVIEW”

	//	break;

	//	case DIT_FAC_BY_UNIT:

	//	set tableName to “UNIT_FAC_SUBVIEW”

	//	break;

	// endfor

}

Each public and private operation in this class perform the same steps to get, create, and modify Equipment Index data as described in the public and private opeations in dit_Equipment_c class. The difference in the public and private operations is the data structure in the UZT_HANDLE changes according to the MIDB object specified. For dit_Facilty_c the UZT_HANDLEs contain the following two data structures: dit_FacilitySELECT_OBJ_T and dit_FacilityDATA_OBJ_T.

Private Operation PDL:	See Private Operation PDL in dit_Equipment_c section

	for examples of the SetSelect, SetData, CreateData and

	ModifyData operations.

dit_Observation_c

Purpose:	This class provides operations and attributes to access the GMI Observation, Observation Elnot, Observation Parameters, Observation Report tables or related Observation views in the MIDB database. The class is instantiated with optionType to define the sql operation and with dataType to define the table or view on which the sql operation accesses.

Exportability: 	Protected

Interactions:	dit_sqlStmt_c

	dit_midbBase_c

Public Operations:		dit_Observation_c (DBPROCESS *inDbproc,

			enum dit_optionType optionType,

			enum dit_midbDataType inDataType)

	DIT_STATUS 	GetData (UZT_HANDLE selectHandle,

			UZT_HANDLE queryHandle,

			LIST **returnData)

	DIT_STATUS 	EditData (UZT_HANDLE dataHandle,

		char* dataSK)

Private Operations:	DIT_STATUS	SetSelect

			(dit_ObservationSELECT_OBJ_T *rec)

	DIT_STATUS	SetData (dit_ObservationDATA_OBJ_T *rec)

	DIT_STATUS	CreateData

			(dit_ObservationSELECT_OBJ_T *rec,

			char* dataSK)

	DIT_STATUS	ModifyData (char *dataSK)

Private Members:	None

Public Operation PDL:

//

// This function is the constructor which is used to instantiate the class. The optionType

// parameter specifies the type of sql statement to used and the inDataType parameter

// specifies which GMI table or view to use.

//

dit_Observation_c (DBPROCESS *inDbproc, enum dit_optionType optionType,

	enum dit_midbDataType inDataType)

	: public dit_midbBase_c (inDbproc, optionType, inDataType)

{

	// save inDataType in dataType

	// save optionType in option

	// set akaSelect to FALSE

	// set akaData to FALSE

	// for (dataType)

	//	case DIT_OBS:

	//	set tableName to “OBS”

	//	set skName to DIT_OBS_SK

	//	break;

	//	case DIT_OBS_ELNOT:

	//	set tableName to “OBS_ELNOT”

	//	set skName to DIT_OBS_ELNOT_SK

	//	break;

	//	case DIT_OBS_PARAMETERS:

	//	set tableName to “OBS_PAR”

	//	set skName to DIT_OBS_PAR_SK

	//	break;

	//	case DIT_OBS:_REPORT

	//	set tableName to “OBS_REPORT”

	//	set skName to DIT_OBS_REPORT_SK

	//	break;

	//	case OBS_BY_TRACK:

	//	set tableName to “TRACK_OBS_SUBVIEW”

	//	set skName to DIT_OBS_SK

	//	break;

	// endfor

}

Each public and private operation in this class perform the same steps to get, create, and modify Equipment Index data as described in the public and private opeations in dit_Equipment_c class. The difference in the public and private operations is the data structure in the UZT_HANDLE changes according to the MIDB object specified. For dit_Observation_c the UZT_HANDLEs contain the following two data structures: dit_ObservationSELECT_OBJ_T and dit_ObservationDATA_OBJ_T.

Private Operation PDL:	See Private Operation PDL in dit_Equipment_c section

	for examples of the SetSelect, SetData, CreateData and

	ModifyData operations

dit_Remark_c

Purpose:	This class provides operations and attributes to access the GMI Remarks table in the MIDB database. The class is instantiated with optionType to define the sql operation and with dataType to define the table or view on which the sql operation accesses.

Exportability: 	Protected

Interactions:	dit_sqlStmt_c

	dit_midbBase_c

Public Operations:		dit_Remark_c (DBPROCESS *inDbproc,

			enum dit_optionType optionType,

			enum dit_midbDataType inDataType)

	DIT_STATUS 	GetData (UZT_HANDLE selectHandle,

			UZT_HANDLE queryHandle,

			LIST **returnData)

	DIT_STATUS	EditData (UZT_HANDLE dataHandle,

		char* dataSK);

Private Operations:	void	SetSelect (dit_RmkSELECT_OBJ_T *rec)

	void	SetData (dit_RmkDATA_OBJ_T *rec)

Private Members:	None

Public Operation PDL:

//

// This function is the constructor which is used to instantiate the class. The optionType

// parameter specifies the type of sql statement to used and the inDataType parameter

// specifies which GMI table or view to use.

//

dit_Remarks_c (DBPROCESS *inDbproc, enum dit_optionType optionType,

	enum dit_midbDataType inDataType)

	: public dit_midbBase_c (in Dbproc, optionType, inDataType)

{

	// set skName to DIT_REMARKS_SK

	// for (dataType)

	//	case DIT_REMAKRS:

	//	set tableName to “RMK”

	//	break;

	// endfor

}

Each public and private operation in this class perform the same steps to get, create, and modify Equipment Index data as described in the public and private opeations in dit_Equipment_c class. The difference in the public and private operations is the data structure in the UZT_HANDLE changes according to the MIDB object specified. For dit_Remarks_c the UZT_HANDLEs contain the following two data structures: dit_RemarksSELECT_OBJ_T and dit_RemarksDATA_OBJ_T.

Private Operation PDL:	See Private Operation PDL in dit_Equipment_c section

	for examples of the SetSelect, SetData, CreateData and

	ModifyData operations.

dit_Target_c

Purpose:	This class provides operations and attributes to access the GMI Target, table or related Target views in the MIDB database. The class is instantiated with optionType to define the sql operation and with dataType to define the table or view on which the sql operation accesses.

Exportability: 	Protected

Interactions:	dit_sqlStmt_c

	dit_midbBase_c

Public Operations:			dit_Target_c (DBPROCESS *inDproc,

			enum dit_optionType optionType,

			enum dit_midbDataType inDataType)

	DIT_STATUS 	GetData (UZT_HANDLE selectHandle,

			UZT_HANDLE queryHandle,

			LIST **returnData)

	DIT_STATUS 	EditData (UZT_HANDLE dataHandle,

		char* dataSK)

Private Operations:	DIT_STATUS	SetSelect (dit_TargetSELECT_OBJ_T *rec)

	DIT_STATUS	SetData (dit_TargetDATA_OBJ_T *rec)

	DIT_STATUS	CreateData (dit_TargetDATA_OBJ_T *rec,

			char *dataSK)

	DIT_STATUS	ModifyData (char *dataSK)

Private Members:	None

Public Operation PDL:

//

// This function is the constructor which is used to instantiate the class. The optionType

// parameter specifies the type of sql statement to used and the inDataType parameter

// specifies which GMI table or view to use.

//

dit_Target_c (DBPROCESS *inDbproc, enum dit_optionType optionType,

	enum dit_midbDataType inDataType)

	: public dit_midbBase_c (optionType, inDataType)

{

	// save inDataType in dataType

	// save optionType in option

	// set akaSelect to FALSE

	// set akaData to FALSE

	// set skName to DIT_TARGET_SK

	// for (dataType)

	//	case DIT_TARGET:

	//	set tableName to “TGT_DETAIL”

	//	break;

	//	case TARGET_BY_FAC:

	//	set tableName to “FAC_TGT_DETAIL_SUBVIEW”

	//	break;

	// endfor

}

Each public and private operation in this class perform the same steps to get, create, and modify Equipment Index data as described in the public and private opeations in dit_Equipment_c class. The difference in the public and private operations is the data structure in the UZT_HANDLE changes according to the MIDB object specified. For dit_Target_c the UZT_HANDLEs contain the following two data structures: dit_TargetSELECT_OBJ_T and dit_TargetDATA_OBJ_T.

Private Operation PDL:	See Private Operation PDL in dit_Equipment_c section

	for examples of the SetSelect, SetData, CreateData and

	ModifyData operations.

dit_Track_c

Purpose:	This class provides operations and attributes to access the GMI Track, Track Elint Mode, Track Location tables or related Track views in the MIDB database. The class is instantiated with optionType to define the sql operation and with dataType to define the table or view on which the sql operation accesses.

Exportability: 	Protected

Interactions:	dit_sqlStmt_c

	dit_midbBase_c

Public Operations:			dit_Track_c (DBPROCESS *inDbproc,

			enum dit_optionType optionType,

			enum dit_midbDataType inDataType)

	DIT_STATUS 	GetData (UZT_HANDLE selectHandle,

			UZT_HANDLE queryHandle,

			LIST **returnData)

	DIT_STATUS 	EditData (UZT_HANDLE dataHandle,

			char *dataSK);

Private Operations:	DIT_STATUS	SetSelect (dit_TrackSELECT_OBJ_T *rec)

	DIT_STATUS	SetData (dit_TrackDATA_OBJ_T *rec)

	DIT_STATUS	CreateData (dit_TrackDATA_OBJ_T *rec,

			char *dataSK)

	DIT_STATUS	ModifyData (char *dataSK)

Private Members:	None

Public Operation PDL:

//

// This function is the constructor which is used to instantiate the class. The optionType

// parameter specifies the type of sql statement to used and the inDataType parameter

// specifies which GMI table or view to use.

//

dit_Track_c (DBPROCESS *inDbproc, enum dit_optionType optionType,

	enum dit_midbDataType inDataType)

	: public dit_midbBase_c (optionType, inDataType)

{

	// save inDataType in dataType

	// save optionType in option

	// set akaSelect to FALSE

	// set akaData to FALSE

	// for (dataType)

	//	case DIT_TRACK:

	//	set tableName to “TRACK”

	//	set skName to DIT_TRACK_SK

	//	break;

	//	case DIT_TRACK_ELINT_MODE:

	//	set tableName to “TRACK_ELINT_MODE”

	//	set skName to DIT_TRACK_ELINT_SK

	//	break;

	//	case DIT_TRACK_LOC:

	//	set tableName to “TRACK_LOC”

	//	set skName to DIT_TRACK_LOC_SK

	//	break;

	//	case TRACK_BY_EQP:

	//	set tableName to “EQP_TRACK_SUBVIEW”

	//	set skName to DIT_TRACK_SK

	//	break;

	//	case TRACK_BY_FAC:

	//	set tableName to “FAC_TRACK_SUBVIEW”

	//	set skName to DIT_TRACK_SK

	//	break;

	//	case TRACK_BY_OBS:

	//	set skName to DIT_TRACK_SK

	//	set tableName to “OBS_TRACK_SUBVIEW”

	//	break;

	//	case TRACK_BY_UNIT:

	//	set tableName to “UNIT_TRACK_SUBVIEW”

	//	set skName to DIT_TRACK_SK

	//	break;

	// endfor

}

Each public and private operation in this class perform the same steps to get, create, and modify Equipment Index data as described in the public and private opeations in dit_Equipment_c class. The difference in the public and private operations is the data structure in the UZT_HANDLE changes according to the MIDB object specified. For dit_Track_c the UZT_HANDLEs contain the following two data structures: dit_TrackSELECT_OBJ_T and dit_TrackDATA_OBJ_T.

Private Operation PDL:	See Private Operation PDL in dit_Equipment_c section

	for examples of the SetSelect, SetData, CreateData and

	ModifyData operations.

dit_Unit_c

Purpose:	This class provides operations and attributes to access the GMI Unit tables or related Unit views in the MIDB database. The class is instantiated with optionType to define the sql operation and with dataType to define the table or view on which the sql operation accesses.

Exportability: 	Protected

Interactions:	dit_sqlStmt_c

Public Operations:			dit_Unit_c (DBPROESS *inDbproc,

			enum dit_optionType optionType,

			enum dit_midbDataType inDataType)

	DIT_STATUS 	GetData (UZT_HANDLE selectHandle,

			UZT_HANDLE queryHandle,

			LIST **returnData)

	DIT_STATUS 	EditData (UZT_HANDLE dataHandle,

		char *dataSK)

Private Operations:	DIT_STATUS	SetSelect (dit_UnitSELECT_OBJ_T *rec)

	DIT_STATUS	SetData (dit_UnitDATA_OBJ_T *rec)

	DIT_STATUS	CreateData (dit_UnitDATA_OBJ_T *rec,

			char *dataSK)

	DIT_STATUS	ModifyData (char *dataSK)

Private Members:	None

Public Operation PDL:

//

// This function is the constructor which is used to instantiate the class. The optionType

// parameter specifies the type of sql statement to used and the inDataType parameter

// specifies which GMI table or view to use.

//

dit_Unit_c (DBPROCESS inDbproc, enum dit_optionType optionType,

	enum dit_midbDataType inDataType)

	: public dit_midbBase_c (optionType, inDataType)

{

	// save inDataType in dataType

	// save optionType in option

	// set akaSelect to FALSE

	// set akaData to FALSE

	// set skName to DIT_UNIT_SK

	// for (dataType)

	//	case DIT_UNIT:

	//	set tableName to UNIT

	//	break;

	//	case UNIT_BY_EQP:

	//	set tableName to “EQP_UNIT_SUBVIEW”

	//	break;

	//	case UNIT_BY_FAC:

	//	set tableName to “FAC_UNIT_SUBVIEW”

	//	break;

	//	case UNIT_BY_TRACK:

	//	set tableName to “TRACK_UNIT_SUBVIEW”

	//	break;

	// endfor

}

Each public and private operation in this class perform the same steps to get, create, and modify Equipment Index data as described in the public and private opeations in dit_Equipment_c class. The difference in the public and private operations is the data structure in the UZT_HANDLE changes according to the MIDB object specified. For dit_Unit_c the UZT_HANDLEs contain the following two data structures: dit_UntSELECT_OBJ_T and dit_UnitDATA_OBJ_T.

Private Operation PDL:	See Private Operation PDL in dit_Equipment_c section

	for examples of the SetSelect, SetData, CreateData and

	ModifyData operations.

uzt_getCoreStruct

Purpose:	This function provides TAMPS core with the capability to retrieve the data structure associated with the handle.

Exportability: 	Protected

Interactions:	None

Public Operations:	None

Private Operations:

void *	uzt_coreGetStruct (UZT_HANDLE handle)

Public Operation PDL:	None

Private Operation PDL:

//

// This function returns the data structure associated with the handle.

//

void * 	uzt_coreGetStruct (UZT_HANDLE handle)

{

	// return (void*) data structure for handle

}

uzt_getCoreStruct

Purpose:	This function provides TAMPS core with the capability to retrieve the data structure associated with the handle.

Exportability: 	Protected

Interactions:	None

Public Operations:	None

Private Operations:

char*	uzt_coreGetHandleName (UZT_HANDLE handle)

Public Operation PDL:	None

Private Operation PDL:

//

// This function returns the name of the handle.

//

char * 	uzt_ coreGetHandleName(UZT_HANDLE handle)

{

	// return (char*) name of handle

}

Interface Description

DIT_STATUS

Type:	enumeration

Purpose:	This enumeration defines the data types of errors that may occur when accessing the MIDB database.

Exportability:	Public

Interface:

	DIT_SUCCESS

	DIT_FAILURE

	DIT_MEMORY_ERROR

	// the following status values represent usage error conditions

	DIT_NULL_HANDLE

	DIT_EMPTY_DATA_OBJECT

	DIT_INVALID_DATA_OBJECT

	DIT_MISSING_DATA_ERROR

	DIT_INVALID_SK_VALUE

	// the following status values represent error SQL conditions

	DIT_MIDB_NOT_AVAILABLE

	DIT_QUERY_ERROR

	DIT_CREATE_DATA_ERROR

	DIT_MODIFY_DATA_ERROR

	DIT_DELETE_DATA_ERROR

	DIT_NO_DATA_FOUND

Notes:

DIT_SUCCESS	This is returned no errors have occurred and the dit function performs is required operations.

DIT_NULL_HANDLE	This is returned a null handle is used as a parameter in any of the dit functions.

DIT_EMPTY_DATA_OBJECT	This is returned if the object in the handle has not been modified.

DIT_INVALID_DATA_OBJECT	This is returned if the handle object and the requested data type do not match. Such as, if the handle object is DIT_FACILITY and the data requested is for DIT_UNIT.

DIT_MISSING_DATA_ERROR	This is returned if the handle object does not contain all the required data fields to perform the requested operation.

DIT_INVALID_SK_VALUE	This is returned if the surrogate key value of zero is being used to modify a GMI record in an MIDB table.

DIT_MIDB_NOT_AVAILABLE	This is returned if the MIDB database can not be accessed.

DIT_QUERY_ERROR	This is returned if the SQL query fails in the dit_getMidbData and dit_getTargets functions.

DIT_CREATE_DATA_ERROR	This is returned if the SQL insert fails in the dit_createMidbData and dit_createTarget functions.

DIT_MODIFY_DATA_ERROR	This is returned if the SQL update fails in the dit_modifyMidbData and dit_modifyTarget functions.

DIT_DELETE_DATA_ERROR	This is returned if the SQL delete fails in the dit_deleteTarget function.

DIT_NO_DATA_FOUND	This is returned if the SQL query does not find any records that match the query in the dit_getMidbData and dit_getTargets functions.

DIT_NO_MIDB_MODIFY_PRIVILEGE 	This is returned if the user does not have the permissions to create or modify GMI data in the MIDB database.

dit_midbDataType

Type:	enumeration

Purpose:	This enumeration is used to identify the type of data defined in the associated handle parameters when using the dit functions. Each data type corresponds to an object in the MIDB database and there is a finite set of columns which are available from each object.

Exportability:	Public

Interface:

	DIT_EQP

	DIT_EQP_ELINT_MODE

	DIT_EQP_IDX

	DIT_FAC

	DIT_OBS

	DIT_OBS_ELNOT

	DIT_OBS_PARAMETERS

	DIT_OBS_REPORT

	DIT_REMARKS

	DIT_TARGET

	DIT_TRACK

	DIT_TRACK_ELINT_MODE

	DIT_TRACK_LOC

	DIT_UNIT

	DIT_EQP_BY_FAC

	DIT_EQP_BY_TRACK

	DIT_EQP_BY_UNIT

	DIT_EQP_IDX_BY_FAC

	DIT_FAC_BY_EQP

	DIT_FAC_BY_EQP_IDX

	DIT_FAC_BY_TARGET

	DIT_FAC_BY_TRACK

	DIT_FAC_BY_UNIT

	DIT_OBS_BY_TRACK

	DIT_TARGET_BY_FAC

	DIT_TRACK_BY_EQP

	DIT_TRACK_BY_FAC

	DIT_TRACK_BY_OBS

	DIT_TRACK_BY_UNIT

	DIT_UNIT_BY_EQP

	DIT_UNIT_BY_FAC

	DIT_UNIT_BY_TRACK

Notes:	The following table outlines each enumeration value and the MIDB schema object that will be used in the public interface functions.

Get operation corresponds to dit_getMidbData

Create operation corresponds to dit_createMidbData

Modify operation corresponds to dit_modifyMidbData

Enumeration Value�MIDB

Table or View�Opera-tion�Description��DIT_EQP_ELINT_MODE�EQP_ELINT_

MODE�get�Retrieve all best equipment ELINT mode records.����create�Create an equipment ELINT mode record.����modify�Modify fields of an equipment ELINT mode record.��DIT_EQP�EQP�get�Retrieve all best equipment records.����create�Create an equipment record.����modify�Modify fields of an equipment record.��DIT_EQP_IDX�EQP_IDX�get�Retrieve all best equipment index records.����create�Create an equipment index record.����modify�Modify fields of an equipment index record.��DIT_FAC�FAC�get�Retrieve all best facility records.����create�Create a facility record.����modify�Modify fields of a facility record.��DIT_OBS�OBS�get�Retrieve all best observation records.����create�Create an observation record.����modify�Modify fields of an observation record.��DIT_OBS_ELNOT�OBS_ELNOT�get�Retrieve all best observation ELNOT records.����create�Create an observation ELNOT record.����modify�Modify fields of an observation ELNOT record.��DIT_OBS_PARAMETERS�OBS_PAR�get�Retrieve all best observation parameter records.����create�Create an observation parameter record.����modify�Modify fields of an observation parameter record.��DIT_OBS_REPORT�OBS_REPORT�get�Retrieve all best observation report records.����create�Create an observation report record.����modify�Modify fields of an observation report record.��DIT_REMARKS�RMK,�get�Retrieve all best remark records.���RMK_LINE�create�Create a remark record.����modify�Modify fields of a remark record.��DIT_TARGET�TGT_DETAIL�get�Retrieve all best target records.����create�Create a target record.����modify�Modify fields of a target record.��DIT_TRACK�TRACK�get�Retrieve all best track records.����create�Create a track record.����modify�Modify fields of a track record.��DIT_TRACK_ELINT_

MODE�TRACK_ELINT_MODE�get�Retrieve all best track ELINT mode records.����create�Create a track ELINT mode record.����modify�Modify fields of a track ELINT mode record.��DIT_TRACK_LOC�TRACK�get�Retrieve all best track location records.����create�Create a track location record.����modify�Modify fields of a track location record.��DIT_UNIT�UNIT�get�Retrieve all best unit records.����create�Create a unit record.����modify�Modify fields of a unit record.��DIT_EQP_BY_FAC�FAC_EQP_

SUBVIEW�get�Retrieve all best equipment records by the unique identifier for a facility record.���EQP�create�Create an equipment record using the unique identifier for a facility record.��DIT_EQP_BY_UNIT�UNIT_EQP_

SUBVIEW�get�Retrieve all best equipment records by the unique identifier for a unit record.���EQP�create�Create an equipment record using the unique identifier for a unit record.��DIT_EQP_IDX_BY_FAC�FAC_EQP_IDX_

SUBVIEW�get�Retrieve all best equipment index records by the unique identifier for a facility record.���EQP_IDX�create�Create an equipment index record using the unique identifier for a facility record��DIT_FAC_BY_EQP�EQP_FAC_

SUBVIEW�get�Retrieve all best facility records by the unique identifier for an equipment record.���FAC�create�Create a facility record using the unique identifier for an equipment record��DIT_FAC_BY_EQPIDX�EQP_IDX_FAC_

SUBVIEW�get�Retrieve all best facility records by the unique identifier for an equipment index record.���FAC�create�Create a facility record using the unique identifier for an equipment index record.��DIT_FAC_BY_TARGET�TGT_DETAIL_

FAC_SUBVIEW�get�Retrieve all best facility records by the unique identifier for a target record.���FAC�create�Create a facility record using the unique identifier for an target record.��DIT_FAC_BY_TRACK�TRACK_FAC_

SUBVIEW�get�Retrieve all best facility records by the unique identifier for a track record.���FAC�create�Create a facility record using the unique identifier for an track record.��DIT_FAC_BY_UNIT�UNIT_FAC_

SUBVIEW�get�Retrieve all best facility records by the unique identifier for an unit record.���FAC�create�Create a facility record using the unique identifier for an unit record.��DIT_OBS_BY_TRACK�TRACK_OBS_

SUBVIEW�get�Retrieve all best observation records by the unique identifier for a track record.���OBS�create�Create an observation record using the unique identifier for an track record.��DIT_TARGET_BY_FAC�FAC_TGT_

DETAIL_

SUBVIEW�get�Retrieve all best target records by the unique identifier for a facility record.���TGT_DETAIL�create�Create a target record using the unique identifier for a facility record.��DIT_TRACK_BY_EQP�EQP_TRACK_

SUBVIEW�get�Retrieve all best track records by the unique identifier for an equipment record.���TRACK�create�Create a track record using the unique identifier for an equipment record.��DIT_TRACK_BY_FAC�FAC_TRACK_

SUBVIEW�get�Retrieve all best track records by the unique identifier for a facility record.���TRACK�create�Create a track record using the unique identifier for a facility record.��DIT_TRACK_BY_OBS�OBS_TRACK_

SUBVIEW�get�Retrieve all best track records by the unique identifier for an observation record.���TRACK�create�Create a track record using the unique identifier for an observation record.��DIT_TRACK_BY_UNIT�UNIT_TRACK

SUBVIEW�get�Retrieve all best track records by the unique identifier for a unit record.���TRACK�create�Create a track record using the unique identifier for a unit record.��DIT_UNIT_BY_EQP�EQP_UNIT_

SUBVIEW�get�Retrieve all best unit records by the unique identifier for a equipment record.���UNIT�create�Create a unit record using the unique identifier for a equipment record.��DIT_UNIT_BY_FAC�FAC_UNIT_

SUBVIEW�get�Retrieve all best unit records by the unique identifier for a facility record.���UNIT�create�Create a unit record using the unique identifier for a facility record.��DIT_UNIT_BY_TRACK�TRACK_UNIT_

SUBVIEW�get�Retrieve all best unit records by the unique identifier for a track record.���UNIT�create�Create a unit record using the unique identifier for a track record.��

dit_itemType

Type:	enumeration

Purpose:	This enumeration is used when creating a dit handle to specify how the handle will be used. DIT_COLUMN_FIELDS corresponds to the columns requested in a query. DIT_DATA_FIELDS corresponds to the conditional values used to limit the amount of data returned by a query.

Exportability:	Public

Interface:

	DIT_COLUMN_FIELDS

	DIT_DATA_FIELDS

Notes:	None

dit_optionType

Type:	enumeration

Purpose:	This enumeration is used to generate a specific type of SQL statement.

Exportability:	Local

Interface:

	DIT_SELECT

	DIT_INSERT

	DIT_UPDATE

Notes:	

DIT_SELECT	This enumeration is used to generate an SQL select statement.

DIT_INSERT	This enumeration is used to generate an SQL insert statement.

DIT_UPDATE	This enumeration is used to generate an SQL update statement.

dit_defines.h

Type:	structure

Purpose:	The defines are used with the dit functions to query and modify data from the MIDB database. Handle objects are used to provide an interface which will protect the user from changes to the MIDB database which do not affect MPM processing.

	Arguments used in a query are added to the handle by using the uzt_setArg function. The valid arguments are provided in this source file. The handle is then used as a parameter to the MIDB query/update functions. Each function uses the handle to determine which fields are being used.

	The second set of defines specify the length of the character data. The first value represents the size of the database field and the second value represents the null-terminator for the character string.

Exportability:	Public

Interface:

#define DIT_FIELD_ON	‘1’

#define DIT_FIELD_OFF	‘0’

#define dit_ACTIVITY	“activity”

#define dit_AKA	“aka”

#define dit_AKA_TYPE	“aka_type”

#define dit_ALLEGIANCE	“allegiance”

#define dit_AIR_DEFENSE_AREA	ìair_def_areaî

#define dit_AZIMUTH	“azimuth”

#define dit_AZIMUTH_REF	“azimuth_ref”

#define dit_BE	“be”

#define dit_BE_NUMBER	“be_number”

#define dit_BE_NUMBER_REF	“be_number_ref”

#define dit_CAPACITY	“capacity”

#define dit_CAPACITY_MAX	“capacity_max”

#define dit_CAPACITY_UM	“capacity_um”

#define dit_CATEGORY	“category”

#define dit_CATEGORY_REF	“category_ref”

#define dit_CLASS_LEVEL	“class_lvl”

#define dit_CONDITION	“condition”

#define dit_COORD	“coord”

#define dit_COORD_BASIS	“coord_basis”

#define dit_COORD_DATETIME	“coord_datetime”

#define dit_COORD_DATUM	“coord_datum”

#define dit_COORD_DERIV	“coord_deriv”

#define dit_COORD_ROA	“coord_roa”

#define dit_COORD_ROA_CONF_LEVEL	“coord_roa_conf_lvl”

#define dit_COORD_ROA_UM	“coord_roa_um”

#define dit_COUNTRY_CODE	“cc”

#define dit_CPFL	“cpfl”

#define dit_DATETIME_CREATED	“datetime_created”

#define dit_DATETIME_FIRST_INFO	“datetime_first_info”

#define dit_DATETIME_LAST_CHG	“datetime_last_chg”

#define dit_DATETIME_LAST_OBS	“datetime_last_obs”

#define dit_DEGREE_INTEREST	“degree_interest”

#define dit_DMPI_ID	“dmpi_id”

#define dit_DOMAIN_LEVEL	“domain_lvl”

#define dit_DUTY_STATUS	“duty_status”

#define dit_ECHELON	“echelon”

#define dit_ELEVATION	“elevation”

#define dit_ELEVATION_ACC	“elevation_acc”

#define dit_ELEVATION_DATUM	“elevation_datum”

#define dit_ELEVATION_DERIV	“elevation_deriv”

#define dit_ELEVATION_DERIV_ACC	“elevation_deriv_acc”

#define dit_ELEVATION_DERIV_ACC_UM	“elevation_deriv_acc_um”

#define dit_ELEVATION_MSL	ìelevation_mslî

#define dit_ELEVATION_MSL_UM	ìelevation_msl_umî

#define dit_ELEVATION_UM	“elevation_um”

#define dit_ELNOT	“elnot”

#define dit_EMITTER_HEIGHT	“emitter_height”

#define dit_EQP_CODE	“eqp_code”

#define dit_EQP_ELINT_MODE_SK	“eqp_elint_mode_sk”

#define dit_EQP_ID_NUM	“eqp_id_num”

#define dit_EQP_IDX_SK	“eqp_idx_sk”

#define dit_EQP_TYPE	“eqp_type”

#define dit_EVAL	“eval”

#define dit_FAC_NAME	“fac_name”

#define dit_FAC_SK	“fac_sk”

#define dit_FUNCT_PRIMARY	“funct_primary”

#define dit_FUNCT_ROLE	“funct_role”

#define dit_FUNCT_SECONDARY	“funct_secondary”

#define dit_GRAPHIC_AGENCY	“graphic_agency”

#define dit_GRAPHIC_CC	“graphic_cc”

#define dit_GRAPHIC_ED_DATE	“graphic_ed_date”

#define dit_GRAPHIC_ED_NUMBER	“graphic_ed_num”

#define dit_GRAPHIC_SCALE	“graphic_scale”

#define dit_GRAPHIC_SERIES	“graphic_series”

#define dit_GRAPHIC_SHEET	“graphic_sheet”

#define dit_HARDNESS	“hardness”

#define dit_HEIGHT	“height”

#define dit_HEIGHT_UM	“height_um”

#define dit_HORIZONTAL_ACC	“horiz_acc”

#define dit_HORIZONTAL_ACC_UM	“horiz_acc_um”

#define dit_HORIZONTAL_CONFIDENCE	“horiz_confidence”

#define dit_HORIZONTAL_ORIENT	“horiz_orient”

#define dit_HORIZONTAL_ORIENT_UM	“horiz_orient_um”

#define dit_JMEM_TYPE	“jmem_type”

#define dit_LAST_CHG_USERID	“last_chg_userid”

#define dit_LAT_RADS	“lat”

#define dit_LONG_RADS	“lon”

#define dit_LOC_REASON	“loc_reason”

#define dit_LENGTH	“length”

#define dit_LENGTH_UM	“length_um”

#define dit_LL_LAT_RADS	“ll_lat”

#define dit_LL_LONG_RADS	“ll_long”

#define dit_MAX_DEMO_USE	“max_demo_use”

#define dit_MIL_GRID	“mil_grid”

#define dit_MIL_GRID_SYS	“mil_grid_sys”

#define dit_MSN_PRIMARY	“msn_primary”

#define dit_MSN_PRIMARY_SPECIALTY	“msn_primary_specialty”

#define dit_NOMEN	“nomen”

#define dit_NUCLEAR_CAP	“nuclear_cap”

#define dit_OB_TYPE	“ob_type”

#define dit_OBS_ELNOT_SK	“obs_elnot_sk”

#define dit_OBS_NAME	“obs_name”

#define dit_OBS_SK	“obs_sk”

#define dit_OBS_PAR_SK	“obs_sk”

#define dit_OBS_REPORT_SK	“obs_report_sk”

#define dit_OPER_AREA_PRIMARY	“oper_area_primary”

#define dit_OPER_AREA_SECONDARY	“oper_area_secondary”

#define dit_OPER_STATUS	“oper_status”

#define dit_OSUFFIX	“osuffix”

#define dit_OSUFFIX_REF	“osuffix_ref”

#define dit_PGRI	“pgri”

#define dit_PLNR_TARGET_DESCRIPTION	“description”

#define dit_PLNR_TARGET_NAME	“target_name”

#define dit_PLNR_TARGET_SK	“target_sk”

#define dit_PIN	“pin”

#define dit_PRI_LEG_QTY	“pri_leg_qty”

#define dit_PULSE_DURATION	“pulse_duration”

#define dit_QTY_OH	“qty_oh”

#define dit_QTY_OH_EVAL	“qty_oh_eval”

#define dit_QTY_PA	“qty_pa”

#define dit_QTY_WA	“qty_wa”

#define dit_RECORD_STATUS	“record_status”

#define dit_REQUESTING_ORG	“requesting_org”

#define dit_RES_PROD	“res_prod”

#define dit_REVIEW_DATE	“review_date”

#define dit_REMARK_SK	“rmk_sk”

#define dit_REMARK_LINE_SK	“rmk_line_sk”

#define dit_REMARK_TEXT	“rmk_text”

#define dit_REMARK_TYPE	“rmk_type”

#define dit_RADIO_FREQUENCY	“rf”

#define dit_SCAN	“scan”

#define dit_SCENARIO_SET	ìscenario_setî

#define dit_SEMI_MAJOR	“semi_major”

#define dit_SEMI_MINOR	“semi_minor”

#define dit_SEMI_UM	“semi_um”

#define dit_SEQUENCE_NUMBER	“seq_num”

#define dit_SHAPE	“shape”

#define dit_SHIP_CLASS_NAME	“ship_class_name”

#define dit_SHIP_TYPE	“ship_type”

#define dit_TDI	“tdi”

#define dit_TGT_DETAIL_NAME	“tgt_dtl_name”

#define dit_TGT_DETAIL_SK	“tgt_dtl_sk”

#define dit_TRACK_ELINT_MODE_SK	“track_elint_mode_sk”

#define dit_TRACK_LOC_SK	“track_loc_sk”

#define dit_TRACK_NAME	“track_name”

#define dit_TRACK_SK	“track_sk”

#define dit_UNIT_ID	“unit_id”

#define dit_UNIT_NAME	“unit_name”

#define dit_UR_LAT_RADS	“ur_lat”

#define dit_UR_LONG_RADS	“ur_long”

#define dit_UTM	“utm”

#define dit_VERTICAL_ACC	“vertical_accuracy”

#define dit_VERTICAL_ACC_UM	“vertical_acc_um”

#define dit_VERTICAL_ORIENT	“vertical_orient”

#define dit_VERTICAL_ORIENT_UM	“vertical_orient_um”

#define dit_WAC	“wac”

#define dit_WIDTH	“width”

#define dit_WIDTH_UM	“width_um”

The following defines represent the lengths of the character data.

#define dit_ACTIVITY_LEN	3+1

#define dit_AKA_LEN	54+1

#define dit_AKA_TYPE_LEN	4+1

#define dit_ALLEGIANCE_LEN	3+1

#define dit_AIR_DEFENSE_AREA_LEN	5+1

#define dit_AZIMUTH_REF_LEN	3+1

#define dit_BE_LEN	1+1

#define dit_BE_NUMBER_LEN	10+1

#define dit_BE_NUMBER_REF_LEN	10+1

#define dit_CAPACITY_UM_LEN	9+1

#define dit_CATEGORY_LEN	5+1

#define dit_CATEGORY_REF_LEN	5+1

#define dit_CLASS_LEVEL_LEN	1+1

#define dit_CONDITION_LEN	4+1

#define dit_COORD_LEN	21+1

#define dit_COORD_BASIS_LEN	2+1

#define dit_COORD_DATETIME_LEN	14+1

#define dit_COORD_DATUM_LEN	3+1

#define dit_COORD_DERIV_ACC_UM_LEN	2+1

#define dit_COORD_DERIV_LEN	2+1

#define dit_COORD_ROA_UM_LEN	2+1

#define dit_COUNTRY_CODE_LEN	2+1

#define dit_CPFL_LEN	1+1

#define dit_DATETIME_CREATED_LEN	14+1

#define dit_DATETIME_FIRST_INFO_LEN	14+1

#define dit_DATETIME_LAST_CHG_LEN	14+1

#define dit_DATETIME_LAST_OBS_LEN	14+1

#define dit_DECLASS_ON_LEN	2+1

#define dit_DECLASS_ON_DATE_LEN	8+1

#define dit_DEGREE_INTEREST_LEN	14+1

#define dit_DMPI_ID_LEN	30+1

#define dit_DOMAIN_LEVEL	10+1

#define dit_DUTY_STATUS_LEN	1+1

#define dit_ECHELON_LEN	4+1

#define dit_ELNOT_LEN	5+1

#define dit_ELEVATION_DERIV_LEN	2+1

#define dit_ELEV_DERIV_ACC_UM_LEN	2+1

#define dit_ELEVATION_DATUM_LEN	3+1

#define dit_ELEVATION_MSL_UM_LEN	9+1

#define dit_ELEVATION_UM_LEN	9+1

#define dit_EQP_CODE_LEN	7+1

#define dit_EQP_ID_NUM_LEN	3+1

#define dit_EQP_TYPE_LEN	30+1

#define dit_EVAL_LEN	1+1

#define dit_FAC_NAME_LEN	54+1

#define dit_FUNCT_PRIMARY_LEN	4+1

#define dit_FUNCT_ROLE_LEN	3+1

#define dit_FUNCT_SECONDARY_LEN	4+1

#define dit_GRAPHIC_AGENCY_LEN	15+1

#define dit_GRAPHIC_CC_LEN	2+1

#define dit_GRAPHIC_ED_DATE_LEN	8+1

#define dit_GRAPHIC_SERIES_LEN	5+1

#define dit_GRAPHIC_SHEET_LEN	15+1

#define dit_HARDNESS_LEN	1+1

#define dit_HEIGHT_UM_LEN	9+1

#define dit_HORIZONTAL_ACC_UM_LEN	1+1

#define dit_HORIZONTAL_ORIENT_UM_LEN	1+1

#define dit_JMEM_TYPE_LEN	54+1

#define dit_LAST_CHG_USERID_LEN	8+1

#define dit_LENGTH_UM_LEN	9+1

#define dit_LOC_REASON_LEN	9+1

#define dit_MAX_DEMO_USE_LEN	2+1

#define dit_MIL_GRID_LEN	15+1

#define dit_MIL_GRID_SYS_LEN	3+1

#define dit_MSN_PRIMARY_LEN	4+1

#define dit_MSN_PRIMARY_SPECIALTY_LEN	4+1

#define dit_NOMEN_LEN	54+1

#define dit_NUCLEAR_CAP_LEN	1+1

#define dit_OB_TYPE_LEN	1+1

#define dit_OPER_AREA_PRIMARY	2+1

#define dit_OPER_AREA_SECONDARY	2+1

#define dit_OPER_STATUS_LEN	3+1

#define dit_OSUFFIX_LEN	5+1

#define dit_OSUFFIX_REF_LEN	5+1

#define dit_PLNR_TARGET_DESCRPT_LEN	54+1

#define dit_PLNR_TARGET_NAME_LEN	54+1

#define dit_PIN_LEN	5+1

#define dit_QTY_OH_LEN	1+1

#define dit_RECORD_STATUS_LEN	8+1

#define dit_REQUESTING_ORG_LEN	2+1

#define dit_RES_PROD_LEN	2+1

#define dit_REVIEW_DATE_LEN	8+1

#define dit_REMARK_TYPE_LEN	4+1

#define dit_REMARK_TEXT_LEN	255+1

#define dit_SEMI_UM_LEN	9+1

#define dit_SK_LEN	14+1

#define dit_SHAPE_LEN	4+1

#define dit_SHIP_CLASS_NAME	54+1

#define dit_SHIP_TYPE_LEN	6+1

#define dit_TDI_LEN	3+1

#define dit_TGT_DETAIL_NAME_LEN	54+1

#define dit_TRACK_NAME_LEN	54+1

#define dit_UNIT_ID_LEN	10+1

#define dit_UNIT_NAME_LEN	54+1

#define dit_UTM_LEN	16+1

#define dit_VERTICAL_ACC_UM_LEN	1+1

#define dit_VERTICAL_ORIENT_UM_LEN	1+1

#define dit_WAC_LEN	4+1

#define dit_WIDTH_UM_LEN	9+1

Notes:	None

dit_midbSELECT_OBJ_T

Type:	structure

Purpose:	This structure represents the common selectable columns of the MIDB tables of an sql query. When the structure is allocated, each field is set off. The select fields to be returned in a query statement are set by using the uzt_setArg function.

Exportability:	Core

Interface:

	typedef struct {

	char	aka;

	char	aka_type;

	char	class_lvl;

	char	datetime_created;

	char	datetime_first_info;

	char	datetime_last_chg;

	char	domain_lvl;

	char	eval;

	char	last_chg_userid;

	char	record_status;

	char	res_prod;

	char	review_date;

	} dit_midbSELECT_OBJ_T;

Notes:	None

dit_midbDATA_OBJ_T

Type:	structure

Purpose:	This structure represents the common manipulation columns of MIDB tables of an sql statement. When the structure is allocated, each field is set to a default value. The fields to be used with a value in a sql statement are set by using the uzt_setArg function. The uzt_setArg function sets the value in the allocated structure. This structure is used in sql statements as the where condition for a query, as the set clause for an update, and as the values clause for an insert. It is also used to return the retrieved data found by the sql query statement.

Exportability:	Core

Interface:

	typedef struct {

	char	aka [dit_AKA_LEN];

	char	aka_type [dit_AKA_TYPE_LEN];

	char	class_lvl [dit_CLASS_LEVEL_LEN];

	char	datetime_created[dit _DATETIME_CREATED_LEN];

	char	datetime_first_info[dit _DATETIME_FIRST_INFO_LEN];

	char	datetime_last_chg [dit _DATETIME_LAST_CHG_LEN];

	char	domain_lvl [dit_DOMAIN_LEVEL_LEN];

	char	eval [dit_EVAL_LEN];

	char	last_chg_userid [dit_LAST_CHG_USERID_LEN];

	char	record_status [dit_RECORD_STATUS_LEN];

	char	res_prod [dit_RES_PROD_LEN];

	char	review_date [dit_REVIEW_DATE_LEN];

	} dit_midbDATA_OBJ_T;

Notes:	None

dit_midbLocationSELECT_OBJ_T

Type:	structure

Purpose:	This structure represents the location related selectable columns of the MIDB tables of an sql query. When the structure is allocated, each field is set off. The select fields to be returned in a query statement are set by using the uzt_setArg function.

Exportability:	Core

Interface:

	typedef struct {

	char	cc;

	char	coord;

	char	coord_basis;

	char	coord_datetime;

	char	coord_datum;

	char	coord_deriv;

	char	coord_deriv_acc;

	char	coord_deriv_acc_um;

	char	coord_roa;

	char	coord_roa_conf_lvl;

	char	coord_roa_um;

	char	elevation;

	char	elevation_acc;

	char	elevation_datum;

	char	elevation_deriv;

	char	elevation_deriv_acc;

	char	elevation_deriv_acc_um;

	char	elevation_um;

	char	graphic_agency;

	char	graphic_cc;

	char	graphic_ed_date;

	char	graphic_ed_num;

	char	graphic_scale;

	char	graphic_series;

	char	graphic_sheet;

	char	lat;

	char	lon;

	char	mil_grid;

	char	mil_grid_sys;

	char	utm;

	char	wac;

	} dit_midbLocationSELECT_OBJ_T;

Notes:	None

dit_midbLocationDATA_OBJ_T

Type:	structure

Purpose:	This structure represents the location related manipulation columns of MIDB tables of an sql statement. When the structure is allocated, each field is set to a default value. The fields to be used with a value in a sql statement are set by using the uzt_setArg function. The uzt_setArg function sets the value in the allocated structure. This structure is used in sql statements as the where condition for a query, as the set clause for an update, and as the values clause for an insert. It is also used to return the retrieved data found by the sql query statement.

Exportability:	Core

Interface:

	typedef struct {

	char	cc [dit_COUNTRY_CODE_LEN];

	char	coord [dit_COORD_LEN];

	char	coord_basis [dit_COORD_BASIS_LEN];

	char	coord_datetime [dit_COORD_DATETIME_LEN];

	char	coord_datum [dit_COORD_DATUM_LEN];

	char	coord_deriv [dit_COORD_DERIV_LEN];

	float	coord_deriv_acc;

	char	coord_deriv_acc_um [dit_COORD_DERIV_ACC_UM_LEN];

	float	coord_roa;

	int	coord_roa_conf_lvl;

	char	coord_roa_um [dit_COORD_ROA_UM_LEN];

	float	elevation;

	float	elevation_acc;

	char	elevation_datum [dit_ELEVATION_DATUM_LEN];

	char	elevation_deriv [dit_ELEVATION_DERIV_LEN];

	float	elevation_deriv_acc;

	char	elevation_deriv_acc_um [dit_ELEV_DERIV_ACC_UM_LEN];

	char	elevation_um [dit_ELEVATION_UM_LEN];

	char	graphic_agency [dit_GRPAHIC_AGENCY_LEN];

	char	graphic_cc [dit_GRPAHIC_CC_LEN];

	char	graphic_ed_date [dit_GRAPHIC_ED_DATE_LEN];

	int	graphic_ed_num;

	int	graphic_scale;

	char	graphic_series [dit_GRAPHIC_SERIES_LEN];

	char	graphic_sheet [dit_GRAPHIC_SHEET_LEN];

	float	lat;

	float	lon;

	float	ll_lat;

	float	ll_long;

	float	ur_lat;

	float	ur_long;

	char	mil_grid [dit_MIL_GRID_LEN];

	char	mil_grid_sys [dit_MIL_GRID_SYS_LEN];

	char	utm [dit_UTM_LEN];

	char	wac [dit_WAC_LEN];

	} dit_midbLocationDATA_OBJ_T;

Notes:	None

dit_EquipmentSELECT_OBJ_T

Type:	structure

Purpose:	This structure represents the selectable columns of the EQP and EQP_ELINT_MODE MIDB tables of an sql query. When the structure is allocated, each field is set off. The select fields to be returned in a query statement are set by using the uzt_setArg function.

Exportability:	Core

Interface:

	typedef struct {

	char	activity;

	char	allegiance;

	char	capacity;

	char	capacity_max;

	char	capacity_um;

	char	condition;

	char	datetime_last_obs;

	char	declass_on;

	char	declass_on_date;

	char	degree_interest;

	char	elnot;

	char	emitter_height;

	char	emitter_height_um;

	char	emitter_mode;

	char	eqp_code;

	char	eqp_elint_mode_sk;

	char	eqp_id_num;

	char	eqp_sk;

	char	funct_primary;

	char	funct_secondary;

	char	loc_reason;

	char	max_demo_use;

	char	nomen;

	char	ob_type;

	char	oper_area_primary;

	char	oper_area_secondary;

	char	oper_status;

	char	pin;

	char	qty_oh;

	char	qty_oh_eval;

	char	qty_pa;

	char	qty_wa;

	char	scenario_set;

	dit_midbSELECT_OBJ_T	common;

	dit_midbLocationSELECT_OBJ_T	location;

	char	fac_sk;	/* fac_eqp_subview */

	char	track_sk;	/* track_eqp_subview */

	char	unit_sk;	/* unit_eqp_subview */

	} dit_EquipmentSELECT_OBJ_T;

Notes:	None

dit_EquipmentDATA_OBJ_T

Type:	structure

Purpose:	This structure represents the manipulation columns of the EQP and EQP_ELINT_MODE MIDB tables of an sql statement. When the structure is allocated, each field is set to a default value. The fields to be used with a value in a sql statement are set by using the uzt_setArg function. The uzt_setArg function sets the value in the allocated structure. This structure is used in sql statements as the where condition for a query, as the set clause for an update, and as the values clause for an insert. It is also used to return the retrieved data found by the sql query statement.

Exportability:	Core

Interface:

	typedef struct {

	char	activity [dit_ACTIVTY_LEN];

	char	allegiance [dit_ALLEGIANCE_LEN];

	float	capacity;

	float	capacity_max;

	char	capacity_um [dit_CAPACITY_UM_LEN];

	char	condition [dit_CONDITION_LEN];

	char	datetime_last_obs [dit _DATETIME_LAST_OBS_LEN];

	char	declass_on [dit_DECLASS_ON_LEN];

	char	declass_on_date [dit_DECLASS_ON_DATE_LEN];

	char	degree_interest [dit_DEGREE_INTEREST_LEN];

	char	elnot [dit_ELNOT_LEN];

	float	emitter_height;

	char	emitter_height_um [dit_EMITTER_HEIGHT_UM_LEN];

	char	eqp_code [dit_EQP_CODE_LEN];

	char	eqp_elint_mode_sk [dit_SK_LEN];

	char	eqp_id_num [dit_EQP_ID_NUM_LEN];

	char	eqp_sk [dit_SK_LEN];

	char	funct_primary [dit_FUNCT_PRIMARY_LEN];

	char	funct_secondary [dit_FUNCT_SECONDARY_LEN];

	char	loc_reason [dit_LOC_REASON_LEN];

	char	max_demo_use [dit_MAX_DEMO_USE_LEN];

	char	nomen [dit_NOMEN_LEN];

	char	ob_type [dit_OB_TYPE_LEN];

	char	oper_area_primary [dit_OPER_AREA_PRIMARY_LEN];

	char	oper_area_secondary [dit_OPER_AREA_SECONDARY_LEN];

	char	oper_status [dit_OPER_STATUS_LEN];

	char	pin [dit_PIN_LEN];

	int	qty_oh;

	char	qty_oh_eval [dit_QTY_OH_EVAL_LEN];

	int	qty_pa;

	int	qty_wa;

	char	scenario_set [dit_SCENARIO_SET_LEN];

	dit_midbDATA_OBJ_T	common;

	dit_midbLocationDATA_OBJ_T	location;

	int	fac_sk;	/* fac_eqp_subview */

	int	track_sk;	/* track_eqp_subview */

	int	unit_sk;	/* unit_eqp_subview */

	} dit_EquipmentDATA_OBJ_T;

Notes:	None

dit_EqpIndexSELECT_OBJ_T

Type:	structure

Purpose:	This structure represents the selectable columns of the EQP_IDX MIDB table of an sql query. When the structure is allocated, each field is set off. The select fields to be returned in a query statement are set by using the uzt_setArg function.

Exportability:	Core

Interface:

	typedef struct {

	char	eqp_code;

	char	eqp_idx_sk;

	char	eqp_type;

	char	nomen;

	char	requesting_org;

	char	ship_class_name;

	char	ship_type;

	dit_midbSELECT_OBJ_T	common;

	char	fac_sk;	/* fac_eqp_idx_subview */

	} dit_EqpIndexSELECT_OBJ_T;

Notes:	None

dit_EqpIndexDATA_OBJ_T

Type:	structure

Purpose:	This structure represents the manipulation columns of the EQP_IDX MIDB table of an sql statement. When the structure is allocated, each field is set to a default value. The fields to be used with a value in a sql statement are set by using the uzt_setArg function. The uzt_setArg function sets the value in the allocated structure. This structure is used in sql statements as the where condition for a query, as the set clause for an update, and as the values clause for an insert. It is also used to return the retrieved data found by the sql query statement.

Exportability:	Core

Interface:

	typedef struct {

	char	eqp_code [dit_EQP_CODE_LEN];

	char	eqp_idx_sk [dit_SK_LEN];

	char	eqp_type [dit_EQP_TYPE_LEN];

	char	nomen [dit_NOMEN_LEN];

	char	requesting_org [dit_REQUESTING_ORG_LEN];

	char	ship_class_name [dit_SHIP_CLASS_NAME_LEN];

	char	ship_type [dit_SHIP_TYPE_LEN];

	dit_midbDATA_OBJ_T	common;

	char	fac_sk [dit_SK_LEN];	/* fac_eqp_idx_subview */

	} dit_EqpIndexDATA_OBJ_T;

Notes:	None

Notes:	None

dit_FacilitySELECT_OBJ_T

Type:	structure

Purpose:	This structure represents the selectable columns of the EQP MIDB table of an sql query. When the structure is allocated, each field is set off. The select fields to be returned in a query statement are set by using the uzt_setArg function.

Exportability:	Core

Interface:

	typedef struct {

	char	activity;

	char	air_defense_area;

	char	allegiance;

	char	be;

	char	be_number;

	char	category;

	char	condition;

	char	cpfl;

	char	declass_on;

	char	declass_on_date;

	char	degree_interest;

	char	fac_name;

	char	fac_sk;

	char	funct_primary;

	char	max_demo_use;

	char	oper_status;

	char	osuffix;

	char	pin;

	char	tdi;

	char	scenario_set;

	dit_midbSELECT_OBJ_T	common;

	dit_midbLocationSELECT_OBJ_T	location;

	char	eqp_sk;	/* eqp_fac_subview */

	char	eqp_idx_sk;	/* eqp_idx_fac_subview */

	char	target_sk;	/* tgt_detail_fac_subview */

	char	track_sk;	/* track_fac_subview */

	char	unit_sk;	/* unit_fac_subview */

	} dit_FacilitySELECT_OBJ_T;

Notes:	None

dit_FacilityDATA_OBJ_T

Type:	structure

Purpose:	This structure represents the manipulation columns of the FAC MIDB table of an sql statement. When the structure is allocated, each field is set to a default value. The fields to be used with a value in a sql statement are set by using the uzt_setArg function. The uzt_setArg function sets the value in the allocated structure. This structure is used in sql statements as the where condition for a query, as the set clause for an update, and as the values clause for an insert. It is also used to return the retrieved data found by the sql query statement.

Exportability:	Core

Interface:

	typedef struct {

	char	activity [dit_ACTIVITY_LEN];

	char	allegiance [dit_ALLEGIANCE_LEN];

	char	air_defense_area [dit_AIR_DEFENSE_AREA_LEN];

	char	be [dit_BE_LEN];;

	char	be_number [dit_BE_NUMBER_LEN];;

	char	category [dit_CATEGORY_LEN];

	char	condition [dit_CONDITION_LEN];

	char	cpfl [dit_CPFL_LEN];

	char	datetime_first_info[dit _DATETIME_FIRST_INFO_LEN];

	char	declass_on [dit_DECLASS_ON_LEN];

	char	declass_on_date [dit_DECLASS_ON_DATE_LEN];

	char	degree_interest [dit_DEGREE_INTEREST_LEN];

	char	fac_name [dit_FAC_NAME_LEN];

	char	fac_sk [dit_SK_LEN];

	char	funct_primary [dit_FUNCT_PRIMARY_LEN];

	char	max_demo_use [dit_MAX_DEMO_USE_LEN];

	char	oper_status [dit_OPER_STATUS_LEN];

	char	osuffix [dit_OSUFFIX_LEN];

	char	pin [dit_PIN_LEN];

	char	tdi [dit_TDI_LEN];

	char	scenario_set [dit_SCENARIO_SET]_LEN];

	dit_midbDATA_OBJ_T	common;

	dit_midbLocationDATA_OBJ_T	location;

	char	eqp_sk [dit_SK_LEN];	/* eqp_fac_subview */

	char	eqp_idx_sk [dit_SK_LEN];	/* eqp_idx_fac_subview */

	char	target_sk [dit_SK_LEN];	/* tgt_detail_fac_subview */

	char	track_sk [dit_SK_LEN];	/* track_fac_subview */

	char	unit_sk [dit_SK_LEN];	/* unit_fac_subview */

	} dit_FacilityDATA_OBJ_T;

Notes:	None

dit_ObservationSELECT_OBJ_T

Type:	structure

Purpose:	This structure represents the selectable columns of the OBS, OBS_ELNOT, OBS_PAR and OBS_REPORT MIDB tables of an sql query. When the structure is allocated, each field is set off. The select fields to be returned in a query statement are set by using the uzt_setArg function.

Exportability:	Core

Interface:

	typedef struct {

	char	allegiance;

	char	azimuth;

	char	azimuth_ref;

	char	be_number_ref;

	char	category_ref;

	char	elnot;

	char	eqp_code;

	char	funct_primary;

	char	funct_role;

	char	obs_elnot_sk;

	char	obs_name;

	char	obs_par_sk;

	char	obs_report_sk;

	char	obs_sk;

	char	oper_status;

	char	osuffix_ref;

	char	pgri;

	char	pri_leg_qty;

	char	pulse_duration;

	char	rf;

	char	scan;

	char	semi_major;

	char	semi_minor;

	char	semi_um;

	char	seq_num;

	char	unit_id;

	dit_midbSELECT_OBJ_T	common;

	dit_midbLocationSELECT_OBJ_T	location;

	char	track_sk;	/* track_obs_subview */

	} dit_ObservationSELECT_OBJ_T;

Notes:	None

dit_ObservationDATA_OBJ_T

Type:	structure

Purpose:	This structure represents the manipulation columns of the OBS, OBS_ELNOT, OBS_PAR and OBS_REPORT MIDB tables of an sql statement. When the structure is allocated, each field is set to a default value. The fields to be used with a value in a sql statement are set by using the uzt_setArg function. The uzt_setArg function sets the value in the allocated structure. This structure is used in sql statements as the where condition for a query, as the set clause for an update, and as the values clause for an insert. It is also used to return the retrieved data found by the sql query statement.

Exportability:	Core

Interface:

	typedef struct {

	char	allegiance [dit_ALLEGIANCE_LEN];

	float	azimuth;

	char	azimuth_ref [dit_AZIMUTH_REF_LEN];

	char	be_number_ref [dit_BE_NUMBER_REF_LEN];

	char	category_ref [dit_CATEGORY_REF_LEN];;

	char	elnot [dit_ELNOT_LEN];

	char	eqp_code [dit_EQP_CODE_LEN];

	char	funct_primary [dit_FUNCT_PRIMARY_LEN];

	char	funct_role [dit_FUNCT_ROLE_LEN];

	char	obs_elnot_sk [dit_SK_LEN];

	char	obs_name [dit_OBS_NAME_LEN];

	char	obs_par_sk [dit_SK_LEN];

	char	obs_report_sk [dit_SK_LEN];

	char	obs_sk [dit_SK_LEN];

	char	oper_status [dit_OPER_STATUS_LEN];

	char	osuffix_ref [dit_OSUFFIX_REF_LEN];

	float	pgri;

	int	pri_leg_qty;

	float	pulse_duration;

	float	rf;

	float	scan;

	float	semi_major;

	float	semi_minor;

	char	semi_um [dit_SEMI_UM_LEN];

	int	seq_num;

	char	unit_id [dit_UNIT_ID_LEN];

	dit_midbDATA_OBJ_T	common;

	dit_midbLocationDATA_OBJ_T	location;

	int	track_sk;	/* track_obs_subview */

	} dit_ObservationDATA_OBJ_T;

Notes:	None

dit_RemarkSELECT_OBJ_T

Type:	structure

Purpose:	This structure represents the selectable columns of the RMK and RMK_LINE MIDB tables of an sql query. When the structure is allocated, each field is set off. The select fields to be returned in a query statement are set by using the uzt_setArg function.

Exportability:	Core

Interface:

	typedef struct {

	char	remark_sk;

	char	remark_line_sk;

	char	remark_text;

	char	remark_type;

	char	fac_sk;

	dit_midbSELECT_OBJ_T	common;

	} dit_RemarkSELECT_OBJ_T;

Notes:	None

dit_RemarkDATA_OBJ_T

Type:	structure

Purpose:	This structure represents the manipulation columns of the RMK and RMK_LINE MIDB tables of an sql statement. When the structure is allocated, each field is set to a default value. The fields to be used with a value in a sql statement are set by using the uzt_setArg function. The uzt_setArg function sets the value in the allocated structure. This structure is used in sql statements as the where condition for a query, as the set clause for an update, and as the values clause for an insert. It is also used to return the retrieved data found by the sql query statement.

Exportability:	Core

Interface:

	typedef struct {

	char	remark_sk [dit_SK_LEN];

	char	remark_line_sk [dit_SK_LEN];

	char	remark_text [dit_REMARK_TEXT_LEN];

	char	remark_type [dit_REMARK_TYPE_LEN];

	dit_midbDATA_OBJ_T	common;

	char	fac_sk [dit_SK_LEN];

	} dit_RemarkDATA_OBJ_T;

Notes:	None

dit_TargetSELECT_OBJ_T

Type:	structure

Purpose:	This structure represents the selectable columns of the TGT_DETAIL MIDB table of an sql query. When the structure is allocated, each field is set off. The select fields to be returned in a query statement are set by using the uzt_setArg function.

Exportability:	Core

Interface:

	typedef struct {

	char	azimuth;

	char	azimuth_ref;

	char	degree_interest;

	char	dmpi_id;

	char	hardness;

	char	height;

	char	height_um;

	char	jmem_type;

	char	length;

	char	length_um;

	char	loc_name;

	char	oper_status;

	char	shape;

	char	tgt_detail_name;

	char	tgt_detail_sk;

	char	vertical_orient;

	char	width;

	char	width_um;

	dit_midbSELECT_OBJ_T	common;

	dit_midbLocationSELECT_OBJ_T	location;

	char	fac_sk;	/* fac_tgt_detail_subview */

	} dit_TargetSELECT_OBJ_T;

Notes:	None

dit_TargetDATA_OBJ_T

Type:	structure

Purpose:	This structure represents the manipulation columns of the TGT_DETAIL MIDB table of an sql statement. When the structure is allocated, each field is set to a default value. The fields to be used with a value in a sql statement are set by using the uzt_setArg function. The uzt_setArg function sets the value in the allocated structure. This structure is used in sql statements as the where condition for a query, as the set clause for an update, and as the values clause for an insert. It is also used to return the retrieved data found by the sql query statement.

Exportability:	Core

Interface:

	typedef struct {

	float	azimuth;

	char	azimuth_ref [dit_AZIMUTH_REF_LEN];

	char	degree_interest [dit_DEGREE_INTEREST_LEN];

	char	dmpi_id [dit_DMPI_ID_LEN];

	char	hardness [dit_HARDNESS_LEN];

	float	height;

	char	height_um [dit_HEIGHT_LEN];

	char	jmem_type [dit_JMEM_TYPE_LEN];

	float	length;

	char	length_um [dit_LENGTH_LEN];

	char	loc_name [dit_LOC_NAME_LEN];

	char	oper_status [dit_OPER_STATUS_LEN];

	char	shape [dit_SHAPE_LEN];

	char	tgt_detail_name [dit_TGT_DETAIL_NAME_LEN];

	char	tgt_detail_sk [dit_SK_LEN];

	float	vertical_orient;

	float	width;

	char	width_um [dit_WIDTH_UM_LEN];

	dit_midbDATA_OBJ_T	common;

	dit_midbLocationDATA_OBJ_T	location;

	char	fac_sk [dit_SK_LEN];	/* fac_tgt_detail_subview */

	} dit_TargetDATA_OBJ_T;

Notes:	None

dit_TrackSELECT_OBJ_T

Type:	structure

Purpose:	This structure represents the selectable columns of the TRACK, TRACK_ELINT_MODE, TRACK_LOC MIDB tables of an sql query. When the structure is allocated, each field is set off. The select fields to be returned in a query statement are set by using the uzt_setArg function.

Exportability:	Core

Interface:

	typedef struct {

	char	azimuth;

	char	azimuth_ref;

	char	elnot;

	char	loc_reason;

	char	oper_status;

	char	pin;

	char	semi_major;	

	char	semi_minor;

	char	semi_um;

	char	track_elint_mode_sk;

	char	track_loc_sk;

	char	track_sk;

	char	track_name;

	char	track_type;

	dit_midbSELECT_OBJ_T	common;

	dit_midbLocationSELECT_OBJ_T	location;

	char	eqp_sk;	/* eqp_track_subview */

	char	fac_sk;	/* fac_track_subview */

	char	obs_sk;	/* obs_track_subview */

	char	unit_sk;	/* unit_track_subview */

	} dit_TrackSELECT_OBJ_T;

Notes:	None

dit_TrackDATA_OBJ_T

Type:	structure

Purpose:	This structure represents the manipulation columns of the TRACK, TRACK_ELINT_MODE MIDB tables of an sql statement. When the structure is allocated, each field is set to a default value. The fields to be used with a value in a sql statement are set by using the uzt_setArg function. The uzt_setArg function sets the value in the allocated structure. This structure is used in sql statements as the where condition for a query, as the set clause for an update, and as the values clause for an insert. It is also used to return the retrieved data found by the sql query statement.

Exportability:	Core

Interface:

	typedef struct {

	float	azimuth;

	char	azimuth_ref [dit_AZIMUTH_REF_LEN];

	char	elnot [dit_ELNOT_LEN];

	char	loc_reason [dit_LOC_REASON_LEN];

	char	oper_status [dit_OPER_STATUS_LEN];

	char	track_name [dit_TRACK_NAME_LEN];

	float	semi_major;

	float	semi_minor;

	char	semi_um [dit_SEMI_UM_LEN];

	char	track_elint_mode_sk [dit_SK_LEN];

	char	track_loc_sk [dit_SK_LEN];

	char	track_sk [dit_SK_LEN];

	dit_midbDATA_OBJ_T	common;

	dit_midbLocationDATA_OBJ_T	location;

	char	eqp_sk [dit_SK_LEN];	/* eqp_track_subview */

	char	fac_sk [dit_SK_LEN];	/* fac_track_subview */

	char	obs_sk [dit_SK_LEN];	/* obs_track_subview */

	char	unit_sk [dit_SK_LEN];	/* unit_track_subview */

	} dit_TrackDATA_OBJ_T;

Notes:	None

dit_UnitSELECT_OBJ_T

Type:	structure

Purpose:	This structure represents the selectable columns of the UNIT MIDB table of an sql query. When the structure is allocated, each field is set off. The select fields to be returned in a query statement are set by using the uzt_setArg function.

Exportability:	Core

Interface:

	typedef struct {

	char	allegiance;

	char	condition;

	char	duty_status;

	char	echelon;

	char	funct_role;

	char	loc_reason;

	char	msn_primary;

	char	msn_primary_specialty;

	char	nuclear_cap;

	char	ob_type;

	char	oper_status;

	char	unit_id;

	char	unit_name;

	char	unit_num;

	char	unit_sk;

	dit_midbSELECT_OBJ_T	common;

	dit_midbLocationSELECT_OBJ_T	location;

	char	fac_sk;	/* fac_unit_subview */

	char	eqp_sk;	/* eqp_unit_subview */

	char	track_sk;	/* track_unit_subview */

	} dit_UnitSELECT_OBJ_T;

Notes:	None

dit_UnitDATA_OBJ_T

Type:	structure

Purpose:	This structure represents the manipulation columns of the UNIT MIDB table of an sql statement. When the structure is allocated, each field is set to a default value. The fields to be used with a value in a sql statement are set by using the uzt_setArg function. The uzt_setArg function sets the value in the allocated structure. This structure is used in sql statements as the where condition for a query, as the set clause for an update, and as the values clause for an insert. It is also used to return the retrieved data found by the sql query statement.

Exportability:	Core

Interface:

	typedef struct {

	char	allegiance [dit_ALLEGIANCE_LEN];

	char	condition [dit_CONDITION_LEN];

	char	duty_status [dit_DUTY_STATUS_LEN];

	char	echelon [dit_ECHELON_LEN];

	char	funct_role [dit_FUNCT_ROLE_LEN];

	char	loc_reason [dit_LOC_REASON_LEN];

	char	msn_primary [dit_MSN_PRIMARY_LEN];

	char	msn_primary_specialty [dit_MSN_PRIMARY_SPECIALTY_LEN];

	char	nuclear_cap [dit_NUCLEAR_CAP_LEN];

	char	ob_type [dit_OB_TYPE_LEN];

	char	oper_status [dit_OPER_STATUS_LEN];

	char	unit_id [dit_UNIT_ID];

	char	unit_name [dit_UNIT_NAME_LEN];

	char	unit_sk [dit_SK_LEN];

	dit_midbDATA_OBJ_T	common;

	dit_midbLocationDATA_OBJ_T	location;

	char	fac_sk [dit_SK_LEN];	/* fac_unit_subview */

	char	eqp_sk [dit_SK_LEN];	/* eqp_unit_subview */

	char	track_sk [dit_SK_LEN];	/* track_unit_subview */

	} dit_UnitDATA_OBJ_T;

Notes:	None

Unit Test Plans and Procedures

The following functions will be tested by writing a test driver to call each function with each test case and verify the results. All error conditions will be tested and all paths through the code will be tested by the test driver. SQL access to the MIDB database will be used to verify the retrieve and update functions while the test driver is being executed. The Sunsoft debugger will be used to exercise error path conditions and the Purify products will be used to to verify memory initialization, allocation and de-allocation.

Test Case for Function: dit_createHandle

Dependencies:

uzt_createHandle

Assumptions:

None

Test Cases:

a.	Use the debugger to create memory error.

b.	Use the debugger to create handle creation error.

Verification:

a.	Verify that the status of DIT_MEMORY_ERROR is returned.

b.	Verify that the status of DIT_CREATE_HANDLE_ERROR is returned.

Test Steps:

Step�Action�Expected Results�Remarks��1�Call function with dataType set to DIT_EQP_ELINT_MODE and itemType is set to DIT_SELECT_FIELDS�ELINT mode select object handle is created.���2�Call uzt_coreGetStruct�ELINT mode select object structure is returned.���3�Repeat steps 1 and 2 for other dit_midbDataType enumerations

�Select object handle is created for each enumeration type and the select object structure is returned���4�Call function with dataType set to DIT_EQP_ELINT_MODE and itemType is set to DIT_DATA_FIELDS�ELINT mode data object handle is created.���5�Call uzt_coreGetStruct�ELINT mode data object structure is returned.���6�Repeat steps 1 and 2 for other dit_midbDataType enumerations

�Data object handle is created for each enumeration type and the data object structure is returned���

Test Case for Function: dit_deleteHandle

Dependencies:

uzt_destroyHandle

Assumptions:

None

Test Cases:

a.	Call funciton with null handle.

Verification:

a.	Verify execution continues after function call.

Test Steps:

Step�Action�Expected Results�Remarks��1�Call function to free facility handle�no errors and memory is freed���

Test Case for Function: dit_deleteHandleData

Dependencies:

dit_deleteHandle

Assumptions:

None

Test Cases:

a.	Call function with null list pointer.

Verification:

a.	Verify execution continues after function call.

Test Steps:

Step�Action�Expected Results�Remarks��1�Call function with one item on list�all handles and list is freed���2�Call function with more than 1 item on list�all handles and list is freed���3�Call function with empty list�the list is freed���

Test Case for Function: dit_getMidbData

�� EMBED Excel.Sheet.5 ���� EMBED Excel.Sheet.5 ����

Dependencies:

MIDB database to be used for testing.

The following DIT classes are used to retrieve data from the GMI tables in the MIDB database

dit_ElintMode_c

dit_Equipment_c

dit_EquipmentIndex_c

dit_Facility_c

dit_Observation_c

dit_Remarks_c

dit_Target_c

dit_Track_c

dit_Unit_c

dit_sqlStmt_c

dit_midbBase_c

Assumptions:

User access into MIDB database.

Test Cases:

a.	Call function when MIDB database is not installed.

b.	Call function when selectHandle is null.

c.	Call function when selectHandle does not match the dataType and when queryHandle does not match dataType.

d.	Call function when queryHandle data is constrained so that no records will match query.

e.	Call function when selectHandle does not specify any data to be retrieved.

f.	Call function when queryHandle is null.

Verification:

a.	Verify that the status of DIT_MIDB_NOT_INSTALLED is returned.

b.	Verify that the status of DIT_NULL_HANDLE is returned.

c.	Verify that the status of DIT_INVALID_DATA_OBJECT is returned.

d.	Verify that the status of DIT_NO_DATA_FOUND is returned.

e.	Verify that the status of DIT_EMPTY_DATA_ERROR is returned.

f.	Verify that the data is retrieved from the database.

Test Steps:

Step�Action�Expected Results�Remarks��1�Call function using DIT_EQP_ELINT_MODE,

selectHande set with all valid selections and

queryHandle set with eqp_id_num value�All records for eqp_id_num are returned.���2�In sql, execute same query as in previous step.�All records for eqp_id_num are returned.�The records returned from this and the previous step should match.��3�Call function using DIT_EQP,

selectHande set with all valid selections and

queryHandle set with eqp_id values�All records for eqp_id are returned.���4�In sql, execute same query as in previous step.�All records for eqp_id are returned.�The records returned from this and the previous step should match.��5�Call function using

DIT_ EQP_IDX,

selectHande set with all valid selections and

queryHandle set with eqp_type values�All records eqp_type are returned.�Note the AKA value.��6�In sql, execute same query as in previous step.

 Also, execute query on EQP_IDX_AKA using the eqp_sk to find get the aka value.�All records eqp_type are returned.

The aka value is returned.�The records returned from this and the previous step should match.

The aka value is the same as the previous step.��7�Call function using DIT_FAC,

selectHande set with

be_number, country_code

fac_name, fac_sk,

latitude, longitude

and

queryHandle set with country_code value�All records for country_code are returned.���8�In sql, execute same query as in previous step.�All records for country code are returned.�The records returned from this and the previous step should match.��9�Call function using DIT_FAC,

selectHande set with all valid selections and

queryHandle set with country_code, upper right and lower left latitude/longitude values�All records for country_code and within lower left and upper right latitude/longitude bounding area are returned.���10�In sql, execute same query as in previous step.�All records for country_code and within lower left and upper right latitude/longitude are returned.�The records returned from this and the previous step should match.��11�Call function using DIT_OBS,

selectHande set with all valid selections and

queryHandle set with country_code value�All records for country_code are returned.���12�In sql, execute same query as in previous step.�All records for country_code are returned.�The records returned from this and the previous step should match.��13�Call function using DIT_OBS_ELNOT,

selectHande set with all valid

selections and

queryHandle set with country_code value�All records for country_code are returned.���14�In sql, execute same query as in previous step.�All records for country_code are returned.�The records returned from this and the previous step should match.��15�Call function using DIT_OBS_PARAMETERS

selectHande set with all valid

selections and

queryHandle set with country_code value�All records for country_code are returned.���16�In sql, execute same query as in previous step.�All records for country_code are returned.�The records returned from this and the previous step should match.��17�Call function using DIT_OBS_REPORT,

selectHande set with all valid

selections and

queryHandle set with country_code value�All records for country_code are returned.���18�In sql, execute same query as in previous step.�All records for country_code are returned.�The records returned from this and the previous step should match.��19�Call function using DIT_REMARKS,

selectHande set with all valid selections and

queryHandle set with remark_type values�All records remark_type are returned.���20�In sql, execute same query as in previous step.�All records for remark_type are returned.�The records returned from this and the previous step should match.��21�Call function using DIT_TARGET,

selectHande set with all valid selections and

queryHandle set with tgt_detail_name values�All records for tgt_detail_name are returned.���22�In sql, execute same query as in previous step.�All records for tgt_detail_name are returned.�The records returned from this and the previous step should match.��23�Call function using DIT_TRACK,

selectHande set with all valid selections and

queryHandle set with track_id value�All records for track_id are returned.���24�In sql, execute same query as in previous step.�All records for unit_id are returned.�The records returned from this and the previous step should match.��25�Call function using DIT_

TRACK_ELINT_MODE,

selectHande set with all valid selections and

queryHandle set with track_id value�All records for track_id are returned.���26�In sql, execute same query as in previous step.�All records for unit_id are returned.�The records returned from this and the previous step should match.��27�Call function using DIT_TRACK_LOC,

selectHande set with all valid selections and

queryHandle set with track_id value�All records for unit_id are returned.���28�In sql, execute same query as in previous step.�All records for unit_id are returned.�The records returned from this and the previous step should match.��29�Call function using DIT_UNIT,

selectHande set with all valid selections and

queryHandle set with unit_id value�All records for unit_id are returned.���30�In sql, execute same query as in previous step.�All records for unit_id are returned.�The records returned from this and the previous step should match.��31�Call function using DIT_EQP_BY_FAC,

selectHande set with all valid selections and

queryHandle set with fac_sk values�All equipment records for fac_sk are returned.�Uses FAC_EQP_

SUBVIEW��32�In sql, execute same query as in previous step.�All equipment records for fac_sk are returned.�The records returned from this and the previous step should match.��33�Call function using DIT_EQP_BY_TRACK,

selectHande set with all valid selections and

queryHandle set with track_sk values�All equipment records for track_sk are returned.�Uses TRACK_EQP_

SUBVIEW��34�In sql, execute same query as in previous step.�All equipment records for track_sk are returned.�The records returned from this and the previous step should match.��35�Call function using DIT_EQP_BY_UNIT,

selectHande set with all valid selections and

queryHandle set with unit_sk values�All equipment records for unit_sk are returned.�Uses UNIT_EQP_

SUBVIEW��36�In sql, execute same query as in previous step.�All equipment records for unit_sk are returned.�The records returned from this and the previous step should match.��37�Call function using DIT_FAC_BY_EQP,

selectHande set with

be_number, country_code,

fac_name, fac_sk and

queryHandle set with eqp_sk values�All facility records for eqp_sk are returned.�Uses EQP_FAC_

SUBVIEW��38�In sql, execute same query as in previous step.�All facility records for eqp_sk are returned.�The records returned from this and the previous step should match.��39�Call function using DIT_FAC_BY_EQP_IDX,

selectHande set with

be_number, country_code,

fac_name, fac_sk and

queryHandle set with eqp_idx_sk values�All facility records eqp_idx_sk are returned.�Uses EQP_IDX_FAC_

SUBVIEW��40�In sql, execute same query as in previous step.�All facility records eqp_idx_sk are returned.�The records returned from this and the previous step should match.��41�Call function using DIT_FAC_BY_TARGET,

selectHande set with

be_number, country_code,

fac_name, fac_sk and

queryHandle set with target_sk values�All facility records target_sk are returned.�Uses TARGET_FAC_

SUBVIEW��42�In sql, execute same query as in previous step.�All facility records for the target_sk are returned.�The records returned from this and the previous step should match.��43�Call function using DIT_FAC_BY_TRACK,

selectHande set with

be_number, country_code,

fac_name, fac_sk and

queryHandle set with track_sk values�All facility records for the track_sk are returned.�Uses TRACK_FAC_

SUBVIEW��44�In sql, execute same query as in previous step.�All facility records for the track_sk are returned.�The records returned from this and the previous step should match.��45�Call function using DIT_FAC_BY_UNIT,

selectHande set with

be_number, country_code,

fac_name, fac_sk and

queryHandle set with unit_sk values�All facility records for the unit_sk are returned.�Uses UNIT_FAC_

SUBVIEW��46�In sql, execute same query as in previous step.�All facility records for the unit_sk are returned.�The records returned from this and the previous step should match.��47�Call function using DIT_OBS_BY_TRACK,

selectHande set with all valid

selections and

queryHandle set with track_sk values�All observation records for the track_sk are returned.�Uses TRACK_OBS_

SUBVIEW��48�In sql, execute same query as in previous step.�All observation records for the track_sk are returned.�The records returned from this and the previous step should match.��49�Call function using DIT_TARGET_BY_FAC,

selectHande set with all valid

selections and

queryHandle set with fac_sk values�All target records for the fac_sk are returned.�Uses FAC_TARGET_

SUBVIEW��50�In sql, execute same query as in previous step.�All target records for the fac_sk are returned.�The records returned from this and the previous step should match.��51�Call function using DIT_TRACK_BY_EQP,

selectHande set with all valid

selections and

queryHandle set with eqp_sk values�All track records for the eqp_sk are returned.�Uses EQP_TRACK_

SUBVIEW��52�In sql, execute same query as in previous step.�All track records for the track_sk are returned.�The records returned from this and the previous step should match.��53�Call function using DIT_TRACK_BY_FAC,

selectHande set with all valid

selections and

queryHandle set with fac_sk values�All track records for the fac_sk are returned.�Uses FAC_TRACK_

SUBVIEW��54�In sql, execute same query as in previous step.�All track records for the fac_sk are returned.�The records returned from this and the previous step should match.��55�Call function using DIT_TRACK_BY_OBS,

selectHande set with all valid

selections and

queryHandle set with obs_sk values�All track records for the obs_sk are returned.�Uses OBS_TRACK_

SUBVIEW��56�In sql, execute same query as in previous step.�All track records for the obs_sk are returned.�The records returned from this and the previous step should match.��57�Call function using DIT_TRACK_BY_UNIT,

selectHande set with all valid

selections and

queryHandle set with unit_sk values�All track records for the unit_sk are returned.�Uses UNIT_TRACK_

SUBVIEW��58�In sql, execute same query as in previous step.�All track records for the unit_sk are returned.�The records returned from this and the previous step should match.��59�Call function using DIT_UNIT_BY_EQP,

selectHande set with

all valid selections and

queryHandle set with eqp_sk values�All unit records for the eqp_sk are returned.�Uses EQP_UNIT_

SUBVIEW��60�In sql, execute same query as in previous step.�All unit records for the eqp_sk are returned.�The records returned from this and the previous step should match.��61�Call function using DIT_UNIT_BY_FAC,

selectHande set with

all valid selections and

queryHandle set with fac_sk values�All unit records for the fac_sk are returned.�Uses FAC_UNIT_

SUBVIEW��62�In sql, execute same query as in previous step.�All unit records for the fac_sk are returned.�The records returned from this and the previous step should match.��63�Call function using DIT_UNIT_BY_TRACK,

selectHande set with

all valid selections and

queryHandle set with track_sk values�All unit records for the track_sk are returned.�Uses TRACK_UNIT_

SUBVIEW��64�In sql, execute same query as in previous step.�All unit records for the track_sk are returned.�The records returned from this and the previous step should match.��

Test Case for Function: dit_createMidbData

�� EMBED Excel.Sheet.5 ����

Dependencies:

MIDB data to be used for testing.

Insert permission on GMI tables.

DIA API function to create surrogate key value for new record.

The following DIT classes are used to retrieve data from the GMI tables in the MIDB database

dit_ElintMode_c

dit_Equipment_c

dit_EquipmentIndex_c

dit_Facility_c

dit_Observation_c

dit_Remarks_c

dit_Target_c

dit_Track_c

dit_Unit_c

dit_sqlStmt_c

dit_midbBase_c

Assumptions:

When connecting to the database, the correct data server name and database name is used.

Test Cases:

a.	Call function when MIDB database is not installed.

b.	Call function when handle is null.

c.	Call function when handle does not match the dataType.

d.	Call function when handle does not specify required data.

e.	Call function when handle specifies new record should be tied with another record and the associated surrogate key value does not exist.

Verification:

a.	Verify that the status of DIT_MIDB_NOT_INSTALLED is returned.

b.	Verify that the status of DIT_NULL_HANDLE is returned.

c.	Verify that the status of DIT_INVALID_DATA_OBJECT is returned.

d.	Verify that the status of DIT_MISSING_DATA_ERROR is returned.

e.	Verify that the status of DIT_NO_DATA_FOUND is returned.

Test Steps:

For each individual record added, use the MIDB editor to verify that the newly created records are accessible and editable by using the surrogate key value returned by the function.

Step�Action�Expected Results�Remarks��1�In sql, execute query for eqp_id_num in EQP_ELINT_MODE table�No rows found.���2�Call function using DIT_EQP_ELINT_MODE and handle with elint values�Return code of DIT_SUCCESS���3�In sql, execute query for elint_id_num in EQP_ELINT_MODE�Elint record found.�Elint record added.��4�In sql, execute query for equipment id in EQP table�No rows found.���5�Call function using DIT_EQP and handle with equipment values�Return code of DIT_SUCCESS���6�In sql, execute query for equipment id in EQP table�Equipment record found.�Equipment record added.��7�In sql, execute query for eqp code in EQP table

and execute query for fac sk in FAC_TIE and EQP_TIE tables�No rows found.���8�Call function using DIT_EQP_BY_FAC and handle with equipment values and the fac sk is valid�Return code of DIT_SUCCESS���9�In sql, execute query for eqp code in EQP table�Equipment record found.�Equipment record added.��10�Execute query using sk from new record in FAC_TIE and EQP_TIE tables�Tie table records found�The TIE_FROM_SK and TIE_TO_SK values correspond��11�In sql, execute query for eqp_type name in EQP_IDX table�No rows found.���12�Call function using DIT_EQP_IDX and handle with equipment index values�Return code of DIT_SUCCESS���12�In sql, execute query for eqp_type name in EQP_IDX�Eqp index record found.�Equipment index record added.��14�In sql, execute query for eqp code in EQP_IDX table

and execute query for fac sk in FAC_TIE and EQP_IDX_TIE tables�No rows found.���15�Call function using DIT_EQP_IDX_BY_FAC and handle with equipment index values and the fac sk is valid�Return code of DIT_SUCCESS���16�In sql, execute query for eqp code in EQP_IDX table�Equipment index record found.�Equipment index record added.��17�Execute query using sk from new record in FAC_TIE and EQP_IDX_TIE tables�Tie table records found�The TIE_FROM_SK and TIE_TO_SK values correspond��18�In sql, execute query for facility name in FAC table�No rows found.���19�Call function using DIT_FAC and handle with facility values�Return code of DIT_SUCCESS���20�In sql, execute query for facility name in FAC table�Facility record found.�Facility record added.��21�In sql, execute query for be number in FAC table

and execute query for unit sk in FAC_TIE and UNIT_TIE tables�No rows found.���22�Call function using DIT_FAC_BY_UNIT and handle with fac values of and unit sk is valid�Return code of DIT_SUCCESS���23�In sql, execute query for be number in FAC table�Facility record found.�Facility record added.��24�Execute query using sk from new record in FAC_TIE and UNIT_TIE tables�Tie table records found�The TIE_FROM_SK and TIE_TO_SK values correspond��25�In sql, execute query for obs name in OBS table�No rows found.���26�Call function using DIT_OBS and handle with observation values�Return code of DIT_SUCCESS���27�In sql, execute query for obs name in OBS table�Obervation record found.�Observation record added.��28�In sql, execute query for obs name in OBS_ELNOT table�No rows found.���29�Call function using DIT_OBS_ELNOT and handle with observation elnot values�Return code of DIT_SUCCESS���30�In sql, execute query for obs name in OBS_ELNOT table�Obervation elnot record found.�Observation record added.��31�In sql, execute query for seq num in OBS_PAR table�No rows found.���32�Call function using DIT_OBS_PARAMETERS and handle with observation parameter values�Return code of DIT_SUCCESS���33�In sql, execute query for seq num in OBS_PAR table�Obervation parameter record found.�Observation record added.��34�In sql, execute query for be number ref in OBS_REPORT table�No rows found.���35�Call function using DIT_OBS_REPORT and handle with observation report values�Return code of DIT_SUCCESS���36�In sql, execute query for be number ref in OBS_REPORT table�Obervation report record found.�Observation record added.��37�In sql, execute query for obs name in OBS table

and execute query for track sk in OBS_TIE and TRACK_TIE tables�No rows found.���38�Call function using DIT_OBS_BY_TRACK and handle with obs values of and the track sk is valid�Return code of DIT_SUCCESS���39�In sql, execute query for obs name in OBS table�Obervation record found.�Observation record added.��40�Execute query using sk from new record in OBS_TIE and TRACK_TIE tables�Tie table records found�The TIE_FROM_SK and TIE_TO_SK values correspond��41�In sql, execute query for remarks type in RMK table�No rows found.���42�Call function using DIT_REMARKS and handle with remark values�Return code of DIT_SUCCESS���43�In sql, execute query for remarks type in RMK table�Remarks record found.�Remarks record added.��44�In sql, execute query for target name�No rows found.���45�Call function using DIT_TARGET and handle with target values�Return code of DIT_SUCCESS���46�In sql, execute query for target name�Target record found.�Target record added.��47�In sql, execute query for tgt detail name in TGT_DETAIL table

and execute query for fac sk in TGT_DETAIL_TIE and FAC_TIE tables�No rows found.���48�Call function using DIT_TARGET_BY_FAC and handle with target values of and the fac sk is valid�Return code of DIT_SUCCESS���49�In sql, execute query for tgt detail name in TGT_DETAIL table�Target record found.�Target record added.��50�Execute query using sk from new record in FAC_TIE and TGT_DETAIL_TIE tables�Tie table records found�The TIE_FROM_SK and TIE_TO_SK values correspond��51�In sql, execute query for track name�No rows found.���52�Call function using DIT_TRACK and handle with track values�Return code of DIT_SUCCESS���53�In sql, execute query for track name�Track record found.�Track record added.��54�In sql, execute query for track elint value�No rows found.���55�Call function using DIT_TRACK_ELINT_MODE and handle with track elint values�Return code of DIT_SUCCESS���56�In sql, execute query for track elint value�Track elint record found.�Track elint record added.��57�In sql, execute query for track elnot value�No rows found.���58�Call function using DIT_TRACK_LOC and handle with track location values�Return code of DIT_SUCCESS���59�In sql, execute query for track elnot value�Track location record found.�Track location record added.��60�In sql, execute query for track name in TRACK table

and execute query for unit sk in TGT_DETAIL_TIE and UNIT_TIE tables�No rows found.���61�Call function using DIT_TRACK_BY_UNIT and handle with target values of and the unit sk is valid�Return code of DIT_SUCCESS���62�In sql, execute query for track name in TRACK table�Track record found.�Track record added.��63�Execute query using sk from new record in UNIT_TIE and TRACK_TIE tables�Tie table records found�The TIE_FROM_SK and TIE_TO_SK values correspond��64�In sql, execute query for unit name�No rows found.���65�Call function using DIT_UNIT and handle with unit values�Return code of DIT_SUCCESS���66�In sql, execute query for unit name�Unit record found.�Unit record added.��67�In sql, execute query for unit name in UNIT table

and execute query for eqp sk in UNIT_TIE and EQP_TIE tables�No rows found.���68�Call function using DIT_UNIT_BY_EQP and handle with unit values of and the eqp sk is valid�Return code of DIT_SUCCESS���69�In sql, execute query for unit name in UNIT table�Unit record found.�Unit record added.��70�Execute query using sk from new record in UNIT_TIE and EQP_TIE tables�Tie table records found�The TIE_FROM_SK and TIE_TO_SK values correspond��71�In sql, execute query for aka in EQP_IDX_AKA table �No rows found.���72�Call function using DIT_EQP_IDX and handle with equipment index values where aka is set�Return code of DIT_SUCCESS���73�In sql, execute query for aka in EQP_IDX_AKA table�Equipment index aka record found.�Equipment index aka record added.��

Test Case for Function: dit_modifyMidbData

�� EMBED Excel.Sheet.5 ����

Dependencies:

MIDB data to be used for testing.

Modify permission on GMI tables.

The following DIT classes are used to retrieve data from the GMI tables in the MIDB database

dit_ElintMode_c

dit_Equipment_c

dit_EquipmentIndex_c

dit_Facility_c

dit_Observation_c

dit_Remarks_c

dit_Target_c

dit_Track_c

dit_Unit_c

dit_sqlStmt_c

dit_midbBase_c

Assumptions:

When connecting to the database, the correct data server name and database name is used.

Test Cases:

a.	Call function when MIDB database is not installed.

b.	Call function when handle is null.

c.	Call function when handle does not match the dataType.

d.	Call function when handle does not specify required data.

e.	Call function when dataSK value is not in database table.

f.	Call function when dataSK is valid and dataType is not single table.

Verification:

a.	Verify that the status of DIT_MIDB_NOT_INSTALLED is returned.

b.	Verify that the status of DIT_NULL_HANDLE is returned.

c.	Verify that the status of DIT_INVALID_DATA_OBJECT is returned.

d.	Verify that the status of DIT_MISSING_DATA_ERROR is returned.

e.	Verify that the status of DIT_NO_DATA_FOUND is returned.

f.	Verify that the status of DIT_INVALID_DATA_OBJECT is returned.

Test Steps:

Step�Action�Expected Results�Remarks��1�In sql, execute query for eqp_id_num name�ELINT record found.���2�Call function using DIT_EQP_ELINT_MODE and handle with new ELINT values (except for eqp_id_num)�Return code of DIT_SUCCESS���3�In sql, execute query for elint_id_num�ELINT record found.�Elint record updated.��4�In sql, execute query for equipment id�Equipment record found.���5�Call function using DIT_EQP and handle with new equipment values (except for equipment id)�Return code of DIT_SUCCESS���6�In sql, execute query for equipment id�Equipment record found.�Equipment record updated.��7�In sql, execute query for equipment type name�Equipment index record found.���8�Call function using DIT_EQP_IDX and handle with new equipment index values (except for equipment type)�Return code of DIT_SUCCESS���9�In sql, execute query for equipment type name�Equipment index record found.�Equipment index record updated.��10�In sql, execute query for facility name�Facility record found.���11�Call function using DIT_FAC and handle with new facility values (except facility name)�Return code of DIT_SUCCESS���12�In sql, execute query for facility name�Facility record found.�Facility record updated.��13�In sql, execute query for observation name�Observation record found.���14�Call function using DIT_OBS and handle with new observation values (except observation name)�Return code of DIT_SUCCESS���15�In sql, execute query for observation name�Observation record found.�Observation record updated��16�In sql, execute query for elnot �Observation record found.���17�Call function using DIT_OBS_ELNOT and handle with new observation elnot values (except elnot)�Return code of DIT_SUCCESS���18�In sql, execute query for elnot �Observation record found.�Observation record updated��19�In sql, execute query for sequential number�Observation record found.���20�Call function using DIT_OBS_PARAMETERS and handle with new observation values (except sequential number)�Return code of DIT_SUCCESS���21�In sql, execute query for sequential number�Observation record found.�Observation record updated��22�In sql, execute query for unit id �Observation record found.���23�Call function using DIT_OBS_REPORT and handle with new observation report values (except unit id)�Return code of DIT_SUCCESS���24�In sql, execute query for unit id �Observation record found.�Observation record updated���In sql, execute query for target name�Remarks record found.����Call function using DIT_REMARKS and handle with new remark values (except target name)�Return code of DIT_SUCCESS����In sql, execute query for remarks type�Remarks record found.�Remarks record updated.���In sql, execute query for target name�Target record found.����Call function using DIT_TARGET and handle with new target values (except target name)�Return code of DIT_SUCCESS����In sql, execute query for target name�Target record found.�Target record updated���In sql, execute query for track name�Track record found.����Call function using DIT_TRACK and handle with new track values (except track name)�Return code of DIT_SUCCESS����In sql, execute query for track name �Track record found.�Track record updated.���In sql, execute query for elnot�Track record found.����Call function using DIT_

TRACK_ELINT_MODE and handle with new track values (except elnot)�Return code of DIT_SUCCESS����In sql, execute query for elnot�Track record found.�Track record updated.���In sql, execute query for latitude and longitude�Track record found.����Call function using DIT_TRACK_LOCATION and handle with new track values (except latitude and longitude)�Return code of DIT_SUCCESS����In sql, execute query for latitude and longitude�Track record found.�Track record updated.���In sql, execute query for unit name�Unit record found.����Call function using DIT_UNIT and handle with new unit values (except unit name)�Return code of DIT_SUCCESS����In sql, execute query for unit name�Unit record found.�Unit record updated��Assumptions from Preliminary Design

Defaults will be provided for the data server name and the database name.

Concerns/Questions/Issues from Preliminary Design

Will the calling program need to specify the data server name and/or the database name? No.

��Target Application Interface CSC

High-Level Design Updates

The dit_deleteTargetHandle function has been deleted since the dit_deleteHandle and dit_deleteHandleData functions provide the same capability.

Database Schema

TAMPS_PLANNER_TARGETS

Type:	Database table

Purpose:	This table provide storage for planner targets in the TAMPS database.

Exportability:	Local

Interface:

create table TAMPS_PLANNER_TARGETS

(

	be_number	char (10)	NULL,

	country_code	char (2)	NULL,

	creation_date	char (14)	NOT NULL,

	description	varchar (54)	NULL,

	elevation	float	NULL,

	elevation_um 	char (1)	NULL,

	grid_datum	char (3)	NULL,

	height	float	NULL,

	height_um	char (9)	NULL,

	horiz_accuracy	float	NULL,

	horiz_acc_um	char (1)	NULL,

	horiz_confidence	float	NULL,

	horiz_orient	float	NULL,

	horiz_orient_um	char (1)	NULL,

	last_chg_userid	char (8)	NULL,

	latitude_rad	float	NULL,

	longitude_rad	float	NULL,

	location_um	char (1)	NULL,

	length	float	NULL,

	length_um	char (1)	NULL,

	mil_grid	char (15)	NULL,

	owner	varchar (8)	NOT NULL,

	photo_chip_number	int	NULL,

	target_name	varchar (54)	NOT NULL,

	target _sk	varchar (14)	NOT NULL,

	type	char (1)	NOT NULL,

	vertical_accuracy	float	NULL,

	vertical_acc_um	char (1)	NULL,

	vertical_confidence	float	NULL,

	vertical_orient	float	NULL,

	vertical_orient_um	char (1)	NULL,

	wac	char (4)	NULL,

	width	float	NULL,

	width_um	char (1)	NULL,

	symbol_color	int	NULL,

	symbol_name	char (63)	NULL

)

go

Notes:	This table replaces the TAMPS_TARGET database table and the TAMPS_TARGET table will be deleted.

Control Flow

Get Target Data

The dit_getTarget control flow shows that the function connects to the database, determines the type of data to be retrieved, builds an SQL query and returns the data found. If no records match the query, a status of DIT_NO_DATA_FOUND is returned and the returnData parameter is a null list. At least one value must be defined in the selectHandle, otherwise a status of DIT_MISSING DATA_ERROR is returned.

The following error messages can occur:

DIT_INVALID_DATA_OBJECT

DIT_MIDB_NOT_INSTALLED

DIT_NULL_HANDLE

DIT_NO_DATA_FOUND

DIT_QUERY_FAILED

�

�

�

Create/Modify Target Data

The dit_createTarget and dit_modifyTarget control flow shows that these functions connect to the database, determine the type of data chosen, builds an SQL modification statement, executes the SQL statement and returns status. The control flow for the create and modify are exactly the same, except for building the correct SQL statement and the return status type.

The following error messages can occur:

DIT_INVALID_DATA_OBJECT

DIT_MIDB_NOT_INSTALLED

DIT_NULL_HANDLE

DIT_CREATE_DATA_ERROR (for create)

DIT_MODIFY_DATA_ERROR (for modify)

�

�

Delete Target Data

The dit_deleteTarget control flow shows that this function connects to the database, determines the type of data chosen, builds an SQL modification statement, executes the SQL statement and returns status.

The following error messages can occur:

DIT_INVALID_DATA_OBJECT

DIT_MIDB_NOT_INSTALLED

DIT_NULL_HANDLE

DIT_DELETE_DATA_ERROR

�

Algorithms

Data Flows

The data flows which describe access to the TAMPS_PLANNER_TARGETS data table in the TAMPS database.

Get Target

The dit_getTargets interface is used to retrieve target data from the TAMPS_PLANNER_TARGETS data table. The column values to be returned from the table is defined in the query columns in the first UZT_HANDLE function parameter. The limits on what data is to be returned is defined in the query conditions in the second UZT_HANDLE function parameter. The data found that matches the query conditions is returned in a linked list, where each item in the list is a UZT_HANDLE that corresponds to a record in the TAMPS_PLANNER_TARGETS data table. Completion status of the retrieve is also returned.

 An sql select statement is generated to retrieve record(s) from the TAMPS_PLANNER_TARGETS object defined by the column and column data using both UZT_HANDLEs.

�

Create Target

The dit_createTarget interface is used to add a record to the TAMPS_PLANNER_TARGETS data table. The values of the record to be added are defined in the UZT_HANDLE function parameter. The surrogate key of the new record and the completion status of the create are returned.

An sql insert statement is generated to add a record to an MIDB object defined by the column and column values using the UZT_HANDLE.

�

Modify Target

The dit_modifyTarget interface is used to modify the values of an object in the TAMPS database. The values to be changed in the MIDB object is defined in the UZT_HANDLE. The surrogate key of the record the record to change is also to be provided by the calling function. The completion status of the modify is returned.

An sql update statement is generated to modify a record of an MIDB object defined by the column and column values using the UZT_HANDLE.

�

Delete Target

The dit_deleteTarget interface is used to delete a record in the TAMPS_PLANNER_TARGETS data table. The surrogate key of the record to delete is provided by the calling function. The completion status of the delete is returned.

An sql delete statement is generated to delete a record using the surrogate key.

�

Design Description

dit_createTargetHandle

Purpose:	This function provides the capability to define an object which can be used to request or set values which will be used in SQL queries and edits against the TAMPS_PLANNER_TARGETS table. The itemType parameter specifies whether the handle object will be used to identify the parts of the SQL statement. When itemType is set to DIT_COLUMN_FIELDS this represents the select clause which identifies what columns to retrieve. When itemType is set to DIT_DATA_FIELDS this represents the where clause which identifies what columns are used to limit the data retrieved. Also, a handle of this type is used in the manipulation (create, modify or delete) DIT target functions. If a handle could not be created, then a NULL value is returned by the function call.

Exportability: 	Public

Interactions:	uzt_createHandle

	uzt_coreSetValues

Public Operations:	UZT_HANDLE	 dit_createTargetHandle

		(enum dit_itemType itemType)

Private Operations:	UZT_HANDLE	dit_createPlnrTargetSelectHandle()

	UZT_HANDLE	dit_createPlnrTargetDataHandle()

Public Operation PDL:

//

// This function returns a handle object which represents a pointer to the dataType and

// itemType. If a handle could not be created, a NULL value is returned.

//

UZT_HANDLE dit_createTargetHandle (enum dit_itemType itemType)

{

	UZT_HANDLE handle = NULL;

	/* determine type of handle to create */

	// for (itemType)

	// 	case DIT_COLUMN_FIELDS:

	//	call dit_createPlnrTargetSelectHandle ()

	// 	break;

	//	case DIT_DATA_FIELDS:

	//	call dit_createPlnrTargetDataHandle ()

	//	break;

	// endfor

	// return handle

}

Private Operation PDL:

//

// This function creates a handle object which will be used to specify the select columns

// used in an SQL query. If the handle could not be created, a null value is returned. Default

// values are assigned to each data field in the structure.

//

UZT_HANDLE	dit_createPlnrTargetSelectHandle ()

{

	UZT_HANDLE handle = NULL;

	// allocate select structure object

	// if (structure not allocated)

	//	then

	//	log DIT_MEMORY_ERROR message

	//	return null handle

	// endif

	// define handle parameters (type, name, and data structure)

	// call uzt_createHandle with handle parameters

	// if (error on handle creation)

	// 	then

	//		log DIT_CREATE_HANDLE_ERROR message

	//		free allocated structure

	//		return null handle

	// endif

	// set all select structure fields to default values

	// call uzt_coreSetValues

	// return handle

}

//

// This function creates a handle object which will be used to specify columns and

// the associated values used in an SQL statement. For an SQL query, this handle object

// defines the where clause which identifies what columns are used to limit the data

// retrieved. For an SQL modify, this handle object defines the values to used to update a

// specific row in the TAMPS_PLANNER_TARGETS database object.

//

UZT_HANDLE	dit_createPlnrTargetDataHandle ()

{

	UZT_HANDLE handle = NULL;

	// allocate data structure object

	// if (structure not allocated)

	//	then

	//	log DIT_MEMORY_ERROR message

	//	return null handle

	// endif

	// define handle parameters (type, name, and data structure)

	// call uzt_createHandle with handle parameters

	// if (error on handle creation)

	// 	then

	//		log DIT_CREATE_HANDLE_ERROR message

	//		return null handle

	// endif

	// return handle

}

dit_getTargets

Purpose:	This function provides the capability to programmatically retrieve records from TAMPS_PLANNER_TARGETS table.

Exportability: 	Public

Interactions:	dit_PlannerTarget_c

Public Operations:	DIT_STATUS	dit_getTargets(UZT_HANDLE selectHandle,

	UZT_HANDLE queryHandle,

		LIST **returnData)

Private Operations:	None

Public Operation PDL:

//

// This function provides the capability to retrieve from TAMPS_PLANNER_TARGETS

// data from the database. The records are returned in the LIST *returnData parameter.

// The list contains handles which can be used to retrieve the record data. If no records

// were found to match the query, the return value is set to DIT_NO_DATA_FOUND and

// the returnData value is an empty list. Each handle in the list represents one record from

// the TAMPS_PLANNER_TARGETS schema object. The selectHandle parameter

// specifies which fields to retrieve from the TAMPS_PLANNER_TARGETS schema

// object, and the queryHandle parameter specifies fields to limit which records are

// returned.

//

DIT_STATUS	dit_getTargets (UZT_HANDLE selectHandle,

		UZT_HANDLE queryHandle,

		LIST *returnData)

{

	DIT_STATUS status = DIT_SUCCESS;

	// open database connection

	// if (selectHandle is null)

	//	then

	//	log error message about

	//	set status to DIT_NULL_HANDLE

	// endif

	// dit_PlannerTarget_c target(DIT_INSERT)

	// call status = target.GetData (selectHandle, queryHandle, returnData)

	// close database connection

	// return status

}

Private Operation PDL:	None

dit_createTarget

Purpose:	This function provides the capability to programmatically create a record in the TAMPS_PLANNER_TARGETS table.

Exportability: 	Public

Interactions:	dit_PlannerTarget_c

Public Operations:	DIT_STATUS	dit_createTarget (UZT_HANDLE handle,

			char *rtnSK)

Private Operations:	None

Public Operation PDL:

//

// This function provides the capability to create a TAMPS_PLANNER_TARGETS

// record in the database. The handle parameter specifies the fields and values of the new

// record.

//

DIT_STATUS	dit_createTarget (UZT_HANDLE handle)

{

	DIT_STATUS status = DIT_SUCCESS;

	int	dataSK = 0;

	// if (handle is null)

	//	then

	//	log error message about null handle

	//	set status to DIT_NULL_HANDLE

	// endif

	// open database connection

	// dit_PlannerTarget_c target(DIT_INSERT)

	// call status = target.EditData (handle, dataSK)

	// close database connection

	// set returnSk to dataSK

	// return status

}

Private Operation PDL:	None

dit_deleteTarget

Purpose:	This function provides the capability to programmatically delete a record in the TAMPS_PLANNER_TARGETS table.

Exportability: 	Public

Interactions:	None

Public Operations:	DIT_STATUS	dit_deleteMidbData (char *dataSK)

Private Operations:	None

Public Operation PDL:

//

// This function is used to delete a single TAMSP_PLANNER_TARGETS record. The

// surrogate key identifies the specific record in the table to delete.

//

DIT_STATUS	dit_deleteTarget (char *dataSK)

{

	DIT_STATUS status = DIT_SUCCESS;

	// open database connection

	// if (target dataSK does not belong to this owner)

	//	then

	//	log error message about unable to delete another users target

	//	return DIT_INVALID_SK_VALUE

	// endif

	// build SQL delete statement using dataSK which specifies the surrogate key

	// 	of the row to be deleted

	// execute SQL statement

	// if (SQL error)

	//	then

	//		log error message for delete error using MIDB object and surrogate key

	//		return DIT_DELETE_DATA_ERROR

	// close database connection

	// return status

}

Private Operation PDL:	None

dit_modifyTarget

Purpose:	This function provides the capability to programmatically modify a record in the TAMPS_PLANNER_TARGETS table.

Exportability: 	Public

Interactions:	dit_PlannerTarget_c

Public Operations:	DIT_STATUS	dit_modifyTarget (char *dataSK,

			UZT_HANDLE handle)

Private Operations:	None

Public Operation PDL:

//

// This function is used to modify a single TAMPS_PLANNER_TARGETS record. The

// surrogate key identifies the specific planner target record to modify. The handle provides

// the fields and values which will be changed in the record. If the handle object does not

// contain all the required fields to modify the record, then DIT_MISSING DATA_ERROR is

// returned. If an SQL error occurs when the record is modified, then

// DIT_MODIFY_DATA_ERROR is returned.

//

DIT_STATUS	dit_modifyTarget (int dataSK, UZT_HANDLE handle)

{

	DIT_STATUS status = DIT_SUCCESS;

	// if (dataSK == 0)

	//	then log error message about surrogate key being zero

	//	return DIT_INVALID_SK_VALUE

	// endif

	// open database connection

	// dit_PlannerTarget_c target(DIT_UPDATE)

	// call status = target.EditData (handle, dataSK)

	// close database connection

	// return status

}

Private Operation PDL:	None

dit_PlannerTarget_c

Purpose:	This class provides operations and attributes to access the Target, table or related Target views in the MIDB database. The class is instantiated with optionType to define the SQL operation and with dataType to define the table or view on which the SQL operation accesses.

Exportability: 	Core

Interactions:	dit_sqlStmt_c

Public Operations:	dit_PlannerTarget_c (DBPROCESS *inDbproc,

			dit_optionType optionType)

	DIT_STATUS 	GetData (UZT_HANDLE selectHandle,

			UZT_HANDLE queryHandle,

			LIST **returnData)

	DIT_STATUS 	EditData (UZT_HANDLE dataHandle,

		char* dataSK)

Private Operations:	DIT_STATUS	SetSelect (dit_plnrTargetSELECT_OBJ_T *rec)

	DIT_STATUS	SetData (APT_TARGET *rec)

	DIT_STATUS	CreateData (APT_TARGET *rec,

			char *dataSK)

	DIT_STATUS	ModifyData (char *dataSK)

Private Members:

dit_optionType	option

This attribute identifies the type of SQL statement (select, insert or update) that will be constructed.

RWCString	skName

This attribute identifies the surrogate key associated with the dataType value.

RWCString	tableName

This attribute identifies the GMI table name or the view to use in the SQL statement.

Public Operation PDL:

//

// This function is the constructor which is used to instantiate the class. The optionType

// parameter specifies the type of SQL statement to used.

//

dit_PlannerTarget_c (DBPROCESS *inDbproc, enum dit_optionType optionType)

	: public dit_SQLStmt_c (optionType)

{

	// set skName to DIT_PLNR_TARGET_SK

}

//

// This function retrieves target data from the TAMPS_PLANNER_TARGETS table. The

// selectHandle specifies the fields to be retrieved, the queryHandle specifies the conditions

// to limit what data is returned by the SQL query. The returnData parameter is a list of

// UZT_HANDLES which represents each record found by the query. The list parameter

// will be null if there are no records which match the selection criteria.

//

DIT_STATUS GetData (UZT_HANDLE selectHandle, UZT_HANDLE queryHandle,

	LIST **returnData)

{

	DIT_STATUS status = DIT_FAILURE;

	APT_TARGET_T *queryData = NULL;

	dit_plnrTargetDATA_OBJ_T *selectData = NULL;

	/* retrieve select structure from handle object into selectData */

	// call uzt_coreGetStruct to get selectData

	// if (selectData is not null)

	//	then call SetSelect with selectData

	//	else return DIT_MISSING_DATA_ERROR

	// endif

	// if (queryHandle is not null)

	//	then

	//		/* retrieve data structure from handle object into queryData */

	//		call uzt_coreGetStruct to get queryData

	//		if (queryData is not null)

	//		then call SetData (queryData)

	//		else return DIT_MISSING_DATA_ERROR

	//		endif

	// endif

	// create list for returnData

	// if (memory error)

	//	then return DIT_MEMORY_ERROR

	// endif

	// build SQL select statement

	// call BuildStmt (tableName)

	// execute SQL statement

	// if (SQL error)

	// 	then

	//	log error message about SQL error

	//	return DIT_QUERY_ERROR

	// end if

	// if (no rows found)

	//	then return DIT_NO_DATA_FOUND

	//	else

	//		for (all rows found)

	//		fetch row of data

	//		if error on fetch then return SQL error

	//		create handle object

	//		fill data values from SQL fetch into handle object and add to list

	//		endfor

	// endif

	// return status

}

//

// This function edits the TAMPS_PLANNER_TARGETS table. This function is called to

// insert a row into the table when the dataSK is 0 and to update a row in the table when

// the dataSK is non-zero.

//

DIT_STATUS EditData (UZT_HANDLE dataHandle, char *dataSK)

{

	APT_TARGET_T *data = NULL; // data structure

	DIT_STATUS status = DIT_SUCCESS;

	int returnSK = 0;

	// call uzt_coreGetStruct to get data structure

	// call SetData (data)

	// if (missing required data)

	//	then

	//		log error message about what data is missing

	//		set returnSK to 0

	//		return DIT_MISSING_DATA_ERROR

	// endif

	// if (dataSK == 0)

	// 	then

	//	call CreateData (data, returnSK)

	//	if (no errors on create)

	//		then dataSK = returnSK

	//		else dataSK = 0

	//	else

	//	call ModifyData (dataSK)

	// end if

	// return status

}

Private Operation PDL:

//

// This function access each field from the data structure and verifies that data has been

// specified. Fields which contain data are added to the SQL statement. This function is

// called by GetData.

//

DIT_STATUS SetSelect (APT_TARGET_T *rec)

{

	DIT_STATUS status = DIT_SUCCESS;

	// check each field in data structure and add selected items to dit_sqlStmt_c

	// if (no data selected)

	//	then

	//		log error message about what data is missing to record

	//		return DIT_EMPTY_DATA_OBJECT

	// endif

	// return status

}

//

// This function access each field from the data structure and verifies that data has been

// defined. Fields which contain data are added to the SQL statement. This function is

// called by EditData.

//

DIT_STATUS SetData (APT_TARGET_T *rec)

{

	DIT_STATUS status = DIT_SUCCESS;

	// check each field in data structure and add defined fields to dit_sqlStmt_c

	// if (missing required data)

	//	then

	//		log error message about which SQL error occurred during modify

	//		return DIT_MISSING_DATA_ERROR

	// endif

	// return status

}

//

// This function adds a target record to the TAMPS_PLANNER_TARGETS table.

// If the structure does not contain all the required fields to add the record, then

// DIT_MISSING_DATA_ERROR is returned. If an SQL error occurs when the record

// is added to the database, then DIT_CREATE_DATA_ERROR is returned.

//

DIT_STATUS CreateData (APT_TARGET_T *rec, int* dataSK)

{

	DIT_STATUS status = DIT_SUCCESS;

	int returnSK = 0;

	// generate new record surrogate key value and set in returnSK

	// call AddItem (skName, returnSK)

	// create system generated fields:

	//	creation_date, last_chg_userid, location_um, owner,

	//	symbol_color, symbol_name, type

	// if (grid_datum not selected)

	//	add default datum

	// build SQL statement from fields defined in handle by calling AddItem

	// call BuildStmt (tableName)

	// execute SQL statement

	// if (SQL error)

	//	then

	//		log error message about which SQL error occurred

	//		return DIT_CREATE_DATA_ERROR

	// endif

	// set dataSK = returnSK

	// return status

}

// This function modifies a record in a target object in the MIDB database using the

// surrogate key and the field values defined in the handle. If the handle object does not

// contain all the required fields to modify the record, then

// DIT_MISSING_DATA_ERROR is returned. If an SQL error occurs when the record

// is modified, then DIT_MODIFY_DATA_ERROR is returned.

//

DIT_STATUS ModifyData (int dataSK)

{

	DIT_STATUS status = DIT_SUCCESS;

	// build SQL statement from fields defined in handle by calling AddItem

	// call BuildStmt (tableName)

	// execute SQL statement

	// if (SQL error)

	//	then

	//		log error message about which SQL error occurred during modify

	//		return DIT_MODIFY_DATA_ERROR

	// endif

	// return status

}

Interface Description

APT_TARGET_T

Type:	structure

Purpose:	This structure defines the elements of a target. It is used as the manipulation columns of the TAMPS_PLANNER_TARGETS table for an SQL statement. The fields to be used with a value in a SQL statement are set by using the uzt_setArg function. The uzt_setArg function sets the value in the allocated structure. This structure is used in SQL statements as the where condition for a query, as the set clause for an update, and as the values clause for an insert. It is also used to return the retrieved data found by the SQL query statement.

Exportability:	Public

Interface:

	typedef struct {

	char	BE_number [11];

	char	country_code [APT_COCODELEN];	/* two character country code */

	char	create_date [15];	/* creation date */

	char	date_last_chg [15];	/* last modification date */

	char	description [55];	/* target description */

	double	elevation;	/* target elevation from sea level */

	short int	elevation_um;	/* elevation unit of measure

			** 0 = unknown, 4 = feet, 1 = meters */

	char	grid_coordinates[16];	/* */

	char	grid_datum [4];	/* specified target datum */

	double	height;	/* target height 0 - 99999 feet */

	short int	height_um;	/* height unit of measure

			** 0 = unknown, 4 = feet, 1 = meters */

	int	horiz_accuracy;	/* horizontal accuracy */

	short int	horiz_acc_um	/* horizontal unit of measure

			** 0 = unknown, 4 = feet, 1 = meters */

	int	horiz_confidence;	/* horizontal confidence */

	float	horiz_orient;	/* horizontal orientation */

	short int	horiz_orient_um;	/* horizontal orientation unit of measure

			** 1 = degrees true, 2 = degrees mag*/

	char	last_chg_userid [9];	/* last user to make a modification */

	double	lat_radians;	/* latitude in radians */

	short	location_um;	/* location level of precision:

			** 0 = unknown,

			** 1 = degrees, 2 = seconds,

			** 3 = minutes, 4 = 1/10 arc second,

			** 5 = 1/100 arc second */

	double	long_radians;	/* longitude in radians */

	double	length;	/* target length 0 - 99999 feet */

	short int	length_um;	/* length unit of measure

			** 0 = unknown, 4 = feet, 1 = meters */

	char	osuffix [6];

	char	owner [9];	/* target creator user id */

	int	photo_id;	/* imagery link */

	char	target_name [55];	/* name of target */

	char	target_sk [14+1];	/* unique target identifier */

	int	vertical_accuracy;	/* vertical accuracy */

	short int	vertical_acc_um;	/* vertical accuracy unit of measure

			** 0 = unknown, 4 = feet, 1 = meters */

	int	vertical_confidence;	/* vertical confidence */

	float	vertical_orient;	/* vertical orientation 0 ..90

			** (degrees) */

	char	wac [5];	/* world area code */

	float	width;	/* target width 0 - 99999 feet */

	short int	width_um;	/* width unit of measure

			** 0 = unknown, 4 = feet, 1 = meters */

	short	symbol_color;	/* color of target symbol [OPT] */

	char	symbol_name [64];	/* target symbol name */

	void	*mpmData;	/* MPM specific data */

	LIST	*ref_obj	/* List of OAP for this target */

	} APT_TARGET_T;

Notes:	The weaponeering (nuclear and conventional)fields have been deleted.

	The latitude/longitude precision fields default to the users setup precision.

	The target dimension fields (height, width, length) default to ëFeetí unit of measure.

	This structure is defined in apt_route.h.

dit_plnrTargetSELECT_OBJ_T

Type:	structure

Purpose:	This structure represents the selectable columns of the TAMPS PLANNER_TARGETS table of an SQL query. When the structure is allocated, each field is set off. The select fields to be returned in a query statement are set by using the uzt_setArg function.

Exportability:	Local

Interface:

	typedef struct {

	char	be_number;

	char	cc;

	char	datetime_created;

	char	datetime_last_chg;

	char	description;

	char	elevation;

	char	elevation_um;

	char	grid_datum;

	char	height;

	char	height_um;

	char	horizontal_accuracy;

	char	horitontal_acc_um;

	char	horizontal_confidence;

	char	horizontal_orient;

	char	horizontal_orient_um;

	char	jmem_type;

	char	last_chg_userid;

	char	lat;

	char	lon;

	char	length;

	char	length_um;

	char	location_um;

	char	osuffix;

	char	owner;

	char	photo_chip_number;

	char	target_name;

	char	target_sk;

	char	type;

	char	vertical_accuracy;

	char	vertical_acc_um;

	char	vertical_confidence;

	char	vertical_orient;

	char	vertical_orient_um;

	char	wac;

	char	width;

	char	width_um;

	} dit_targetSELECT_OBJ_T;

Notes:	None

Unit Test Plans and Procedures

The following functions will be tested by writing a test driver to call each function with each test case and verify the results. All error conditions will be tested and all paths through the code will be tested by the test driver. SQL access to the MIDB database will be used to verify the retrieve and update functions while the test driver is being executed.

Test Case for Function: dit_createTargetHandle

Dependencies:

None

Assumptions:

None

Test Cases:

a.	Use the debugger to create memory error.

b.	Use the debugger to create handle creation error.

Verification:

a.	Verify that the status of DIT_MEMORY_ERROR is returned.

b.	Verify that the status of DIT_CREATE_HANDLE_ERROR is returned.

Test Steps:

Step�Action�Expected Results�Remarks��1�Call function with DIT_COLUMN_FIELDS�Target select object handle is created���2�Call uzt_coreGetStruct with handle�Verify handle was created���3�Call function with DIT_DATA_FIELDS�Target data object handle is created���4�Call uzt_coreGetStruct with handle�Verify handle was created���

Test Case for Function: dit_getTargets

Dependencies:

TAMPS_PLANNER_TARGETS data table created in TAMPS database

Planner target data in the database

The following DIT classes are used to retrieve data from the Planner Targets table in the TAMPS database

dit_PlannerTarget_c

dit_sqlStmt_c

Assumptions:

User access into MIDB database.

Test Cases:

a.	Call function when selectHandle is null.

b.	Call function when selectHandle does not match queryHandle.

c.	Call function when queryHandle data is constrained so that no records will match query.

d.	Call function when selectHandle does not specify any data to be retrieved.

Verification:

a.	Verify that the status of DIT_NULL_HANDLE is returned.

b.	Verify that the status of DIT_INVALID_DATA_OBJECT is returned.

c.	Verify that the status of DIT_NO_DATA_FOUND is returned.

d.	Verify that the status of DIT_EMPTY_DATA_ERROR

Test Steps:

Step�Action�Expected Results�Remarks��1�Call function using

selectHandle set with country_code, elevation, latitude, longitude, target_name, target_sk

and

queryHandle set with owner value�All records for owner are returned.���2�In SQL, execute same query as in previous step.�All records for owner are returned.�The records returned from step 1 and step 2 should match.��3�Call function using

selectHandle set with all valid selections and

queryHandle set with upper right and lower left latitude/longitude values�All records within lower left and upper right latitude/longitude bounding area are returned.���4�In SQL, execute same query as in previous step.�All records within lower left and upper right latitude/longitude are returned.�The records returned from step 3 and step 4 should match.��5�Call function when selectHandle set with all valid

selections and

query Handle is null�All records returned���6�In SQL, execute same query as in previous step.�All records returned�The records returned from step 5 and step 6 should match.��

Test Case for Function: dit_createTarget

Dependencies:

TAMPS_PLANNER_TARGETS data table created in TAMPS database

Planner target data in the database

The following DIT classes are used to retrieve data from the Planner Targets tables in the TAMPS database

dit_PlannerTarget_c

dit_sqlStmt_c

Assumptions:

When connecting to the database, the correct data server name and database name is used.

Test Cases:

a.	Call function when handle is null.

b.	Call function when handle does not match the dataType.

c.	Call function when handle does not specify required data.

Verification:

a.	Verify that the status of DIT_NULL_HANDLE is returned.

b.	Verify that the status of DIT_INVALID_DATA_OBJECT is returned.

c.	Verify that the status of DIT_MISSING_DATA_ERROR is returned.

Test Steps:

Step�Action�Expected Results�Remarks��1�In SQL, execute query for planner target �No rows found.���2�Call function using handle with target values�Return code of DIT_SUCCESS���3�In SQL, execute query for planner target�Target record found.�Target record added.��

Test Case for Function: dit_deleteTarget

Dependencies:

TAMPS_PLANNER_TARGETS data table created in TAMPS database

Planner target data in the database

The following DIT classes are used to retrieve data from the Planner Targets tables in the TAMPS database

dit_PlannerTarget_c

dit_sqlStmt_c

Assumptions:

When connecting to the database, the correct data server name and database name is used.

Test Cases:

a.	Call function when dataSK value is not in database table.

b.	Call function when dataSK value is assigned to another owner.

Verification:

a.	Verify that the status of DIT_DATA_NOT_FOUND is returned.

b.	Verify that the status of DIT_INVALID_SK_VALUE is returned.

Test Steps:

Step�Action�Expected Results�Remarks��1�In SQL, execute query for planner target�Target record found.���2�Call function using target surrogate key�Return code of DIT_SUCCESS���3�In SQL, execute query for target�No rows found.�Target record deleted.��

Test Case for Function: dit_modifyMidbData

Dependencies:

TAMPS_PLANNER_TARGETS data table created in TAMPS database

Planner target data in the database

The following DIT classes are used to retrieve data from the Planner Targets tables in the TAMPS database

dit_PlannerTarget_c

dit_sqlStmt_c

Assumptions:

When connecting to the database, the correct data server name and database name is used.

Test Cases:

a.	Call function when handle is null.

b.	Call function when handle does not match the dataType.

c.	Call function when handle does not specify required data.

d.	Call function when dataSK value is not in database table.

Verification:

a.	Verify that the status of DIT_NULL_HANDLE is returned.

b.	Verify that the status of DIT_INVALID_DATA_OBJECT is returned.

c.	Verify that the status of DIT_MISSING_DATA_ERROR is returned.

d.	Verify that the status of DIT_NO_DATA_FOUND is returned.

Test Steps:

Step�Action�Expected Results�Remarks��1�In SQL, execute query for planner target�Target record found.���2�Call function using handle with new target values�Return code of DIT_SUCCESS���3�In SQL, execute query for planner target�Target record found.�Target record updated.��4�In SQL, execute query for planner target�Target record found.���5�Call function using target surrogate key from another owner with new target name�Return code of DIT_SUCCESS���6�In SQL, execute query for planner target for new target name�Target record found�New target created from another users target.��

Assumptions from Preliminary Design

Only mission planners will need the Target Application Interface functions. The DBA will use the MIDB Target Editor for target edits. Still true.

Concerns/Questions/Issues from Preliminary Design

What are the required fields in order to create a target? This has been defined in the Database schema section and in the detailed design of the planner targets section.

What is the format for the surrogate key? This includes the system identifier and an incremental count (<system identifier><count>).

Is there sufficient need to also supply a Merge Planner Target capability for the DBA to move planner targets to MIDB database? Not at this time.

�Planner Target Updates CSC

High-Level Design Updates

The Define User Target MMI is used by the mission planner to create, modify and delete targets. The name of the data table which is the repository for the user targets has changed from TAMPS_TARGET to TAMPS_PLANNER_TARGETS, this was done to identify the data table as belonging to core.

The high level design indicated that the TAMPS_PLANNER_TARGETS data table would map to the MIDB TGT_DETAIL data table. The current design is to map the TAMPS_PLANNER_TARGETS data table closer to the Define User Target MMI and the APT_TARGET_T public structure. This approach minimizes the changes within Core and reduces the unit and functional test time.

The Define User Target MMI has been updated to incorporate the following changes:

deleted hardness, hardness option menu and shape data entry fields

added precision comment for latitude and longitude

re-arranged target name and description

vertical orientation is defaulted to degrees-true and has a range of 0 to 90

This MMI is used to create a mission target by selecting an existing target from the map.

The selected target source is either from another mission or from MIDB. When the apply button is used, the selected target becomes a target for this mission.

The following is the new MMI.

�

MMI Field Descriptions:

The target scrolled list displays the target id, latitude, longitude, and target description.

The Target Id field is a non-editable.

The Ref OAP to TGT button displays the aimpoint reference dialog. (No changes are being made to this dialog.)

The Details button displays a dialog that contains additional information about the target fields that are not editable on the MMI. If the target were based on an MIDB target, the additional information would identify the other TGT_DETAIL fields not available on this MMI. The informational fields provided on this display are: azimuth, basic encyclopedia number, country code, creation date, date last changed, hardness, osuffix, and wac.

The datum scrolled list is defaulted to the users setup value.

Latitude/longitude precision comment identifies the accuracy of these fields when the target was created. When the user changes the precision using the Default->Setup->units for latitude/longitude, the precision comment field for latitude/longitude is not updated until the text field is modified. (The precision identified for the latitude/longitude is set until the user changes the text fields). The same update scheme is applied to the grid (MGRS and UTM) comment and text field.

The horizontal/vertical confidence and horizontal/vertical accuracy fields are defaulted to zero.

Control Buttons

These buttons have not changed since the PDR design.

Database Schema

See the Target Application Interface database schema section for the TAMPS_PLANNER_TARGETS data table definition and the APT_TARGET_T structure changes.

Control Flow

The Planner Target control flow identifies the new callbacks used to process target data. The functionality of the control buttons (OK, Apply, Delete, Cancel and Help) remains the same.

�

When the ìDetailsî button is used, the ìTarget Detailsî dialog is displayed. This dialog provides additional information about the target which is not editable on the Define User Target dialog. The close button on the ìTarget Detailsî dialog is removes it from the display. Control is returned to the main event loop.

�

When the ìFeet/Metersî menu is used, the corresponding value is converted from one unit of measure to the other. Control is returned to the main event loop.

�

When the ìdeg-TRUE/deg-MAGî menu is used, the corresponding value is converted from one unit of measure to another. Control is returned to the main event loop.

�

Algorithms

The algorithm diagram identifies the new callbacks for the Define User Target MMI.

�

From MPM->Threat/Intel->Planner Target Updates Menu Item:

	Call btt_createDefineTargetDialog()	// create MMI

create MMI widgets

manage MMI widgets

From XtAppMainLoop(), process events:

Press ìCancelî =>

	Call btt_DefineTgtGenCb()

{ use existing code }

Press ìApplyî =>

Press ìOKî =>

	Call btt_DefineTgtGenCb()

{ use existing code }

Press ìDeleteî =>

	Call btt_DefineTgtGenCb()

{ use existing code }

Press Elevation Menu Entry =>

	Call btt_ElevMenuCb()

{use existing code }

Press Width Menu Entry =>

	Call btt_WidthMenuCb()

get APT_TARGET_T structure

call btt_SetField

Press Height Menu Entry =>

	Call btt_HeightMenuCb()

get APT_TARGET_T structure

call btt_SetField

Press Length Menu Entry =>

	Call btt_LengthMenuCb()

get APT_TARGET_T structure

call btt_SetField

Press Horiz Orientation Menu Entry =>

	Call btt_HorizOrientMenuCb()

get APT_TARGET_T structure

call btt_SetDegField

Press Vert Orientation Menu Entry =>

	Call btt_VertOrientMenuCb()

get APT_TARGET_T structure

call btt_SetDegField

Press Horiz Accuracy Menu Entry =>

	Call btt_HorizAccMenuCb()

get APT_TARGET_T structure

call btt_SetField

Press Vert Accuracy Menu Entry =>

	Call btt_VertAccMenuCb()

get APT_TARGET_T structure

call btt_SetField

Design Description

btt_deftgt.c

Purpose:	This unit provides operations to build the Define User Target MMI. The existing MMI is used as a baseline and the code is modified to include the new fields of the APT_TARGET_T structure.

Exportability:	Core

Interactions:	btt_deftgtcb.c

Public Operations:	None

Private Operations:	btt_createDefineTargetDialog (Widget parent,

		APT_TARGET_T *target) - modify

Private Members:	None

Public Operation PDL:

For this function, all references to the high precision toggle button will be deleted.

/*

** Create the Define User Target MMI

*/

ST_PROTECTED Widget

btt_createDefineTargetDialog (Widget parent, APT_TARGET_T *target)

{

	Widget detailsPushButton, targetName, latLongCmt, gridCmt;

	Widget widthTextField, widthMenu, heightTextField, heightMenu, lengthTextField, lengthMenu;

	Widget horizOrientTextField, horizOrientMenu, vertOrientTextField, vertOrientMenu;

	Widget horizAccTextField, horizAccMenu, vertAccTextField, vertAccMenu;

	// create form dialog for ìDefine User Targetî

	< ... use the existing code and add the following text fields to the Define User Target MMI ... >

	// detailsPushButton = Create Widget for Details push button

	// latLongPrecision = Create Widget for lat/long comment

	// Call btt_RegisterDefineTgtWidget (latLongPrecision,

//	BTT_DEF_TGT_LAT_LONG_PREC,

//	NULL, NULL)

// gridCmt = Create Widget for grid comment

// Call btt_RegisterDefineTgtWidget (gridCmt, BTT_DEF_TGT_GRID_CMT,

//	NULL, NULL)

// targetName = Create Widget for target name text field

// Call btt_RegisterDefineTgtWidget (targetName, BTT_DEF_TGT_NAME, NULL,

//	NULL)

	// widthTextField = Create Widget for width text field

// Call btt_RegisterDefineTgtWidget (widthTextField, BTT_DEF_TGT_WIDTH,

// 	NULL, NULL)

// for all elements in dist_menu

//	dist_menu[i].callback = btt_WidthMenuCb

//	dist_menu[i].client_data = (XtPointer) target

// widthMenu = Create Widget for width option menu using callbacks in dist_menu

// Call btt_RegisterDefineTgtWidget (widthMenu, BTT_DEF_TGT_WIDTH_MENU,

//	NULL, NULL)

	// heightTextField = Create Widget for height text field

// Call btt_RegisterDefineTgtWidget (heightTextField, BTT_DEF_TGT_HEIGHT,

//	NULL, NULL)

// for all elements in dist_menu

//	dist_menu[i].callback = btt_HeightMenuCb

//	dist_menu[i].client_data = (XtPointer) target

// heightMenu = Create Widget for height option menu using callbacks in dist_menu

// Call btt_RegisterDefineTgtWidget (heightMenu,

//	BTT_DEF_TGT_HEIGHT_MENU,

//	NULL, NULL)

	// lengthTextField = Create Widget for length text field

// Call btt_RegisterDefineTgtWidget (lengthTextField, BTT_DEF_TGT_LENGTH,

//	NULL, NULL)

// for all elements in dist_menu

//	dist_menu[i].callback = btt_LengthMenuCb

//	dist_menu[i].client_data = (XtPointer) target

// lengthMenu = Create Widget for length option menu using callbacks in dist_menu

// Call btt_RegisterDefineTgtWidget (lengthMenu,

//	BTT_DEF_TGT_LENGTH_MENU,

//	NULL, NULL)

	// horizOrientTextField = Create Widget for horizontal orientation text field

// Call btt_RegisterDefineTgtWidget (horizOrientTextField,

//	BTT_DEF_TGT_HORIZ_ORIENT,

//	NULL, NULL)

// for all elements in dist_menu

//	dist_menu[i].callback = btt_HorizOrientMenuCb

//	dist_menu[i].client_data = (XtPointer) target

// horizOrientMenu = Create Widget for horizontal orientation option menu using

// 	callbacks in dist_menu

// Call btt_RegisterDefineTgtWidget (horizOrientMenu,

//	BTT_DEF_TGT_HORZ_MENU,

//	NULL, NULL)

	// vertOrientTextField = Create Widget for vertical orientation text field

// Call btt_RegisterDefineTgtWidget (vertOrientTextField,

//	BTT_DEF_TGT_VERT_ORIENT,

//	NULL, NULL)

// for all elements in dist_menu

//	dist_menu[i].callback = btt_VertOrientMenuCb

//	dist_menu[i].client_data = (XtPointer) target

// vertOrientMenu = Create Widget for vertical orientation option menu callbacks

//	in dist_menu

// Call btt_RegisterDefineTgtWidget (vertOrientMenu,

	//	BTT_DEF_TGT_VERT_MENU,

//	NULL, NULL)

	< ... use existing Accuracy Frame and change as follows ... >

	// horizConfTextField = Create Widget for horizontal confidence text field

	// Call btt_RegisterDefineTgtWidget (horizConfTextField,

//	BTT_DEF_TGT_HORIZ_CONF,

	//	NULL, NULL)

	// horizAccTextField = Create Widget for horizontal accuracy text field

	// Call btt_RegisterDefineTgtWidget (horizAccTextField,

//	BTT_DEF_TGT_HORIZ_ACC,

	//	NULL, NULL)

// for all elements in dist_menu

//	dist_menu[i].callback = btt_HorizAccMenuCb

//	dist_menu[i].client_data = (XtPointer) target

	// horizAccMenu = Create Widget for horizontal accuracy option menu using

	//	callbacks in dist_menu

	// Call btt_RegisterDefineTgtWidget (horizAccMenu,

//	BTT_DEF_TGT_HORIZ_ACC_MENU,

	//	NULL, NULL)

	// horizConfTextField = Create Widget for vertical confidence text field

	// Call btt_RegisterDefineTgtWidget (vertConfTextField,

//	BTT_DEF_TGT_ VERT _CONF,

	//	NULL, NULL)

	// vertAccTextField = Create Widget for vertical accuracy text field

	// Call btt_RegisterDefineTgtWidget (vertAccTextField,

//	BTT_DEF_TGT_ VERT _ACC,

	//	NULL, NULL)

// for all elements in dist_menu

//	dist_menu[i].callback = btt_VertAccMenuCb

//	dist_menu[i].client_data = (XtPointer) target

	// vertAccMenu = Create Widget for vertical accuracy option menu using callbacks

	//	in dist_menu

	// Call btt_RegisterDefineTgtWidget (vertAccMenu,

//	BTT_DEF_TGT_VERT_ACC_MENU,

	//	NULL, NULL)

	// return

}

Private Operation PDL:	None

btt_deftgtcb.c

Purpose:	This unit provides callback operations for process each text field on the Define User Target MMI. The new callback functions provide the algorithms for each new text field and option menu toggles on the modified MMI.

	Three existing private functions will be deleted: (1) btt_hiPrecToggleCb() and btt_SelectModeCb() are no longer needed and (2) btt_SetAccuracyField() is to be changed to btt_SetField().

Exportability:	Core

Interactions:	extern APT_MSNPLAN_T *AT_msnplan

	

Public Operations:	None

Private Operations:	

(new)	btt_HeightMenuCb (Widget, XtPointer, XtPointer) 	

	btt_LengthMenuCb (Widget, XtPointer, XtPointer)

	btt_WidthMenuCb (Widget, XtPointer, XtPointer)	

	btt_HorizOrientMenuCb (Widget, XtPointer, XtPointer)	

	btt_SetField (Widget, int, int, int) 	

	btt_SetDegField (Widget, int, int, int) 	

(no change)	btt_HorizAccMenuCb (Widget, XtPointer, XtPointer)

	btt_VertAccMenuCb (Widget, XtPointer, XtPointer)	

(modify)	btt_DefineTgtGenCb (Widget, XtPointer, XtPointer)

	btt_GetDefineTargetInfo (Widget, APT_TARGET_T*)

	btt_convertData (char*, APT_TARGET_T*) 	

	btt_LoadTargetDisplay (Widget, APT_TARGET_T*) 	

	btt_DeleteUserTarget (Widget, int)

	btt_redisplayTargetList (Widget)

(delete)	btt_SetAccuracyField (Widget, int, int, int) 	

	btt_hiPrecToggleCb (Widget, XtPointer, XtPointer)

	btt_selectModeCb (Widget, XtPointer, XtPointer) 	

Private Members:	

Widget 	BTT_DefineTargetWidgets[BTT_MAX_TGT_WIDGETS]

This attribute is an array of the widgets that are created on the Define User Target MMI. The functionality of this attribute remains the same, but the number of items in the array is increased to handle the added text fields and option menus.

APT_TARGET_T 	BTT_workingTarget

This attribute is a temporary copy of the target being defined on the MMI.

Public Operation PDL:	None

Private Operation PDL:

/*

** This function is the option menu callback for length units menu.

*/

ST_PROTECTED void

btt_LengthMenuCb (Widget parent, XtPointer client, XtPointer call)

{

	// get APT_TARGET_T structure from client

	// Call btt_SetField (parent, 0, BTT_DEF_TGT_LENGTH, target->length)

	// return

}

/*

** This function is the option menu callback for height units menu.

*/

ST_PROTECTED void

btt_HeightMenuCb (Widget parent, XtPointer client, XtPointer call)

{

	// get APT_TARGET_T structure from client

	// Call btt_SetField (parent, 0, BTT_DEF_TGT_HEIGHT, target->height)

	// return

}

/*

** This function is the option menu callback for width units menu.

*/

ST_PROTECTED void

btt_WidthMenuCb (Widget parent, XtPointer client, XtPointer call)

{

	// get APT_TARGET_T structure from client

	// Call btt_SetField (parent, 0, BTT_DEF_TGT_WIDTH, target->width)

	// return

}

/*

** This function is the option menu callback for horizontal orientation units menu.

*/

ST_PROTECTED void

btt_HorizOrientMenuCb (Widget parent, XtPointer client, XtPointer call)

{

	// get APT_TARGET_T structure from client

	// Call btt_SetDegField (parent, 0, BTT_DEF_TGT_HORZ_ORIENT,

//	target->horiz_orient)

	// return

}

/*

** This function converts the value to match the menu item (Feet, Meters) and

** displays the value in the text field.

*/

ST_PRIVATE void

btt_SetField (Widget parent, int menuIndex, int fieldIndex, int value)

{

	char *menu = NULL;

	char valueText[7] = {ë\0í};

	double value = 0.0;

	< ... existing code from btt_SetAccuracyField which allocates menu ... >

	// if (menu == ëFEETí)

	// 	then copy value into valueText string

	// else if (menu == ëMETERSí)

	//		convert the value from feet to meters

	//		copy the converted value into valueText string

	//	else

	//		copy ìerrorî into valueText string

	// endif

	// if (menu allocated) free menu

	/* Determine if accuracy field */

	// if (accuracy field)

	//	if (invalid accuracy value based on lat/long precision)

	//		copy ìerrorî into valueText string

	//	end if	

	// end if

	// set valueText using the BTT_DefineTargetWidgets[fieldIndex] widget

	// return

}

/*

** This function converts the value to match the menu item () and displays the value in

** the text field.

*/

ST_PRIVATE void

btt_SetDegField (Widget parent, int menuIndex, int fieldIndex, int value)

{

	char *menu = NULL;

	char valueText[7] = {ë\0í};

	double value = 0.0;

	// if (parent is NULL)

	//

	// if (menu == ëdeg-TRUEí)

	// 	then copy value into valueText string

	// else if (menu == ëdeg-MAGí)

	//		convert the value from degrees true to degrees magnetic

	//		copy the converted value into valueText string

	//	else

	//		copy ìerrorî into valueText string

	// endif

	// display valueText using the BTT_DefineTargetWidgets[fieldIndex] widget

	// return

}

/*

** This function is the generic callback for the define target callback. This routine

** determines which widget was activated and performs the appropriate action.

*/

btt_DefineTgtGenCb (Widget parent, XtPointer client, XtPointer call)

{

	< ... existing code ... >

	switch (index) {

	case BTT_DEF_TGT_LIST:

	// case BTT_DEF_TGT_DETAILS:

	// 	call pop-up for DETAILS window which displays other fields in

	//	TAMPS_PLANNER_TARGETS which are editable from Define User Target MMI

	//	break;

	case BTT_DEF_TGT_DELETE:

		break;

	case BTT_DEF_TGT_APPLY:

 	case BTT_DEF_TGT_OK:

		break;

	case BTT_DEF_TGT_CANCEL:

		break;

	case BTT_DEF_TGT_GETLOC:

		break;

	default:

		break;

	}

	// return

}

/*

** This function reads the data from the MMI and converts different units into the default

** settings.

*/

ST_PRIVATE void

btt_convertData (char *name, APT_TARGET_T *target)

{

	char 	*str = NULL;

	char 	*menu = NULL;

	double	 Dvalue = 0.0;

	int 	 value = 0;

	// if (target is null)

	//	then return

	// switch (name)

	// 	case ìelevationî:

		{use existing code for ëelevationí condition}

	//		break;

	//	case ìhorizAccî:

		{use existing code for ëhorizí condition}

	//		break;

	//	case ìvertAccî:

		{use existing code for ëvertí condition}

	//		break;

	//	case ìlengthî:

	//		get widget for option menu

	//		set menu = option menu string value

	//		set str = contents of widget field on MMI

	//		if (menu == ìFEETî)

	//		save target->length = (int) atoi(str)

	//	else if (menu == ìMETERSî)

	//		value = atoi (str)

	//		target->length = (int)rint(ult_convertUnits (value, UT_METER, UT_FEET))

	//	endif

	//		break;

	//	case ìheightî:

	//		get widget for option menu

	//		set menu = option menu string value

	//		set str = contents of widget field on MMI

	//		if (menu == ìFEETî)

	//		save target->height = (double) atof(str)

	//	else if (menu == ìMETERSî)

	//		Dvalue = (double)atof (str)

	//		target->height = ult_convertUnits (Dvalue, UT_METER, UT_FEET)

	//	endif

	//		break;

	//	case ìwidthî:

	//		get widget for option menu

	//		set menu = option menu string value

	//		set str = contents of widget field on MMI

	//		if (menu == ìFEETî)

	//		save target->width = atof(str)

	//	else if (menu == ìMETERSî)

	//		Dvalue = atof (str)

	//		target->length = ult_convertUnits (Dvalue, UT_METER, UT_FEET)

	//	endif

	//		break;

	//	case ìhorizOrientî:

	//		get widget for option menu

	//		set menu = option menu string value

	//		set str = contents of widget field on MMI

	//		if (menu == ìdeg-TRUEî)

	//		save target->horiz_orient = atof(str)

	//	else if (menu == ìdeg-MAGî)

	//		Dvalue = atof (str)

	//		target->horiz_orient = convert deg-TRUE value to deg-MAG

	//	endif

	//		break;

	//	case ìvertOrientî:

	//		get widget for option menu

	//		set menu = option menu string value

	//		set str = contents of widget field on MMI

	//	if (menu == ìdeg-TRUEî)

	//		save target->vertical_orient = atof(str)

	//	else if (menu == ìdeg-MAGî)

	//		Dvalue = atof (str)

	//		target->vertical_orient = convert deg-TRUE value to deg-MAG

	//	endif

	//		break;

	//	default:

	//		break;

	// endfor

	// return

}

/*

** This function fills the widgets on the MMI display with the values from the target

** structure.

*/

ST_PRIVATE void

btt_LoadTargetDisplay (Widget dialog, APT_TARGET_T *target)

{

	// fill widget areas on MMI using new APT_TARGET structure

	// return

}

btt_deftgtcb.h

Purpose:	This unit provides the prototype callback operations for processing each text field on the Define User Target MMI. The new callback functions provide the algorithms for each new text field and option menu toggles on the modified MMI.

	Three existing functions will be deleted: (1) btt_hiPrecToggleCb() and btt_SelectModeCb() are no longer needed and (2) btt_SetAccuracyField() is to be changed to btt_SetField().

Exportability:	Core

Interactions:	None

	

Public Operations:	None

Private Operations:	

(new)	btt_HeightMenuCb (Widget, XtPointer, XtPointer) 	

	btt_LengthMenuCb (Widget, XtPointer, XtPointer)

	btt_WidthMenuCb (Widget, XtPointer, XtPointer)	

	btt_HorizOrientMenuCb (Widget, XtPointer, XtPointer)

	btt_SetField (Widget, int, int, int) 	

	btt_SetDegField (Widget, int, int, int) 	

(delete)	btt_SetAccuracyField (Widget, int, int, int) 	

	btt_hiPrecToggleCb (Widget, XtPointer, XtPointer)

	btt_selectModeCb (Widget, XtPointer, XtPointer) 	

Private Members:	None

Public Operation PDL:	None

Private Operation PDL:	

ST_PRIVATE void btt_HeightMenuCb (Widget, XtPointer, XtPointer)

ST_PRIVATE void btt_LengthMenuCb (Widget, XtPointer, XtPointer)

ST_PRIVATE void btt_WidthMenuCb (Widget, XtPointer, XtPointer)	

ST_PRIVATE void btt_HorizOrientMenuCb (Widget, XtPointer, XtPointer)

ST_PRIVATE void btt_SetField (Widget, int, int, int)

ST_PRIVATE void btt_SetDegField (Widget, int, int, int)

Interface Description

btt_deftgt.h

Type:	defines

Purpose:	This file identifies the individual widgets on the Define User Target MMI. The existing widget define values are not being modified except where indicated.

Exportability:	Core

Interface:

#define	BTT_DEF_TGT_WAC	4	// delete - not used

#define	BTT_DEF_TGT_HORZ_CONF	20	// modified name

#define	BTT_DEF_TGT_VERT_CONF	21	// modified name

#define	BTT_DEF_TGT_ELEV_MENU	24	// modified name

#define	BTT_DEF_TGT_HORIZ_ACC_MENU	25	// modified name

#define	BTT_DEF_TGT_VERT_ACC_MENU	26	// modified name

#define	BTT_DEF_TGT_LAT_LON_PREC	27	// new

#define	BTT_DEF_TGT_GRID_CMT	28	// new

#define	BTT_DEF_TGT_NAME	29	// new

#define	BTT_DEF_TGT_DETAILS	30	// new

#define	BTT_DEF_TGT_WIDTH	31	// new

#define	BTT_DEF_TGT_LENGTH	32	// new

#define	BTT_DEF_TGT_HEIGHT	33	// new

#define	BTT_DEF_TGT_WIDTH_MENU	34	// new

#define	BTT_DEF_TGT_LENGTH_MENU	35	// new

#define	BTT_DEF_TGT_HEIGHT_MENU	36	// new

#define	BTT_DEF_TGT_HORIZ_ORIENT	37	// new

#define	BTT_DEF_TGT_VERT_ORIENT	38	// new

#define	BTT_DEF_TGT_HORZ_MENU	39	// new

#define	BTT_DEF_TGT_VERT_MENU	40	// new

// modify for new number of target widgets

#define	BTT_MAX_DEF_TGT_WIDGETS	BTT_DEF_TGT_VERT_MENU +1

Notes:	None

Unit Test Plans and Procedures

Define User Target MMI

�� EMBED Excel.Sheet.5 ���

� EMBED Excel.Sheet.5 ���

�Test Environment:

The Define User Target MMI will be tested using an MPM.

The Sunsoft debugger will be used to exercise error path conditions.

Purify and Purecoverage will be used to verify memory initialization, allocation and de-allocation.

Dependencies:

TAMPS_PLANNER_TARGETS data table

Assumptions:

Offset Aimpoint Dialog will not be changed.

Test Cases:

Enter invalid latitude value.

Enter invalid longitude value.

Enter invalid grid value.

Enter duplicate target name.

Verification:

Verify latitude field cannot be left when value in field is invalid.

Verify longitude field cannot be left when value in field is invalid.

Verify grid field cannot be left when value in field is invalid.

Verify error message is displayed after the apply button is pressed when duplicate target name has been defined.

Test Steps:

Step�Action�Expected Results�Remarks��1�Bring up MPM ����2�Open new mission�New mission is initialized���3�Set precision for latitude and longitude to HDDDMMSS.S using Setup->Defaults->Units, Press Apply button,

Press Close button��Precision: 1/10 Arc Sec��4�Select Threat/Intel-> Planner Target Updates�Define User Target dialog is displayed,

lat/long precision set to 1/10 Arc Sec, grid set to mgrs, Datum defaulted to WGS 1984�User defaults has precedence.��5�Enter Latitude value�Value accepted���6�Enter Longitude value�Value accepted���6.5�Tab to Elevation field�When leaving longitude value, grid value is filled in correct unit of measure���7�Enter elevation value�Value accepted���8�Set Elevation menu to meters�Elevation value is converted to meters���9�Enter Target Name value�Value accepted.���10�Enter Target Description value�Value accepted���11�Enter Width value�Value accepted���12�Set Width menu to Meters�Width value converted to meters���13�Enter Height value�Value accepted���14�Enter Length value�Value accepted���15�Enter Horizontal Orientation value�Value accepted���16�Set Horizontal Orientation menu to deg-MAG�Horizontal Orientation value converted to deg-MAG���17�Enter Vertical Orientation value�Value accepted���18�Enter Horizontal Confidence value�Value accepted���19�Enter Horizontal Accuracy value�Value accepted���20�Set Horizontal Accuracy menu to meters�Horizontal accuracy value converted to meters���21�Enter Vertical Confidence value�Value accepted���22�Enter Vertical Accuracy�Value accepted���23�Press Apply button�Scrolled list updated with Target id, name, lat/long values

Target ID field updated to next value���24�Press Ref OAP to TGT button�Offset Aimpoint dialog is displayed���25�Press Close button�Offset Aimpoint dialog is removed from display���25�Press ìDetails ...î button�Details dialog displayed���26�Press Close button�Details dialog is removed from the display���27�Press Select Location �Define User Target dialog is hidden and map is made available���28�Select location on the map�Define User Target dialog is displayed, lat/long/grid values are supplied with map point selection���29�Repeat steps 7-22 to create next target��Create another target��30�Press Apply button�Scrolled list updated with Target id, name, lat/long values and

Target ID field updated to next value���31�Enter Grid value�Value accepted���32�Tab to Elevation field�When leaving grid field, Latitude/

longitude fields are supplied���33�Repeat steps 7-22 to create next target��Create another target��34�Press Apply button�Scrolled list updated with Target id, name, lat/long values and

Target ID field updated to next value���35�Press Close button�Define User Target dialog is removed from display���36�Save mission�Mission saved���37�Open existing mission�Mission opened���38�Set precision for latitude and longitude to HDDDMMSS using Setup->Defaults->Units, Press Apply button,

Press Close button��Precision: Seconds��39�Select Threat/Intel-> Planner Target Updates�Define User Target dialog is displayed,

lat/long precision set to Seconds for next target, grid set to mgrs, Datum defaulted to WGS 1984���40�Select first target from scrolled list�Lat/Long Precision changes to 1/10 Arc Second�Target definition has precedence.��41�Set precision for latitude and longitude to

HDDDMMSS.SSS using

Setup->Defaults->Units,

Press Apply button,

Press Close button�Lat/Long Precision remains at 1/10 Arc Sec�Precision: 1/100 Arc Sec��42�Modify Latitude/longitude fields to contain more level of precision�Lat/Long Precision changes to 1/100 Arc Sec���43�Press OK�Define User Target dialog is removed from display���44�Save Mission�Mission saved���

Assumptions from Preliminary Design

The current functionality to define targets will be used as a starting point. The code in btt_tgtdef.c and btt_tgtdefcb.c will be modified.

Concerns/Questions/Issues from Preliminary Design

None

�Open Mission and Save Mission CSC

High-Level Design Updates

Targets are associated with a mission and when a target is changed, the mission is also changed. Therefore, it is not possible to determine if a mission is obsolete as a result of user targets that are out of date.

Two stored procedures used to insert and update targets, insert_target_sp.sql and update_target_sp.sql, will be deleted. Also the stored procedure to insert an IDBF target in the TAMPS_TARGET table, insert_idbf_target.sql, will be deleted.

Database Schema

See the Target Application Interface database schema section for the TAMPS_PLANNER_TARGETS data table definition.

Control Flow

There are no control flow updates for this CSC.

Algorithms

There are no algorithms needed for this CSC.

Design Description

adt_obsoleteCHK.c

Purpose:	This unit provides utility functions to process the obsolete data check. The target data defined in the mission plan will be checked to verify the target data is not obsolete. Only when a target is based upon an MIDB target will the MIDB database be checked.

Exportability:	Core

Interactions:	adt_obsTargetChk

Public Operations:	None

Private Operations:	adt_obsoleteChk (APT_MSNPLN_T*, Boolean) - modify

adt_obsTargetChk (LIST *) - new

Private Members:	No new private members are being added and no changes to the current private members is being planned.

Public Operation PDL:	None

Private Operation PDL:

/* Prototype definition */

ST_PRIVATE adt_obsTargetChk (LIST *targets);

/*

** Receives a mission plan which requires obsolete checking and a boolean

** which indicates if error messages are to be displayed. The number of obsolete

** items is returned. This routine is called by ait_GetMsn, ait_MsnOpenOkCb,

** and bgt_calFltPlanCorridor.

*/

ST_PUBLIC int

adt_obsoleteChk (APT_MSNPLN_T *msn_plan, Boolean errorMsg)

{

	< ... use existing code, after check for reference objects obsolescence, add ... >

	// if (msn_plan->targets is not null)

	//	call adt_obsTargetChk (msn_plan->targets)

	// endif

	...

}

/*

** This function is called to check the targets defined in the mission plan for

** obsolescence. The global variable adt_numObsItems is incremented when

** an obsolete target is found. The obsolete target is identified in an log error

** message. Planner targets are never out of date since they are associated with

** the mission.

*/

ST_PRIVATE void

adt_obsTargetChk (LIST *targets)

{

	// for (all targets)

	//	if (DBA target)

	//		if (target is not found in TGT_DETAIL)

	//		increment adt_numObsItems

	//		log error message about target not found in MIDB target table

	//		else if (target->date_last_chg < tgt_detail.date_last_chg)

	//		increment adt_numObsItems

	//		log error message about target modified in MIDB target table

	//		end if

	//	end if

	// end for

	// return

}

adt_tgData.c

Purpose:	This unit provides functions to process targets associated with a mission.

	Function adt_insertTargets() is modified to iterate through the list of targets to add each target to the TAMPS_PLANNER_TARGETS data table by calling dit_insertTarget(). This function will not directly call the database.

	Function adt_retrieveTargets() is modified to retrieve the targets assoicated with a mission. This function will not directly call the database.

	One public function will be deleted since the new DIT functions are implemented to provide the same capability. The following identifies the replacement mapping:

	Old: adt_getTarget	New: dit_getTargets

Exportability:	Core

Interactions:	dit_getTargets

	dit_insertTarget

	

Public Operations:	adt_getTarget (short, int, char*) - delete

Private Operations:	adt_insertTargets (LIST*, short) - modify

adt_retrieveTargets (short) - modify

adt_CreateUserTarget (Widget, MPT_MAP *,

	APT_MSNPLN_T *, APT_TARGET_T*) - modify

adt_buildTargetsFromHandle(LIST *) - new

adt_deleteTarget (int target_id) - delete

adt_facTarget (BUCKET_OBJ*, BUCKET_INFO*,

	char*) - delete

adt_genTarget (BUCKET_OBJ*, BUCKET_INFO*,

	char*) - delete

Private Members:	None

Public Operation PDL:	None

Private Operation PDL:

/*

** Add targets from a linked list to the database table TAMPS_PLANNER_TARGETS.

*/

ST_PROTECTED ST_STATUS

adt_insertTargets (LIST *targets, short msn_id)

{

	ST_STATUS 	status = ST_SUCCESS;

	DIT_STATUS 	ditStatus = DIT_SUCCESS;

	UZT_HANDLE 	handle = NULL;

	uzt_Arg	args [50];

	uzt_Cardinal	argcnt = 0;

	APT_TARGET_T 	*tgt = NULL;

	// for (all targets in list)

	// 	tgt = next target in list

	//	if (tgt is not null)

	//		handle = dit_createTargetHandle(DIT_DATA_FIELDS);

	//		for all fields in target structure

	//		set all arguments using uzt_setArg using handle

	//		call dit_createTarget (handle)

	//	end if

	// end for

	// return status

}

/*

** Retrieve targets from the database by returning a pointer to a list of target structures.

** It is the responsibility of the calling program to free the memory allocated when the

** structure is no longer needed. If no targets are found, a NULL pointer is returned.

** It is called by adt_retrieveMission.

*/

ST_PROTECTED LIST *

adt_retrieveTargets (short msn_id)

{

	LIST 	*targetHandles = NULL;

	LIST	*targets = NULL;

	UZT_HANDLE	queryHandle = NULL;

	UZT_HANDLE 	colHandle = NULL;

	DIT_STATUS	status = DIT_SUCCESS;

	< ... use existing code to retreive all target idís associated with this mission ... >

	// for (all target_idís in this mission)

	//	colHandle = dit_createTargetHandle (DIT_COLUMN_FIELDS)

	//	queryHandle = dit_createTargetHandle (DIT_DATA_FIELDS)

	//	set target_id, user_target_id, owner arguments using uzt_setArg queryHandle

	//	status = dit_getTargets (colHandle, queryHandle, targetHandles)

	//	if (status != DIT_SUCCESS)

	//		log error message and return NULL

	// end for

	// convert list of handle targets to list of target structures

	// if (targetHandles is not null)

	// 	call targets = adt_buildTargetsFromHandle (targetHandles)

	// return targets;

}

/*

** This function transfers the target records retrieved from the

** TAMPS_PLANNER_TARGETS data table into APT_TARGET_T structure.

*/

ST_PROTECTED LIST *

adt_buildTargetsFromHandle (LIST * targetHandles)

{

	LIST 	*lp = NULL;

	APT_TARGET_T 	*target = NULL;

	lp = ult_lst_create_list ()

	// if (lp == NULL)

	//	return NULL

	// for (all targets in targetHandles)

	// 	retrieve target fields from handle

	//	allocate memory for target structure

	//	assign target fields to structure

	//	save target on list

	// end for

	// return lp

}

/*

** This function creates a planner target and adds the target to the passed-in mission.

*/

ST_PROTECTED ST_STATUS

adt_CreateUserTarget (Widget dialog, MPT_MAP *pMap, APT_MSNPLN_T *msn,

	APT_TARGET_T *target)

{

	< delete existing code pertaining to latitude/longitude string and hemisphere values >

}

tamps_mission_plan_triggers.sql

Purpose:	This SQL file deletes the mission plan and associated data from each of the TAMPS data tables. The deletion of the target data will be modified to access the new TAMPS_PLANNER_TARGETS data table.

Exportability:	Core

Interactions:	None

	

SQL Operation:	

delete TAMPS_PLANNER_TARGETS

from TAMPS_PLANNER_TARGETS, deleted

where TAMPS_PLANNER_TARGETS.TARGET_ID in

(select TARGET_ID in TAMPS_MSN_TGT_LINK, deleted

where TAMPS_MSN_TGT_LINK.MISSION_ID = deleted.MISSION_ID)

tamps_triggers.sql

Purpose:	This SQL file creates the TAMPS triggers when target and other data is deleted. The SQL trigger statements for TAMPS_TARGET will be modified to identify the TAMPS_PLANNER_TARGETS data table.

Exportability:	Core

Interactions:	None

SQL Operation:	

if exists (select * from sysobjects

	where name = ëTAMPS_PLNR_TARGETS_del_triggerí)

drop trigger TAMPS_PLNR_TARGETS_del_triggerí

go

create trigger TAMPS_PLNR_TARGETS_del_triggger

on TAMPS_PLANNER_TARGETS

for delete as

begin

insert TAMPS_TGT_DELETED (TARGET_ID)

where TAMPS_PLANNER_TARGETS.TARGET_ID in

select TARGET_ID from deleted

< ... existing SQL trigger statements ...>

grant_privs.sql

Purpose:	This SQL file establishes the permissions on the data tables in the TAMPS database. This file will be modified to change the table name from TAMPS_TARGET to TAMPS_PLANNER_TARGETS.

Exportability:	Core

Interactions:	None

SQL Operation:

<... existing SQL grant statements ...>

grant select on TAMPS_PLANNER_TARGETS to public

grant insert, update, delete on TAMPS_PLANNER_TARGETS to dba

grant insert, update, delete on TAMPS_PLANNER_TARGETS to mission_planner

<... existing SQL grant statements ...>

Interface Description

adt_getTarget

Delete the IDD section for adt_getTarget (IFA9110), since this capability will be provided by new function dit_getTargets.

adt_obsoleteChk

There are no IDD changes to for this function.

Unit Test Plans and Procedures

Open and Save Mission

Test Environment:

The open and save mission capabilities will be invoked using an MPM.

Dependencies:

TAMPS_PLANNER_TARGETS created in database

User targets have been defined

util/ult_proto.h

a_msn_plan/adt_proto.h

Assumptions:

None

Test Cases:

a. Using debugger, during save mission, a null list pointer is returned.

Verification:

Verify no targets are saved in TAMPS_PLANNER_TARGETS data table.

Test Steps:

Step�Action�Expected Results�Remarks��1�Create mission without target data�Mission saved.���2�Open mission without target data�The mission is opened, no messages about obsolete targets.���3�Create mission with one target�Mission saved. TAMPS_PLANNER_

TARGETS contains one target���4�Open mission with one target�The mission is opened, no messages about obsolete targets.���5�Create mission with multiple user-defined targets�Mission saved. TAMPS_PLANNER_

TARGETS contains all user-defined targets.���6�Open mission with multiple user-defined targets�The mission is opened, no messages about obsolete targets.���7�Create mission with DBA targets�Mission saved. TAMPS_PLANNER_

TARGETS contains all DBA referenced user-defined targets where target_sk is identifies MIDB database.���8�Open mission with DBA targets�The mission is opened, no messages about obsolete targets.���9�Create mission with multiple user-defined and DBA targets�Mission saved. TAMPS_PLANNER_

TARGETS contains DBA referenced user-defined targets where target_sk is identifies MIDB database.���10�Open mission with multiple user-defined and DBA targets�The mission is opened, no messages about obsolete targets.���11�Update location of one MIDB target used in mission�Target updated.�Use MIDB target editor to modify target.��12�Open mission with one obsolete target�The mission is opened, log message for obsolete target.���13�Update the location of several MIDB targets used in a mission�Targets updated.���14�Open mission with more than one obsolete target�The mission is opened, log message for each obsolete target.���15�Delete MIDB target used in a mission�Target deleted.���16�Open mission where MIDB target was deleted.�The mission is opened, log message for missing target.���Assumptions from Preliminary Design

The TAMPS Planner Target database table is identical (field by field) to the MIDB target database table. The TAMPS_PLANNER_TARGETS data table will correspond to the items in APT_TARGET_T structure. The database table will not contain all the fields in TGT_DETAILS table in MIDB database.

There will be extra columns to added to the Planner Target table to contain the surrogate key, owner and timestamp of the reference target record. The TAMPS_PLANNER_TARGETS data table will contain fields which correspond to the owner and target surrogate key value.

A log message will be sent for each obsolete or modified target in the mission. Since planner targets are saved with the mission, only targets which correspond to MIDB targets are checked for obsolesce. The user is notified upon completion of the target check about obsolete/missing target data.

Concerns/Questions/Issues from Preliminary Design

In addition to sending messages to the logger, would a dialog with a scrollable list that contained all the obsolete or modified targets provide the planner with an easier mechanism to address the target changes? The implementation is to be similar to the other checks in function adt_obsoleteChk(), which is to send a message to the logger about what data is obsolete and present the user with a final dialog box indicating that the mission has obsolete data.

�Affected Files CSC

High-Level Design Updates

This section outlines the files that require modifications to map to the changes being planned for the APT_TARGET_T structure, and TAMPS_PLANNER_TARGETS data table and the addition of the MIDB database.

Database Schema

There is no database schema changes for this section.

Control Flow

There is no control flow for this section.

Algorithms

There are no algorithms for this section.

Design Description

amt_bkdata.c

Purpose:	This unit provides routines for displaying a route.

Exportability:	Core

Interactions:	No new interactions.

	

Public Operations:	No changes to public operations.

Private Operations:	No changes to private operations.

Private Members:	

static COLUMNS userTarget []

This attribute for the bucket object is modified to map to the new target structure. The columns included for this bucket object are: target_id, be_number, elevation, lat_radians, long_radians, grid_coordinates, grid_datum, horiz_accuracy, horiz_confidence, vert_accuracy, and vert_confidence. The user_target_id, confidence and high_precision fields have been deleted.

Public Operation PDL:	None

Private Operation PDL:	None

amt_rtdisp.c

Purpose:	This unit provides functions for aircraft mission planning.

Exportability:	Core

Interactions:	No new interactions

	

Public Operations:	None

Private Operations:	amt_get_hooked_generic_target

	(LIST * , APT_TARGET_T *) - modify

amt_del_display_target (MPT_MAP *,

	APT_MSNPLN_T *, APT_TARGET_T *) - modify

Private Members:	None

Public Operation PDL:	None

Private Operation PDL:

Italics represents existing code.

/*

** Get the hooked target values from the bucket object.

*/

ST_PROTECTED ST_STATUS

amt_get_hooked_generic_target (LIST *hkList, APT_TARGET_T *hk_target)

{

	< ... existing code ... >

 	 if (bkp->db_columns != NULL) &&

		 (bkp->db_columns->next != bkp->db_columns) {

	 	if (bkp->oh_object->table_names != NULL) {

	//		if (items on table_names list)

	//		if (table_name == ìTGT_DETAILî)

	//			get the target fields from the object based on DBA target

	//		else if (table_name == ìTAMPS_PLANNER_TARGETSî)

	//			get the target fields from the object based on user target

	//		end if

	//		end if

		}

		else if (bkp->oh_object->object_name == ëTARGETî) {

	//		get the target fields from object based on user target

		}

		else /* unknown type */

			set target_id = 0;

	 else /* unknown type */

		set target_id = 0;

	 < ... existing code ... >

}

/*

** Determine if the target point object has not yet been displayed, otherwise delete target

** from bucket object and from amt_List

*/

ST_PROTECTED ST_STATUS

amt_del_display_target (MPT_MAP *pmap, APT_MSNPLN_T *mission,

	APT_TARGET_T *tgt)

{

	< ... existing code for amt_List ... >

	if (bkp->bucket_header.layer_num != bkObj->bucket_header.layer_num &&

		bkp->bucket_header.bucket_num != bkObj->bucket_header.bucket_num) {

		pt = (APT_TARGET_T *) bkObj->data;

		if (pt == NULL) continue;

	//	if (pt->target_id == Tamps target prefix)

	//		if (pt->target_id == tgt->target_id)

	//			status = ST_SUCCESS

	//			break

	//	else

	//		if (pt->user_target_id == tgt->user_target_id)

	//			status = ST_SUCCESS

	//			break

	// 	end if

	} /* end if */

	< ... existing code for data bucket ... >

	for (lp= bkp->bucket_objs->next; lp != bkp->bucket_objs; lp = lp->next) {

		bkObj = (BUCKET_OBJECT *) lp->data;

		pt = (APT_TARGET_T *) bkObj->data;

		if (pt == NULL) continue;

	//	if (pt->target_id == Tamps target prefix)

	//		if (pt->target_id == tgt->target_id)

	//			status = ST_SUCCESS

	//			break

	//	else

	//		if (pt->user_target_id == tgt->user_target_id)

	//			status = ST_SUCCESS

	//			break

	// 	end if

	} /* end for */

	< ... existing code ... >

}

aet_RefOAPCb.c

Purpose:	This unit provides routines used to support offset aimpoints for a mission.

Exportability:	Core

Interactions:	No new interactions.

	

Public Operations:	None

Private Operations:	aet_CreateOAP (Widget, APT_ACTION_POINT_T *,

	APT_TARGET_T *) - modify

aet_OAPOpen_NavDel (APT_ACTION_POINT_T *,

	APT_TARGET_T *) - modify

aet_updateOAPs (APT_ACTION_POINT_T *,

	APT_TARGET_T *) - modify

Private Members:	None

Public Operation PDL:	None

Private Operation PDL:

/*

** This function will start the processing of offset aimpoints from the edit flight parameters

** window or target window. Inputs are the action point or target point. If both inputs are

** null, the function will look for a hi-lighted symbol.

*/

ST_PROTECTED

aet_CreateOAP (Widget, APT_ACTION_POINT_T *, APT_TARGET_T *)

{

	< ... existing code to move data common action/target structure ... >

	//	if (AET_currentTgtPt->target_id == Tamps target prefix)

	//		AET_currentTgtPt.id = AET_currentTgtPt ->target_id

	//	else

	//		AET_currentTgtPt .id = AET_currentTgtPt ->user_target_id

	//	end if

	< ... existing code ... >

}

/*

** This function closed the aimpoint reference window if the associated navigation point

** is deleted.

*/

ST_PROTECTED void

aet_OAPOpen_NavDel (APT_ACTION_POINT_T *locActionPt,

		APT_TARGET_T *locTargetPt)

{

	< ... existing code ... >

	else if ((locTargetPt) && (AET_currentTgtPt)) {

	//	if (AET_currentTgtPt->target_id == Tamps target prefix)

	//		id = locTargetPt->target_id

	//	else

	//		id = locTargetPt->user_target_id

	//	end if

	}

	< ... existing code ... >

}

/*

** This function updates the bearing and rangers for the aimpoint references to be called

** when a navigation point moves. And it also updates the list display.

*/

ST_PROTECTED void

aet_updateOAPs (APT_ACTION_POINT_T *locActionPt,

		APT_TARGET_T *locTargetPt)

{

	< ... existing code ... >

	if (!locTargetPt ->ref_obj)

		return;

	// if (locTargetPt->target_id == Tamps target prefix)

	//	loc_act_tgt_pt->id = locTargetPt->target_id

	// else

	//	loc_act_tgt_pt->id = locTargetPt->user_target_id

	// end if

	< ... existing code ... >

}

bat_utils.c

Purpose:	This unit provides utility functions for the TARPS library.

Exportability:	Core

Interactions:	No new interactions.

	

Public Operations:	None

Private Operations:	bat_ApplyTarget (BAT_CAMERA_DATA_T *)

Private Members:	None

Public Operation PDL:	None

Private Operation PDL:

/*

** This function is to define a user target at the specified location.

*/

ST_PROTECTED void

bat_ApplyTarget (BAT_CAMERA_DATA_T *camera_data)

{

	< ... delete assignment to target.type... >

}

dft_getOrderOfBattle.c

Purpose:	This unit provides functions for retrieving order of battle data. The valid access methods for processing are: spatial box and an individual record. The types of records processed are: radar, tactical, missile, and sam. This file will need to be converted to a C++ file.

Exportability:	Public

Interactions:	dft_OrderOfBattle_c

	

Public Operations:	dft_getOrderOfBattle (DFT_ACCESS_METHOD,

	DFT_ORDER_OF_BATTLE_INPUT *)

Private Operations:	None

Private Members:	None

Public Operation PDL:	None

Private Operation PDL:

/*

** This function retrieves the Order of Battle data from the database. There are

** four types of Order of Battle retrieve: RADAR, MISSILE, AIR and TACTICAL.

** The dit_getMidbData function is used to retrieve the required data.

*/

ST_PUBLIC LIST*

dft_getOrderOfBattle (DFT_ACCESS_METHOD access_method,

		DFT_ORDER_OF_BATTLE_INPUT *input_struct)

{

	// if (access_method != DFT_SPATIAL_BOX or access_method != DFT_RECORD)

	//	log error message about invalid access method

	//	return null

	// end if

	dft_OrderOfBattle_c oob (access_method, input_struct);

	return oob.GetRecords ();

}

dft_OrderOfBattle_c.C

Purpose:	This unit provides functions for retrieving order of battle data from the MIDB database.

Exportability:	Core

Interactions:	dit_getMidbData

	dit_createHandle

	dit_deleteHandleData

	

Public Operations:	dft_OrderOfBattle (DFT_ACCESS_METHOD,

	DFT_ORDER_OF_BATTLE_INPUT *)

	LIST * 	GetRecords ()

Private Operations:	void	EqpData (int)

	ST_STATUS 	SaveRecord ()

	RWBoolean	ValidCountryCode (char *)

	RWCString	Aka (int)

Private Members:	

UZT_HANDLE 	facQryHandle

UZT_HANDLE 	facSelHandle

UZT_HANDLE 	eqpQryHandle

UZT_HANDLE 	eqpSelHandle

UZT_HANDLE 	idxQryHandle

UZT_HANDLE 	idxSelHandle

UZT_HANDLE 	idxFacQryHandle

UZT_HANDLE 	idxFacSelHandle

UZT_HANDLE	eqpFacSelHandle

UZT_HANDLE	eqpFacQryHandle

These attributes represent the individual handles required for specifying the data to be retrieved from MIDB objects and specifying the query conditions when retrieving the data. The following handles are used for each oob record type:

	dft_order_of_battle_type:	AIR	MISSILE	TACTICAL	RADAR

facSelHandle/facQryHandle	X	X	X	X

eqpSelHandle/eqpQryHandle	-	-	-	X

idxSelHandle/idxQryHandle	-	X	X	X

idxFacSelHandle/idxFacQryHandle	-	X	X	-

eqpFacSelHandle/eqpFacQryHandle	-	-	-	X

DFT_ORDER_OF_BATTLE_INPUT 	*inputStruct

DFT_ORDER_OF_BATTLE_TYPE 	 oobType

DFT_ACCESS_METHOD 	accessMethod

These attributes represent the input data specified by the calling program. The attribute oobType is set from the field order_of_battle_type in inputStruct record.

uzt_Arg	args[100]

uzt_Cardinal	argcnt

These attributes are used to add and retrieve fields from UZT_HANDLES.

double 	ur_latitude

double 	ur_longitude

double 	ll_latitude

double 	ll_longitude

double	latitude

double	longitude

char	airDefArea [dit_AIR_DEFENSE_AREA_LEN]

char	beNumber [dit_BE_NUMBER_LEN]

char	category [dit_CATEGORY_LEN]

char	commonName [dit_AKA_LEN]

char	countryCode [dit_COUNTRY_CODE_LEN]

char	dateLastChg [dit_DATE_LAST_CHG_LEN]

char	equipCode [dit_EQUIP_CODE_LEN];

char	equipIdNum [dit_EQUIP_ID_NUM_LEN]

char	facName [dit_FAC_NAME_LEN]

char	operStatus [dit_OPER_STATUS_LEN]

char	siteFunction [dit_FUNCT_PRIMARY_LEN]

These attributes represent the fields used to store data after queries to the MIDB database.

LIST *	outputList

This attribute represents the DFT_ORDER_OF_BATTLE records that correspond to the query input structure in DFT_ORDER_OF_BATTLE_INPUT.

Public Operation PDL:	None

Private Operation PDL:

/*

** This class retrieves the order of battle data from the MIDB database.

*/

dft_OrderOfBattle_c (DFT_ACCESS_METHOD access_method,

	DFT_ORDER_OF_BATTLE_INPUT *input_struct)

{

	// accessMethod = access_method

	// inputStruct = input_struct

	// oobType = inputStruct->order_of_battle_type

	// /* create facility select handle */

	// facSelHandle = dit_createHandle (DIT_FAC, DIT_COLUMNS_FIELDS)

	// if (facSelHandle == NULL)

	//	return NULL

	// /* create facility query handle */

	// facQryHandle = dit_createhandle(DIT_FAC, DIT_DATA_FIELDS)

	// if (facQryHandle == NULL)

	//	return NULL

	// if (oobType != DFT_AIR)

	// 	/*	create equipment index select handle */

	//	idxSelHandle = dit_createHandle (DIT_EQP_IDX, DIT_SELECT_FIELDS)

	//	if (idxSelHandle == NULL)

	//		return NULL

	// 	/*	create equipment index query handle */

	//	idxQryHandle = dit_createHandle (DIT_EQP_IDX, DIT_DATA_FIELDS)

	//	if (idxQryHandle == NULL)

	//		return NULL

	// 	if (oobType == DFT_RADAR)

	// 	/*	create equipment select handle */

	//		eqpSelHandle = dit_createHandle (DIT_EQP, DIT_SELECT_FIELDS)

	//		if (eqpSelHandle == NULL)

	//		return NULL

	// 		/*	create equipment query handle */

	//		eqpQryHandle = dit_createHandle (DIT_EQP, DIT_DATA_FIELDS)

	//		if (eqpQryHandle == NULL)

	//		return NULL

	//		/*	create equipment facility select handle */

	//		eqpFacSelHandle = dit_createHandle (DIT_EQP_BY_FAC,

	//		DIT_SELECT_FIELDS)

	//		if (eqpFacSelHandle == NULL)

	//		return NULL

	//		/*	create equipment facility query handle */

	//		eqpFacQryHandle = dit_createHandle (DIT_EQP_BY_FAC,

	//		DIT_DATA_FIELDS)

	//		if (eqpFacQryHandle == NULL)

	//		return NULL

	//	else 		/* DFT_TACTICAL and DFT_MISSILE */

	// 	/* 	create equipment index by facility select handle */

	//	idxFacSelHandle = dit_createHandle (DIT_EQP_IDX_BY_FAC,

	//		DIT_SELECT_FIELDS)

	//	if (idxFacSelHandle == NULL)

	//		return NULL

	//	/*	create equipment index by facility query handle */

	//	idxFacQryHandle = dit_createHandle (DIT_EQP_IDX_BY_FAC,

	//		DIT_DATA_FIELDS)

	//	if (idxFacQryHandle == NULL)

	//		return NULL

	

	//	end if /* order of battle type */

	// end if /* not DFT_AIR */

	outputList = NULL;

	ur_latitude = 0.0;

	ur_longitude = 0.0;

	ll_latitude = 0.0;

	ll_longitude = 0.0;

	latitude = 0.0;

	longitude = 0.0;

}

/*

** This function returns the order of battle data from the MIDB database.

*/

LIST* GetRecords ()

{

	int facSk = 0;

	// set facility select columns in facSelHandle

	//	(latitude, longitude, beNumber, category, countryCode, facName, dateLastChg, fac_sk)

	// if (oobType!= DFT_RADAR)

	//	set facility select columns in facSelHandle (operStatus, airDefArea, siteFunc)

	// end if

	// if (accessMethod == DFT_RECORD)

	//	set facility query columns in facQryHandle (beNumber, category)

	// else if (accessMethod == DFT_SPATIAL_BOX)

	//	set facility query columns in facQryHandle

	//		(ll_latitude, ll_longitude, ur_latitude, ur_longitude)

	// 	if (inputStruct->country_codes != NULL and

//		inputStruct->number_country_codes == 1)

//		set facility query column in facQryHandle (countryCode)

// 	end if

	// end if

	// get category value from DD_VALID_THREAT_TYPES using

	//		inputStruct->order_of_battle_type

	// set fac query columns in facQryHandle (category)

	// if (inputStruct->operability_indicator == TRUE)

	//	if (oobType != DFT_RADAR)

	//	set fac query column in facQryHandle (operStatus = ëOPRí)

	//	end if

	// end if

	// call dit_getMidbData (DIT_FAC, facSelHandle, facQryHandle, returnData)

	// if (no data found)

	//	return NULL

	// for (each list handle)

	// 	retrieve countryCode

	//	if (ValidCountryCode (countryCode)

	//		retrieve latitude, longitude, category, facName, beNumber, dateLastChg, facSk

	//		if (oobType != DFT_RADAR)

	//		retrieve operStatus, siteFunction, airDefArea

	//		end if

	//		if (oobType == DFT_AIR)

	//		set equipCode and equipCommonName to null

	//		SaveRecord()	/* if record not saved, stop processing ??? */

	//	else

	//		call EqpData(facSk)

	//		end if

	//	end if /* correct country code */

	// end for /* list handle loop */

	// return list

}

/*

** This function finds the equipment values based on the facility record.

*/

void EqpData (int facSk)

{

	int eqp_sk = 0;

	int eqp_idx_sk = 0;

	// if (oobType == DFT_RADAR)

	//	set equipment facility select columns in eqpFacSelHandle

	//		(equipIdNum, equipCode, siteFunction, operStatus, eqp_sk)

	//	set equipment facility query columns in eqpFacQryHandle (facSk)

	//	call dit_getMidbData (DIT_EQP_BY_FAC, eqpFacSelHandle, eqpFacQryHandle,

	//		returnData)

	//	if (no data found in returnData)

	//		SaveRecord()	/* if record not saved, stop processing ??? */

	//	else

	//		for (each equipment record)

	//		retrieve equipIdNum, equipCode, siteFunction, operStatus, eqp_sk)

	//		set equipment index select columns in idxSelHandle (eqp_idx_sk)

	//		set equipment index query columns in idxQryHandle (equipCode)

	//		call dit_getMidbData (DIT_EQP_IDX, idxSelHandle, idxQryHandle,

	//		returnData)

	//		if (no data found in returnData)

	//		SaveRecord()	/* if record not saved, stop processing ??? */

	//		else

	//		for (each eqp index record)

	//		commonName = Aka (eqp_idx_sk)

	//		SaveRecord()	/* if record not saved, stop processing ??? */

	//		end for

	//	end if

	//	end for /* equipment record loop */

	//	end if /* found equipment data */

	// else /* processing DFT_MISSILE and DFT_TACTICAL */

	//	set equipment index facility select columns in idxFacSelHandle

	//		 (equipCode, eqp_idx_sk)

	//	set equipment index facility query columns in idxFacQryHandle (facSk)

	//	call dit_getMidbData (DIT_EQP_IDX_BY_FAC, idxFacSelHandle,

	//			idxFacQryHandle, returnData)

	//	for (each equipment index record)

	//		commonName = Aka (eqp_idx_sk)

	//		SaveRecord ()	/* if record not saved, stop processing ??? */

	//	end for /* equipment index record loop */

	// end if

}

/*

** This function adds an order of battle record to the output list.

*/

ST_STATUS SaveRecord ()

{

	ST_STATUS status = ST_SUCCESS;

	DFT_ORDER_OF_BATTLE *dft_OOBptr = NULL;

	// if (outputList not created)

	//	create outputList

	//	if (outputList not created)

	//	log warning about being unable to create linked list

	//		return ST_FAILURE

	//	end if

	// end if

	// allocate dft_OOBptr = (DFT_ORDER_OF_BATTLE *) calloc by size

	// save record values in dft_OOBptr

	// if (inputStruct->nearest_object_flag == FALSE)

	//	enque dft_OOBptr on outputList

	//	if (record not saved)

	//		log error message about which record

	//		return ST_FAILURE

	//	end if

	// else if (accessMethod == DFT_SPATIAL_BOX)

//	<... use existing code to determine nearest object ...>

// end if

}

/*

** This function determine if the input country code has been requested by the input data.

*/

Boolean ValidCountryCode (char* cc)

{

	Boolean valid = True;

	// if (inputStruct->country_codes != NULL and inputStruct->number_country_codes > 1)

//	valid = False;

//	for (each country_code)

//	if (country_code == cc)

//	valid = True;

//	break;

//	end if

//	end for /* country code loop */

// end if /* available country codes */

// return valid

}

/*

** This function gets the common name for the given equipment index surrogate key.

*/

RWCString Aka (int eqp_idx_sk)

{

	RWCString akaValue;

	// set eqp index select columns in idxSelHandle (eqpType, aka)

	// set eqp index query columns in idxQryHandle (eqp_idx_sk, aka_type = ëCNí)

	// call dit_getMidbData (DIT_EQP_IDX, idxSelHandle, idxQryHandle, returnData)

	// if (accessMethod == DFT_SPATIAL_BOX and oobType != DFT_AIR and

	//		inputStruct->threat_types != NULL)

	//	for (each threat type)

	//		if (threat_type like aka)

	//		akaValue = aka;

	//		break;

	//	end for

	// end if

	return akaValue;

}

dft_getTargetData.c

Purpose:	This unit provides a function to retrieve target data from the database. The valid access methods for processing are: spatial box, country code, world area code be_number, and individual record. When the access method of spatial box, the query condition is lat/long bounding box and optionally one or more country codes. When the access method is country code, the query condition is lat/long bounding box and one country code. When the access method is wac be number, the query condition is lat/long bounding box and one or more be numbers. Lastly, when the access method is individual record, the query condition is one or more be_numbers. This file will need to be converted to a C++ file.

Exportability:	Public

Interactions:	dit_getMidbData

	dit_createHandle

	dit_deleteHandleData

	

Public Operations:	dft_getTargetData (DFT_ACCESS_METHOD,

		DFT_TARGETS_INPUT *)

Private Operations:	None

Private Members:	None

Public Operation PDL:	None

Private Operation PDL:

/*

** This function retrieves target data from the database using DFT_TARGETS_INPUT

** to define which target records are returned.

*/

ST_PUBLIC LIST *

dft_getTargetData (DFT_ACCESS_METHOD access_method,

	DFT_TARGETS_INPUT * input_struct)

{

	// if (access_method != DFT_SPATIAL_BOX or access_method != DFT_WAC_BE

	// access_method != DFT_COUNTRY_CODE or access_method != DFT_RECORD)

	//	log error message about invalid access method

	//	return null

	// end if

	// if (access_method == DFT_SPATIAL_BOX and

	//	bounding box values not provided)

	//	return NULL

	// if (access_method == DFT_RECORD or DFT_WAC_BE and

	//	be_numbers are not provided)

	//	return NULL

	// if (access_method == DFT_COUNTRY_CODE and country code not provided)

	//	return NULL

	dft_TargetData_c target(access_method, input_struct);

	return target.GetRecords();

}

dft_TargetData_c.C

Purpose:	This unit provides convenience functions for retrieving target data.

Exportability:	Core

Interactions:	dlt_retrieveTargetCount ??

	

Public Operations:	dft_TargetData_c (DFT_ACCESS_METHOD,

	DFT_ORDER_OF_BATTLE_INPUT *)

GetRecords ()

Private Operations:	SaveRecord (char *, UZT_HANDLE, int)

	FacData (LIST *)

	FacData(char *)

	UserData (char *)

Private Members:	

UZT_HANDLE	targetSelHandle

UZT_HANDLE	targetQryHandle

UZT_HANDLE	facTgtSelHandle

UZT_HANDLE	facTgtQryHandle

UZT_HANDLE	tgtFacSelHandle

UZT_HANDLE	tgtFacQryHandle

These attributes represent the handles required for specifying the data to be retrieved from the MIDB TGT_DETAIL object and for specifying the query conditions when retrieving the data.

UZT_HANDLE	userSelHandle

UZT_HANDLE	userQryHandle

These attributes represent the handles required for specifying the data to be retrieved from the TAMPS_PLANNER_TARGETS object and for specifying the query conditions when retrieving the data.

DFT_TARGETS_INPUT 	*inputStruct

DFT_ACCESS_METHOD 	accessMethod

These attributes represent the input data specified by the calling program.

uzt_Arg	args[100]

uzt_Cardinal	argcnt

These attributes are used to add and retrieve fields from UZT_HANDLES.

double 	ur_latitude

double 	ur_longitude

double 	ll_latitude

double 	ll_longitude

double	latitude

double	longitude

double	azimuth

float	coordRoa

double	elevation

double	length

double	height

double	width

char	azimuthRef [dit_AZIMUTH_REF_LEN]

char	beNumber [dit_BE_NUMBER_LEN]

char	coordDatum [dit_COORD_DATUM_LEN]

char	coordRoaUM [dit_COORD_ROA_UM_LEN]

char	countryCode [dit_COUNTRY_CODE_LEN]

char	elevationUM [dit_ELEVATION_MSL_UM_LEN]

char	hardness [dit_HARDNESS_LEN]

char	heightUM [dit_HEIGHT_UM_LEN]

char	lengthUM [dit_LENGTH_UM_LEN]

char	targetName [dit_TARGET_NAME_LEN]

char	widthUM [dit_WIDTH_UM_LEN]

These attributes represent the fields used to store data after queries to the MIDB database.

LIST *	outputList

This attribute represents the DFT_TARGETS records that correspond to the query input structure in DFT_TARGETS_INPUT.

Public Operation PDL:	None

Private Operation PDL:

/*

** This function retrieves the Target data from the MIDB and TAMPS database.

** The dit_getMidbData function is used to retrieve the MIDB data and dit_getTargets is

** used to retrieve the TAMPS data.

*/

dft_TargetData_c (DFT_ACCESS_METHOD access_method,

	DFT_ORDER_OF_BATTLE_INPUT *input_struct)

{

	// accessMethod = access_method

	// inputStruct = input_struct

	// /* create target select handle */

	// targetSelHandle = dit_createHandle (DIT_TARGET, DIT_COLUMN_FIELDS)

	// if (targetSelHandle == NULL)

	// return NULL

	// /* create target query handle */

	// targetQryHandle = dit_createHandle (DIT_TARGET, DIT_DATA_FIELDS)

	// if (targetQryHandle == NULL)

	// return NULL

	// /* create user select handle */

	// userSelHandle = dit_createTargetHandle (DIT_COLUMN_FIELDS)

	// if (userSelHandle == NULL)

	// return NULL

	// /* create user query handle */

	// userQryHandle = dit_createTargetHandle (DIT_DATA_FIELDS)

	// if (userQryHandle == NULL)

	// return NULL

	// /* create facility target select handle */

	// facTgtSelHandle = dit_createHandle (DIT_FAC_BY_TARGET,

	//	DIT_COLUMN_FIELDS)

	// if (facTgtSelHandle == NULL)

	// return NULL

	// /* create facility target query handle */

	// facTgtQryHandle = dit_createHandle (DIT_FAC_BY_TARGET,

	//	DIT_DATA_FIELDS)

	// if (facTgtQryHandle == NULL)

	// return NULL

	// /* create target facility select handle */

	// tgtFacSelHandle = dit_createHandle (DIT_TARGET_BY_FAC,

	//	DIT_COLUMN_FIELDS)

	// if (tgtFacSelHandle == NULL)

	//	return NULL

	// /* create target facility query handle */

	// tgtFacQryHandle = dit_createHandle (DIT_TARGET_BY_FAC,

	//	DIT_DATA_FIELDS)

	// if (tgtFacQryHandle == NULL)

	//	return NULL

	outputList = NULL;

	ur_latitude = 0.0;

	ur_longitude = 0.0;

	ll_latitude = 0.0;

	ll_longitude = 0.0;

	latitude = 0.0;

	longitude = 0.0;

}

/*

** This function frees the allocated objects used by this class.

*/

~dft_TargetData_c ()

{

	// free all target handles

}

/*

** This function returns the target data from the MIDB database

*/

LIST * GetRecords ()

{

	int tgt_sk = 0;

	// /* Determine if input contains only be Numbers */

	// if (accessMethod == DFT_WAC_BE and no bounding box values or country code)

	//	for (all inputStruct->number_wac_bes)

	//		be_number = inputStruct->wac_bes[i]

	//		FacData (be_number)

	//		UserData (be_number)

	//	end for

	

	// else if (accessMethod == DFT_RECORD)

	//	for (all inputStruct->number_targets)

	//		be_number = inputStruct->targets[i]

	//		FacData (be_number)

	//		UserData (be_number)

	//	end for

	// else /* processing SPATIAL_BOX, COUNTRY_CODE, WAC_BE */

	// set target select columns in targetSelHandle

	//	(beNumber, TargetName, countryCode, hardness, elevation, elevationUM,

	//	width, widthUM, height, heightUM, length, lengthUM, azimuth, azimuthRef,

	//	coordRoa, coordRoaUM, latitude, longitude, coordDatum, targetSk)

	//	if (accessMethod == DFT_SPATIAL_BOX)

	// 	set target query columns in targetQryHandle

	//		(ll_latitude, ll_longitude, ur_latitude, ur_longitude)

	// 	set target query columns in userQryHandle

	//		(ll_latitude, ll_longitude, ur_latitude, ur_longitude)

	//	else /* process DFT_COUNTRY_CODE or DFT_WAC_BE */

	//		if (spatial box values set)

	// 	set target query columns in targetQryHandle

	//		(ll_latitude, ll_longitude, ur_latitude, ur_longitude)

	// 	set target query columns in userQryHandle

	//		(ll_latitude, ll_longitude, ur_latitude, ur_longitude)

	//		end if

	//	end if

	//	if (accessMethod == DFT_COUNTRY_CODE)

	//		set target query columns in targetQryHandle (countryCode)

	//		set target query columns in userQryHandle (countryCode)

	//	else /* process DFT_SPATIAL_BOX or DFT_WAC_BE */

	//		if (inputStruct->filter_country_code provided)

	//		set target query columns in targetQryHandle (countryCode)

	//		set target query columns in userQryHandle (countryCode)

	//		end if

	//	end if

	//	call dit_getMidbData (DIT_TARGET, targetSelHandle, targetQryHandle,

	//		returnData)

	//	if (data found in returnData)

	//	FacData (returnData)

	//	end if /* process target data */

	//	call dit_getTargets (userSelHandle, userQryHandle, returnData)

	//	if (data found in returnData)

	//		retrieve beNumber

	//		if (accessMethod == DFT_WAC_BE)

	//		for (all be numbers)

	//		if (inputStruct->wac_bes[i] == beNumber)

	//		SaveRecord (beNumber, userHandle, 1)

	//		end if

	//		end for /* set of be numbers */

	//		else

	//		SaveRecord (beNumber, userHandle, 1)

	//	end if

	// end if /* end processing */

}

/*

** This function retrieves the facility data associated for each target record in the list

*/

FacData (LIST * targets)

{

	int targetSk = 0;

	UZT_HANDLE targetHandle = NULL;

	// for (all targets)

	//	retrieve targetSk from targetHandle

	//	set facility target select columns in facTgtSelHandle (beNumber)

	//	set facility target query columns in facTgtQryHandle (targetSk)

	//	call dit_getMidbData (DIT_FAC_BY_TARGET, facTgtSelHandle,

	//	facTgtQryHandle, returnData)

	//		for (each facility record)

	//		retrieve beNumber

	//		if (accessMethod == DFT_WAC_BE)

	//		for (all be numbers)

	//		if (inputStruct->wac_bes[i] == beNumber)

	//		SaveRecord (beNumber, targetHandle, 0)

	//		end if

	//		end for /* set of be numbers */

	//		else

	//		SaveRecord (beNumber, targetHandle, 0)

	//		end if

	//		end for

	// end for

}

/*

** This function uses the be_number to find the target data when bounding box and

** country code query conditions have not been used from the MIDB database.

*/

FacData(char* be_number)

{

	//	set target facility select columns in tgtFacSelHandle

	//	(beNumber, TargetName, countryCode, hardness, elevation, elevationUM,

	//	width, widthUM, height, heightUM, length, lengthUM, azimuth, azimuthRef,

	//	coordRoa, coordRoaUM, latitude, longitude, coordDatum)

	//	set target facility query columns in tgtFacQryHandle (be_number)

	//	call dit_getMidbData (DIT_TARGET_BY_FAC, tgtFacSelHandle,

	//	tgtFacQryHandle, returnData)

	//	if (data found in returnData)

	//		for (all target records)

	//		retrieve be_number

	//		SaveRecord (be_number, target, 0)

	//		end for

	//	end if

	// end for

}

/*

** This function uses the be_number to find the target data from the TAMPS database.

*/

UserData(char* be_number)

{

	//	set target facility select columns in userSelHandle

	//	(beNumber, TargetName, targetDescription, countryCode, elevation,

	//	width, widthUM, height, heightUM, length, lengthUM, horizontalAccuracy,

	//	latitude, longitude, gridDatum)

	//	set target facility query columns in userQryHandle (be_number)

	//	call dit_getTargets (userSelHandle, userQryHandle, returnData)

	//	if (data found in returnData)

	//		for (all target records)

	//		retrieve be_number

	//		SaveRecord (be_number, target, 1)

	//		end for

	//	end if

	// end for

}

/*

** This function adds a target record to the output list

*/

ST_STATUS SaveRecord(char* be_Number, UZT_HANDLE handle, int flag)

{

	ST_STATUS status = ST_SUCCESS;

	DFT_TARGETS *dft_targets = NULL;

	// if (outputList not created)

	//	create outputList

	//	if (outputList not created)

	//	log warning about being unable to create linked list

	//		return ST_FAILURE

	//	end if

	// end if

	// if (flag == 1)

	//	retrieve target values from user handle

	// else

	// 	retrieve target values from target handle

	// end if

	// allocate dft_targets = (DFT_TARGETS *) calloc by size

	// save record values in dft_targets

	// enque dft_targets on outputList

	// if (record not saved)

	//	log error message about which record

	// end if

}

dlt_mission.c

Purpose:	This unit provides functions for the loading and unloading the mission to the database.

Exportability:	Core

Interactions:	No new interactions

	

Public Operations:	None

Private Operations:	dlt_retrieveTargetCount (char *)

Private Members:	None

Public Operation PDL:	None

Private Operation PDL:

ST_PRIVATE int

dlt_retrieveTargetCount (char* whereClause)

{

	< ... existing code ... >

	// change TAMPS_TARGET to TAMPS_PLANNER_TARGETS

	< ... existing code ... >

}

Interface Description

function: � tc " dft_getOrderOfBattle" \l 3 �dft_getOrderOfBattle�IFA5047��CALLING SEQUENCE:

order_of_battle_list = dft_getOrderOfBattle(access_method, input_struct)

PARAMETERS:

Name	I/O	Type	Description

access_method	I	DFT_ACCESS_	Type of access requested. This

		METHOD	identifies what data will be in the input struct.

input_struct	I	DFT_ORDER_	The input struct containing the

		OF_BATTLE_	specifications for what data is to

		INPUT * 	be retrieved.

order_of_battle_list	O	LIST *	Linked list of structures.

DESCRIPTION:

This function will take an input structure of options to retrieve and generate the appropriate "where clause" for selecting the requested data from the database. It will call another function with the "where clause" to perform the actual selection of the data. The “where clause” is built by “ANDing” each option together so only the data that meets all requested criteria will be returned from the database. In the case that there are multiple values for a single option these values are “ORed” together. After retrieving the data, this function will then package the data returned into a linked list of DFT_ORDER_OF_BATTLE structures and return this list to the calling routine. The structures returned on the output linked list are based upon the type of order of battle requested in the input structure. The calling routine is responsible for freeing the linked list.

Valid access_method values include: DFT_SPATIAL_BOX and DFT_RECORD.

EXAMPLE:

typedef struct {

	DFT_ORDER_OF_BATTLE_TYPE order_of_battle_type;

	DFT_BOUNDING_BOX	bounding_box;	/* option 1 */

	int				number_threat_sites;

	void				**threat_sites;	/* option 2 */

	int				number_country_codes;

	void				**country_codes;	/* option 3 */

	int				number_threat_types;

	void				**threat_types;	/* option 4 */

	int				operability_indicator; 	/* option 5 - True(1) or False(0) */

	int				nearest_object_flag; 	/* option 6 - True(1) or False(0) */

	} DFT_ORDER_OF_BATTLE_INPUT;

typedef struct {

	double				site_latitude;

	double				site_longitude;

	char				category_code[6];

	char				be_number[11];

	char				site_function[54];

	char				country_code[3];

	char				site_status[4];

	char				site_name[5441];

	char				date_time_group[1513];

	int				site_elevation;

	char				air_defense_district[3];

	int				degrade_factor;

	char				equip_code[8];

	short				equip_id_number;

	char				equip_common_name[5431];

	} DFT_ORDER_OF_BATTLE;

#include "dbase/dft_struct.h"

DFT_ORDER_OF_BATTLE_INPUT 	input_struct = 	DFT_ORDER_OF_BATTLE_DEFAULTS;	

LIST				*order_of_battle_list;

DFT_ORDER_OF_BATTLE	oob_struct;

LIST				*lpr;

.

input_struct.order_of_battle_type = DFT_MISSILE;

input_struct.bounding_box.sw_latitude = DEGTORAD(30);

input_struct.bounding_box.sw_longitude = DEGTORAD(120);

input_struct.bounding_box.ne_latitude = DEGTORAD(40);

input_struct.bounding_box.ne_longitude = DEGTORAD(130);

order_of_battle_list = dft_getOrder_OfBattle(DFT_SPATIAL_BOX,

 &input_struct);

if (order_of_battle_list != NULL)

{

 for (lpr = order_of_battle_list->next;

 lpr != order_of_battle_list;

 lpr = lpr->next)

 {

 oob_struct = (DFT_ORDER_OF_BATTLE *) lpr->data;

 }

}

�

function: �tc " dft_getTargetData" \l 3�dft_getTargetData�IFA5053��CALLING SEQUENCE:

target_list = dft_getTargetData(access_method, input_struct)

PARAMETERS:

Name	I/O	Type	Description

access_method	I	DFT_ACCESS_	Type of access requested.

		METHOD	This identifies what data will be in the input struct.

input_struct	I	DFT_TARGETS_INPUT *	The input struct containing the specifications for what data is to be retrieved.

target_list	O	LIST *	Linked list of DFT_TARGETS structures.

DESCRIPTION:

This function will take an input structure of options to retrieve and generate the appropriate "where clause" for selecting the requested data from the database. The "where_clause" is built by "ANDing" each option together so only the data that meets all requested criteria will be returned from the database. In the case that there are multiple values for a single option these values are "ORed" together. It will call another function with the "where clause" to perform the actual selection of the data. After retrieving the data, this function will then package the data returned into a linked list of DFT_TARGETS structures and return this list to the calling routine. The calling routine is responsible for freeing the linked list.

Valid access_method values include: DFT_SPATIAL_BOX, DFT_RECORD, DFT_COUNTRY_CODE and DFT_WAC_BE.

EXAMPLE:

typedef struct{

		DFT_BOUNDING_BOX	bounding_box;

		int				number_targets;

		void				**targets;

		char				country_code[3];

		int				number_wac_bes;

		void				**wac_bes;

		DFT_BOUNDING_BOX	filter_bounding_box;

		char				filter_country_code[3];

		int				nearest_object_flag;

		} DFT_TARGETS_INPUT;

typedef struct{

		double 	geodetic_latitude;

		double	 geodetic_longitude;

		char		be_number[11];

		char		adn_code[6];

		char		isle_dgz_code[9];

		char		target_name[5416];

		char		country_code[3];

		char		target_designator[5];

		char		ace_category[3];

		char		tdi_category[6];

		char		hardness_value[5];

		char		target_description[5429];

		double		target_elevation;	/* feet */

		double	 target_width;		/* feet */

		double	 target_height;	/* feet */

		double 	target_length;	/* feet */

		char	 longitudinal_axis[7]; 	/* radians */

		int		photo_chip_number;

		int		horizontal_location_err; /* feet */

		char		special_weapon_code[8];

		char		special_weapon_delivery[2];

		int		height_of_burst;	/*feet */

		int		vertical_location_err;	/* feet */

		double 	precision_latitude;

		double	 precision_longitude;

		} DFT_TARGETS;

#include "dbase/dft_struct.h"

DFT_TARGETS_INPUT 	input_struct = DFT_TARGETS_DEFAULTS;

LIST				*target_list;

DFT_TARGETS			target_struct;

LIST				*lpr;

.

.

input_struct.bounding_box.sw_latitude = DEGTORAD(30);

input_struct.bounding_box.sw_longitude = DEGTORAD(120);

input_struct.bounding_box.ne_latitude = DEGTORAD(40);

input_struct.bounding_box.ne_longitude = DEGTORAD(130);

strcpy(input_struct.filter_country_code,"CC");

status= dft_getTargetData(DFT_SPATIAL_BOX,

				 &input_struct,

				 target_list);

if (target_list != NULL)

{

 for (lpr = target_list->next;

 lpr != target_list;

 lpr = lpr->next)

 {

 target_struct = (DFT_TARGETS *) lpr->data;

 }

}

�

Unit Test Plans and Procedures

amt_bkdata.c

Test Environment:

TAMPS system

Dependencies:

Object Hierarchy

Assumptions:

None

Test Cases:

There are no error condition tests.

Verification:

None

Test Steps:

Step�Action�Expected Results�Remarks��1�Display user targets on map ����2�Display layer information about user targets on map�Column information corresponds to new target definition���3�Display dba target on map����4�Display layer information about dba targets on map�Column information corresponds to new target definition���

amt_rtdisp.c

Test Environment:

TAMPS system

Dependencies:

Target object defined in object hierarchy.

Assumptions:

Using interactive debugger to verify path testing.

Test Cases:

Hook a target from a bucket object.

Define new target for display.

Verification:

Verify target object is selectable.

Verify new target is displayed on map.

Test Steps:

Step�Action�Expected Results�Remarks��1�TBD����2�����

aet_RefOAPCb.c

Test Environment:

TAMPS system

Dependencies:

Flight parameters

navigation points

Assumptions:

None

Test Cases:

Create offset aimpoint from edit flight parameters.

Delete navigation point

Move location of navigation point

Verification:

Verify offset aimpoints can be created from edit flight parameters

Verify offset aimpoint dialog is closed when navigation point is deleted.

Verify offset aimpoint is updated when location of navigation point is changed.

Test Steps:

Step�Action�Expected Results�Remarks��1�TBD����2�����

bat_utils.c

Test Environment:

TAMPS system

Dependencies:

MIDB database is installed

Assumptions:

None

Test Cases:

Create a target at a specified location.

Verification:

Verify user can create a target at a specified location.

Test Steps:

Step�Action�Expected Results�Remarks��1�TBD����2�����

dft_getOrderOfBattle.c

Test Environment:

This function will be tested by writing a test driver to invoke the various test cases. All error conditions will be tested and all paths through the code will be tested by the test driver. SQL access to the MIDB database will be used to verify the retrieve and update functions while the test driver is being executed. The Sunsoft debugger will be used to exercise error path conditions and the Purify products will be used to verify memory initialization, allocation and de-allocation.

Dependencies:

MIDB database is installed

Facility, Equipment, Equipment index data

Facility and Equipment oper_status of ìOPRî

Facility data tied to equipment data

Facility data tied to equipment index data

Equipment index aka values for common name

Assumptions:

None

Test Cases:

Call function when be_number is unknown.

Call function when access method is not set to record or spatial box.

Call function when order of battle type is radar and no threat type is provided.

Verification:

Verify that no data is returned when the be_number is invalid.

Verify that access methods not set to record or spatial box return null list.

Verify that no threat type does not affect the retrieve of threat data.

Test Steps:

Step�Action�Expected Results�Remarks��1�Call function using DFT_RECORD and input_struct set to DFT_AIR with one be_number and category�The return list contains one facility record���2�In SQL, execute query for be_number and category�One facility record found�The record returned from this step and the previous step should match��3�Call function using DFT_RECORD and input_struct set to DFT_AIR with four be_number and category values�The return list contains at least four facility records���4�In SQL, execute query for be_numbers and categories�At least four facility records found�The records returned from this step and the previous step should match��5�Call function using DFT_RECORD and input_struct set to DFT_MISSILE with four be_number and category values �The return list contains at least four missile facility records���6�In SQL, execute query for be_numbers and categories�At least four facility records found�The records returned from this step and the previous step should match��7�Call function using DFT_RECORD and input_struct set to DFT_TACTICAL with four be_number and category values�The return list contains at least four tactical facility records���8�In SQL, execute query for be_numbers and categories�At least four facility records found�The records returned from this step and the previous step should match��9�Call function using DFT_RECORD and input_struct set to DFT_RADAR with four be_number and category values�The return list contains at least four radar facility records���10�In SQL, execute query for be_numbers and categories�At least four facility records found�The records returned from this step and the previous step should match��11�Call function using DFT_SPATIAL_BOX and input_struct set to DFT_AIR using lat/long bounding box�The list returns all facilities in bounding box and category like 80%���12�In SQL, execute same query as in previous step�Facility records returned�The records returned from this step and the previous step should match��13�Call function using DFT_SPATIAL_BOX and input_struct set to DFT_AIR using lat/long bounding box and one country code�The list returns all facilities in bounding box for country code and category like 80%���14�In SQL, execute same query as in previous step�Facility records returned�The records returned from this step and the previous step should match��15�Call function using DFT_SPATIAL_BOX and input_struct set to DFT_MISSILE using lat/long bounding box and three country codes�The list returns all facilities in bounding box for three countries and category like 872%���16�In SQL, execute same query as in previous step�Facility records returned�The records returned from this step and the previous step should match��17�Call function using DFT_SPATIAL_BOX and input_struct set to DFT_MISSILE using lat/long bounding box, one country code, and one threat type�The return list contains facilities in bounding box, for one country code, for threat type and category like 872%���18�In SQL, execute same query as in previous step�Facility records returned�The records returned from this step and the previous step should match��19�Call function using DFT_SPATIAL_BOX and input_struct set to DFT_MISSILE using lat/long bounding box, one country code, and one threat type and operability indicator set to TRUE�The return list contains facilities in bounding box, for one country code, for each threat type, oper_status = ìOPRî and category like 872%���20�In SQL, execute same query as in previous step�Facility records returned�The records returned from this step and the previous step should match��21�Call function using DFT_SPATIAL_BOX and input_struct set to DFT_TACTICAL using lat/long bounding box, one country code, and three threat types�The return list contains facilities in bounding box, for one country code, for each threat type and category like 873%���22�In SQL, execute same query as in previous step�Facility records returned�The records returned from this step and the previous step should match��23�Call function using DFT_SPATIAL_BOX and input_struct set to DFT_RADAR using lat/long bounding box, one country code, and three threat types�The return list contains facilities in bounding box, for one country code, for each threat type and category like X%���24�In SQL, execute same query as in previous step�Facility records returned�The records returned from this step and the previous step should match��25�Call function using DFT_SPATIAL_BOX and input_struct set to DFT_RADAR using lat/long bounding box, one country code, and operability indicator set to TRUE�The return list contains facilities in bounding box, for one country code, for each threat type, and category like X% and equipment oper_status = ìOPRî���26�In SQL, execute same query as in previous step�Facility records returned�The records returned from this step and the previous step should match��

dft_getTargetData.c

Test Environment:

This function will be tested by writing a test driver to invoke the various test cases. All error conditions will be tested and all paths through the code will be tested by the test driver. SQL access to the MIDB and TAMPS database will be used to verify the retrieve and update functions while the test driver is being executed. The Sunsoft debugger will be used to exercise error path conditions and the Purify products will be used to verify memory initialization, allocation and de-allocation.

Dependencies:

MIDB database is installed

TAMPS_PLANNER_TARGETS

Target data in TGT_DETAIL and TAMPS_PLANNER_TARGETS

Assumptions:

The following mapping will be used between DFT_TARGET and the target tables in the MIDB and TAMPS databases.

DFT_TARGET	TGT_DETAIL	TAMPS

geodetic_latitude	ilat	lat_radians

geodetic_longitude	ilon	long_radians

be_number	FAC.be_number	BE_number

target_name	target_name	target_name

country_code	cc	country_code

hardness_value	hardness	(no mapping)

target_description		description

elevation	elevation_msl,	elevation

		elevation_msl_um

width	width, width_um	width, width_um

height	height, height_um	height, height_um

length	length, length_um	length, length_um

longitudinal_axis	azimuth, azimuth_ref	(no mapping)

horizontal_location_err	coord_roa, coord_roa_um	horiz_acc,

			horiz_acc_um

Unmapped Fields

ace_category

adn_code

height_of_burst

isle_dgz_code

photo_chip_number

special_weapon_code

special_weapon_delivery

target_designator

Test Cases:

Call function when access method is DFT_RECORD and no be_numbers have been provided.

Call function when access method is DFT_SPATIAL_BOX and bounding box values have not been provided.

Call function when access method is DFT_WAC_BE and no be_numbers have been provided.

Call function when access method is DFT_COUNTY_CODE and a country code has not been provided.

Verification:

Verify no data is returned when access method is DFT_RECORD and no be_numbers have been provided.

Verify no data is returned when access method is DFT_SPATIAL_BOX and bounding box values have not been provided.

Verify no data is returned when access method is DFT_WAC_BE and no be_numbers have been provided.

Verify no data is returned when access method is DFT_COUNTY_CODE and a country code has not been provided.

Test Steps:

Step�Action�Expected Results�Remarks��1�Call function using DFT_RECORD and inputStruct set with one be_number�The return list contains targets for the be_number���2�In SQL, execute same query as in previous step�Target records returned�The records returned from this step and the previous step should match��3�Call function using DFT_RECORD and inputStruct set with four be_numbers�The return list contains targets for each be_number���4�In SQL, execute same query as in previous step�Target records returned�The records returned from this step and the previous step should match��5�Call function using DFT_COUNTRY_CODE and inputStruct set with country code�The return list contains targets for the country code���6�In SQL, execute same query as in previous step�Target records returned�The records returned from this step and the previous step should match��7�Call function using DFT_COUNTRY_CODE and inputStruct set with country code and bounding box values�The return list contains targets for the country code and within bounding box���8�In SQL, execute same query as in previous step�Target records returned�The records returned from this step and the previous step should match��9�Call function using DFT_WAC_BE and inputStruct set with one beNumber�The return list contains targets for the be_number���10�In SQL, execute same query as in previous step�Target records returned�The records returned from this step and the previous step should match��11�Call function using DFT_WAC_BE and inputStruct set with one beNumber and bounding box�The return list contains targets for the be_number within the bounding box���12�In SQL, execute same query as in previous step�Target records returned�The records returned from this step and the previous step should match��13�Call function using DFT_WAC_BE and inputStruct set with one beNumber, bounding box and country code�The return list contains targets for the be_number within the bounding box and country code���14�In SQL, execute same query as in previous step�Target records returned�The records returned from this step and the previous step should match��15�Call function using DFT_WAC_BE and inputStruct set with four beNumbers�The return list contains targets for each be_number ���16�In SQL, execute same query as in previous step�Target records returned�The records returned from this step and the previous step should match��17�Call function using DFT_WAC_BE and inputStruct set with four beNumbers and bounding box�The return list contains targets for each be_number within bounding box���18�In SQL, execute same query as in previous step�Target records returned�The records returned from this step and the previous step should match��19�Call function using DFT_WAC_BE and inputStruct set with four beNumbers, bounding box and country code�The return list contains targets for each be_number within bounding box and country code���20�In SQL, execute same query as in previous step�Target records returned�The records returned from this step and the previous step should match��21�Call function using DFT_SPATIAL_BOX and inputStruct set with bounding box values�The return list contains targets within bounding box���22�In SQL, execute same query as in previous step�Target records returned�The records returned from this step and the previous step should match��23�Call function using DFT_SPATIAL_BOX and inputStruct set with bounding box values and country code�The return list contains targets within bounding box and country code���24�In SQL, execute same query as in previous step�Target records returned�The records returned from this step and the previous step should match��

dlt_mission.c

Test Environment:

This function will be tested by writing a test driver to invoke the various test cases. All error conditions will be tested and all paths through the code will be tested by the test driver. SQL access to the MIDB database will be used to verify the retrieve and update functions while the test driver is being executed. The Sunsoft debugger will be used to exercise error path conditions and the Purify products will be used to verify memory initialization, allocation and de-allocation.

Dependencies:

TAMPS_PLANNER_TARGETS data table

Assumptions:

None

Test Cases:

a. Call function when database is not up.

Verification:

a. Verify function returns zero count.

Test Steps:

Step�Action�Expected Results�Remarks��1�Call function when no user targets are defined�Return value of zero���2�In SQL, execute same query�Return value of zero�Count of targets is identical in steps 1 & 2��3�Call function when user targets are defined�Return value for count of user defined targets���4�In SQL, execute same query�Return value for count of user defined targets�Count of targets is identical in steps 3 & 4��

�Threat Scenarios CSC

High-Level Design Updates

The “SCENARIO_SET” field in each record will be used to show which scenario (if any) that particular record is associated with.

When creating or editing a threat, the DBA must enter the correct scenario name in the SCENARIO_SET field if he/she wishes to denote that that particular record is part of a particular Threat Scenario. This is a results of control being given to the DIA software when editing.

However, when querying the database, the DBA is automatically returned only those records matching the current scenario.

Database Schema

A database table called DD_SCENARIOS will be created, in order to store the names of the scenarios, as well as the date and time created. The table will consist of records containing 2 fields each. The first field will contain the scenario name in the form of a varchar(54). The second field will contain the date and time the scenario was created, in the form of a varchar(12). The table will be created upon delivery and installation of a target system.

The database table will be created in the new file: dd_scenarios_create.sql

create table DD_SCENARIOS

{

	SCEN_NAME		varchar(54)	NOT NULL,

	SCEN_DATE		varchar(10)	NULL

}

Control Flow

Control Flow for Threat Scenarios DBA dialog:

�

�

�

�

Control Flow for Threat Scenario MPM dialog:�

Algorithms

None

Design Description

In file dut_priv_proto.h:

Add function

LIST* dut_get_scenarios()

Add function

char* dut_get_current_scenario()

Add function

ST_STATUS dut_set_current_scenario(char*)

Add function

ST_STATUS dut_create_scenario(char*)

Add function

ST_STATUS dut_delete_scenario(char*)

Add function

dut_threatScenarioDBADialog()

Add function

dut_threatScenarioMPMdialog

Add function

dut_scenarioAddCb()

Add function

dut_scenarioSelectCb()

Add function

dut_scenarioOkCb()

Add function

dut_scenarioDeleteCb()

Add function

dut_scenarioCancelCb()

Add function

dut_scenarioHelpCb()

In file dut_util_struct.h:

Add structure:

 	typedef struct {

 		char* name;

 		char* time;

 	} DUT_SCENARIO_STRUCT;

Create a new file: dut_scenarios.c

// static char* current_scenario = NULL;

Create a new function: dut_get_scenarios()

// LIST* dut_get_scenarios()

// {

//	LIST* scen_list = NULL;

//	

//	for (each scenario in DD_SCENARIOS table) {

//		if (!ult_list_enque(scen_list, scenario)) {

//			ult_list_free(scen_list);

//			return NULL;

//		}

//	}

//

//	return scen_list;

// }

//

Create a new function: dut_get_current_scenario()

// char* dut_get_current_scenario()

// {

//	return current_scenario;

// }

Create a new function: dut_set_current_scenario(DUT_SCENARIO_STRUCT)

// ST_STATUS dut_set_current_scenario(char* name)

// {

//	if (current_scenario = scenario)

//		return ST_SUCCESS;

//	else

//		return ST_FAILURE;

// }

Create a new function dut_create_scenario(char* name)

// ST_STATUS dut_create_scenario(char* name)

// {

//	(time_t)time = time();

//	convert time to string;

//

//	insert scenario into DD_SCENARIOS database table

//		where name=name and time=time

//

//	return status;

// }

Create a new function dut_delete_scenario(char*)

// ST_STATUS dut_delete_scenario(char* name)

// {

//	delete * from DD_SCENARIOS database table where name = name

//

//	return ST_SUCCESS;

// }

Interface Description

DBA

	Within the DBA application the DBA will innitiate the Threat Scenarios dialog from the Setup->Defaults pull-down menu. This will bring up a dialog. The dialog will contain the name of each scenario, the date created and denote the current scenario in a scrolled list. A “Scenario Name” text field will be below the scrolled list to allow for creation as well as selection and deleting of scenarios. Below the text field will be an action area containing Select, Add, Delete, Close, and Help push buttons.

	Only one of the scrolled list or text field will be active at a time. The DBA can choose a scenario from the scrolled list to select or delete. Or, he/she can select the text field and type in a new scenario name to add, or type in an existing scenario name to select or delete. When the scrolled list is active, the Add button will be innactive.

MPM

	Within an MPM application the planner will innitiate the Threat Scenarios dialog from the Setup->Defaults pull-down menu. A list of scenarios will be displayed in a scrolled list, and the planner will be able to select one of these.

Create a new file: dut_scenariosMMI.c

// static Widget Scrolled_list = NULL;’

// static Widget text_field = NULL;

// static Widget addBuitton = NULL;

Create a new function: dut_threatScenarioDBADialog()

// dut_threatScenarioDBADialog(Widget parent, XtPointer client, XtPointer call)

// {

//	define Widgets:

//		selectButton, addButton, deleteButton,

//		closeButton, helpButtton, scenario_dialog

//

//	create the form dialog(scenario_dialog)

//

//	create Scrolled_list

//

//	create the text_field

//

//	create the push buttons:Select, Add, Delete, Close, Help

//	add callbacks:

//	select -> dut_scenarioSelectCb()

//	add -> dut_scenarioAddCb()...(send text_field as client data)

//	delete -> dut_scenarioDeleteCb()

//	close -> dut_scenarioCancelCb()

//	

//	help -> dut_scenarioHelpCb()

//

//	LIST* scenarios_list=dut_get_scenarios();

//	(char*)current_scenario=dut_get_current_scenario();

//	fill Scrolled_list with scenarios_list

//	set arrow on current_scenario

//

//	set default selection in Scrolled list to current_scenario

//	set scrolled list active

//	set text field innactive

//	set Add button innactive

// }

Create a new function: dut_threatScenarioMPMDialog()

// dut_threatScenarioMPMDialog(Widget parent, XtPointer client, XtPointer call)

// {

//	define Widgets:

//		okButton, cancelButton, helpButtton, scenario_dialog

//

//	create the form dialog(scenario_dialog)

//

//	create Scrolled_list

//	add double click callback

//

//	create the push buttons: Ok, Cancel, Help

//	add callbacks:

//	ok -> dut_scenarioOkCb()

//	cancel -> dut_scenarioCancelCb()

//	help -> dut_scenarioHelpCb()

//

//	LIST* scenarios_list=dut_get_scenarios();

//	(char*)current_scenario=dut_get_current_scenario();

//	fill Scrolled_list with scenarios_list

//

//	set default selection in Scrolled list to current_scenario

// }

Create the callback functions:

// dut_scenarioAddCb(Widget parent, XtPointer client, XtPointer call)

// {

//	LIST* scenario_list = NULL;

//

//	scenario_name = text in text_field

//	if (text_field is empty)

//		display error and return

//	scenario_list = dut_get_scenarios();

//	if (scenario is in scenario_list)

//		display error and return

//

//	scenario = dut_create_scenario(scenario_name);

//

//	update Scrolled_list with scenario

//

// }

// dut_scenarioSelectCb(Widget parent, XtPointer client, XtPointer call)

// {

//	if (Scrolled_list is active)

//		scenario = selected scenario from Scrolled_list(passed in as client data)

//	else {

//		scenario = scenario name in text_field(passed in as client data)

//		if (!scenario in (LIST*)dut_get_scenarios()) {

//			display error message

//			return

//		}

//	}

//	dut_set_current_scenario(scenario);

//	update Scrolled_list

// }

// dut_scenarioOkCb(Widget parent, XtPointer client, XtPointer call)

// {

//	dut_scenarioSelectCb();

//	XtUnmanageChild(scenario_dialog);

// }

// dut_scenarioDeleteCb(Widget parent, XtPointer client, XtPointer call)

// {

//	if (Scrolled_list is active)

//		scenario = selected scenario from Scrolled_list(passed in as client data)

//		

//	else {

//		scenario = scenario name in text_field(passed in as client data)

//		if (!scenario in (LIST*)dut_get_scenarios()) {

//			display error message

//			return

//		}

//	}

//	if (scenario==dut_get_current_scenario())

//		dut_set_current_scenario(operational)

//	display “are you sure?” message

//	delete all records in relevant tables(probably FAQ, EQP, and UNIT)

//		where SCENARIO_SET filed = scenario

//	delete record in DD_SCENARIOS table where name = scenario

//	update Scrolled_list

// }

// dut_scenarioCancelCb(Widget parent, XtPointer client, XtPointer call)

// {

//	XtUnmanageChild(scenario_dialog);

// }

// dut_scenarioHelpCb(Widget parent, XtPointer client, XtPointer call)

// {

//	display help dialog

// }

DBA Threat Scenarios dialog: updated to include date/time scenario was created, and a flag to denote the current scenario. The dialog also has new button names. � EMBED Word.Picture.6 ���

MPM Threat Scenarios dialog: �

Unit Test Plans and Procedures

�� EMBED Excel.Sheet.5 ���

� EMBED Excel.Sheet.5 ����

Testing of file dd_scenarios_create.sql

Test Environment

The testing of this script will require a command line and the isql editor.

Testing this file will simply involve running it, and then entering the isql editor to verify thetable has been created, with the correct fields.

Dependencies

This test requires a TAMPS Database.

Assumptions

None

Verification

Verify that all the table exists.

Verify that all of the fields were created and have the correct type.

Test Steps

1. Run the sql script.

2. Run the isql program and verify.

Testing of the public function dut_get_scenarios()

Test Environment

Testing of this function will be done with a test driver. A function will be created to call dut_get_scenarios(), and then print to the screen the list of scenario names and dates for visual verification. Then the isql will be used to compare the values printed by the test driver to those in the actual DD_SCENARIOS table.

void dut_test_print_scenarios()

{

	LIST* test_list = NULL;

	DUT_SCENARIO_STRUCT* scenario;

	test_list = dut_get_scenarios();

	printf(“Scenario Name”, “Creation Date”, “%54s %16s\n\n”);

	while (test_list != NULL) {

		scenario = ult_list_pop(test_list);

		printf(scenario->name, scenario->date, “%54s %16s\n”);

	}

	ult_lst_free(test_list);

	return 0;

}

Dependencies

This test requires a TAMPS Database, and the DD_SCENARIOS table to have been created.

Assumptions

None

Verification

Verify that the isql output corresponds to the test driver output for three cases:

	1. DD_SCENARIOS table is empty.

	2. DD_SCENARIOS table is full.

	3. DD_SCENARIOS table is neither empty nor full.

Test Steps

1. Fill the table with appropriate values, and run the driver. Verify.

Testing of function dut_create_scenario()

Test Environment

Testing of this function will be done with a test driver. The list of scenarios will be printed using the dut_test_print_scenarios() function. Then the create function will be called, and the new list will be printed.

int main()

{

	char* name = “test scenario 1”;

	ST_STATUS status = ST_FAILURE;

	dut_test_print_scenarios();

	status = dut_create_scenario(name);

	if(status==ST_SUCCESS)

		dut_test_print_scenarios() ;

	return 0;

}

Dependencies

This test requires a TAMPS Database, and the DD_SCENARIOS table to have been created.

Assumptions

The dut_get_scenarios() function has been tested and works.

Verification

Verify that the scenario named in the driver has been added to the list of scenarios that was printed.

Verify that the creation date associated with the scenario makes sense.

Test Steps

1. Run the driver and verify.

Testing of function dut_delete_scenario()

Test Environment

Testing of this function will be done with a test driver. The list of scenarios will be printed using the dut_test_print_scenarios() function. Then the delete function will be called, and the new list will be printed.

int main()

{

	char* name = “test scenario 1”;

	ST_STATUS status = ST_FAILURE;

	dut_test_print_scenarios();

	status = dut_delete_scenario(name);

	if(status==ST_SUCCESS)

		dut_test_print_scenarios();

	return 0;

}

Dependencies

This test requires a TAMPS Database, and the DD_SCENARIOS table to have been created.

Assumptions

The dut_get_scenarios() function has been tested and works.

Verification

Verify that the scenario named in the driver has been deleted from the list of scenarios that was printed.

Test Steps

1. Run the driver and verify.

Testing of functions dut_get_current_scenario() and dut_set_current_scenario

Test Environment

Testing of these functions will be done with a test driver. The list of scenarios will be printed using the dut_test_print_scenarios() function. Then the current scenario will be printed. Then the scenario will be set to one of the scenarios listed. Then the current scenario will be printed again.

int main()

{

	char* name = NULL;

	ST_STATUS status = ST_FAILURE;

	dut_test_print_scenarios();

	printf(“Current scenario:”, dut_get_current_scenario(), “%-20s %-54s”);

	printf(“Set current scenario to:”, “%s\n”);

	scanf(“%54s”, name);

	status = dut_set_current_scenario(name);

	if(status==ST_SUCCESS)

		printf(“Current scenario:”, dut_get_current_scenario(), “%-20s %-54s”);

	else

		printf(“Set failed”, “%-20s”);

	return 0;

}

Dependencies

This test requires a TAMPS Database, and the DD_SCENARIOS table to have been created.

Assumptions

The dut_get_scenarios() function has been tested and works.

Verification

Verify that the current scenario changes to the one specified.

Verify that test fails when an invalid scenario name is entered.

Test Steps

1. Run the driver and verify.

�

Functional Test Plans and Procedures

SOR 96-01a MIDB 2.0 Function and Unit Test Matrix���3.2.3.1 GMI Data CSC, CT0483, CT0480 (Ref. TAMPS 6.2 Design Notebook, 6 Aug. 1997)���

Reference�Requirements (Condensed Text)�Test Steps (Ref.)�Purify Results�Pure Coverage Percentage�Pass/Fail Criteria�Test Environment and Applicable (Function)��3.2.3.1.1�GMI supporting planning against operational data.�(4.2.21.6)���Satisfied requirement.�Access to MIDB database.��3.2.3.1.2�GMI supporting planning against scenario data.�(4.2.21.6)���Satisfied requirement.�Access to MIDB database. (dut_set_current_scenario)��3.2.3.1.2.1�GMI supporting storage for 17 different scenarios.�(4.2.21.6)���Verified maximum limit for stored data scenarios.�Access to MIDB database. (dut_set_current_scenario)��3.2.3.1.2.2�Limiting query access to one scenario at a time.�(4.2.21.6)���Satisfied requirement.�Access to MIDB database. (dut_create_scenario)��3.2.3.1.2.3�Limiting create access to one scenario at a time.�(4.2.21.6)���Satisfied requirement.�Access to MIDB database. (dut_create_scenario)��3.2.3.1.2.4�Limiting modify access to one scenario at a time�(4.2.21.6)���Satisfied requirement.�Access to MIDB database. (dut_set_current_scenario)��3.2.3.1.2.5�Limiting delete access to one scenario at a time.�(4.2.21.6)���Satisfied requirement.�Access to MIDB database. (dut_delete_scenario)��3.2.3.1.2.6�Deleted�������3.2.3.1.2.7�DBA capability to add a set of scenario data.�(4.2.21.6)���Correctly adds a set of scenario data.�Access to MIDB database. (dut_create_scenario)��3.2.3.1.2.8�DBA capability to remove a set of scenario data.�(4.2.21.6)���Correctly removes a set of scenario data.�Access to MIDB database. (dut_delete_scenario)��3.2.3.1.2.9�DBA allowed to access a set of scenario data. Deleted�������3.2.3.1.2.10�DBA allowed to stop access to a set of scenario data. Deleted�������3.2.3.1.3�GMI Data CSC supporting query and maintenance of following data sets:�������3.2.3.1.3.1�Supporting query and maintenance for equipment data sets.�1-64 pg 424-431 (4.2.16.6.4)���Correctly supports equipment data sets.�Access to MIDB database. (dat_newExQuery)��3.2.3.1.3.2�Supporting query and maintenance for equipment index data sets.�1-64 pg 424-31 (4.2.16.6.4)���Correctly supports equipment index data sets.�Access to MIDB database. (dat_newExQuery)��3.2.3.1.3.3�Supporting query and maintenance for unit data sets.�1-64 pg 424-31 (4.2.16.6.4)���Correctly supports unit data sets.�Access to MIDB database. (dat_newExQuery)��3.2.3.1.3.4�Supporting query and maintenance for facility data sets.�1-64 pg 424-31 (4.2.16.6.4)���Correctly supports facility data sets.�Access to MIDB database. (dat_newExQuery)��3.2.3.1.3.5�Supporting query and maintenance for target data sets.�1-64 pg 424-31 (4.2.16.6.4)���Correctly supports target data sets.�Access to MIDB database. (dat_newExQuery)��3.2.3.1.3.6�Supporting query and maintenance for observation data sets.�1-64 pg 424-31 (4.2.16.6.4)���Correctly supports observation data sets.�Access to MIDB database. (dat_newExQuery)��3.2.3.1.3.7�Supporting query and maintenance for track data sets.�1-64 pg 424-31 (4.2.16.6.4)���Correctly supports track data sets.�Access to MIDB database. (dat_newExQuery)��3.2.3.1.4�Providing required data elements for radar terrain masking.����Verification of data elements.�Access to MIDB database. (ert_int_rtm_init)��3.2.3.1.5�Providing required data elements for range ring calculations for SAM entries.����Verification of data elements.�Access to MIDB database. (edt_mera_cb)��3.2.3.1.6�Providing required data elements for range ring calculations for AAA entries.����Verification of data elements.�Access to MIDB database. (edt_mera_cb)��

�

Assumptions from Preliminary Design

Concerns/Questions/Issues from Preliminary Design

Is it possible for DIA to support Threat Scenarios in future builds, in the capacity that when the DBA selects a scenario, all subsequent edits to the database, as well as queries, would deal only with that scenario? This would eliminate the need for the DBA to manually enter the scenario name into the SCENARIO_SET field for every record(threat) that he/she edits/creates. The DBA software might simply pass the name of the current scenario (if any) to the DIA software whenever it is called.

Is it possible for DIA to include a SCENARIO_SET field in other tables? Which tables do Threat Scenarios apply to, and do they all have a SCENARIO_SET field?

�Interim Threats CSC

High-Level Design Updates

Not Applicable

Database Schema

TBD

Control Flow

TBD

Algorithms

None

Design Description

The Interim Threat CSC has four areas where it interfaces with the TAMPS database:

Query MIDB for all data by type within area

Query MIDB for a specific record and convert to an Interim Threat

Promote Interim Threats to MIDB

Delete MIDB record

Query MIDB for all data by type within area

Purpose: To select a particular type of threat (AAA, SAM, FW, RW) and create inline objects from results. (MIDB objects from which Interim Threat objects are derived shall be omitted.) All inline objects shall appear as consistent with core objects as possible and shall have AMP action. AAA and SAM objects shall also have actions for RTM and MERA. Assumes field names for object actions will not be changed.

New methodology for AAA site queries:

Replaces portions of dil_QueryAAAIdb() in dil_IdbfqlQueries.c

	Create selectHandle(DIT_EQP, DIT_SELECT_FIELDS)

	Create queryHandle(DIT_EQP, DIT_DATA_FIELDS)

Set arguments for EQP_SK, EQP_ID_NUM, QTY_OH, EQP_CODE, NOMEN,

LOC_REASON, QTY_OH_EVAL, DATETIME_LAST_OBS,

OPER_STATUS into selectHandle

Set arguments for EQP_CODE between TA000 and TFZZZ, LL_LAT,

LL_LONG, UR_LAT, UR_LONG into queryHandle

	Call dit_midbGetdata (DIT_EQP, selectHandle, queryHandle, rtnList)

If rtnList is NULL

		Call dit_deleteHandle(selectHandle)

Call dit_deleteHandle(queryHandle)

		return

	Select RADAR_EQUIP_CODE from TAMPS_INTERIM_THREAT_TYPES

where EQUIP_CODE = EQP.EQP_CODE

	Create selectHandle2(DIT_FAC_BY_EQP, DIT_SELECT_FIELDS)

Create queryHandle2(DIT_FAC_BY_EQP, DIT_DATA_FIELDS)

Set arguments for FAC_SK, COORD, MIL_GRID, BE_NUMBER,

DATETIME_LAST_CHG, DOMAIN_LVL, CC, CATEGORY,

OSUFFIX, FAC_NAME, ILAT, ILON, OPER_STATUS,

REVIEW_DATE, CONDITION, CLASS_LVL, RECORD_STATUS

into selectHandle2

	For each handle in rtnList

Set arguments for EQP_SK, LL_LAT, LL_LONG, UR_LAT,

UR_LONG into queryHandle2

Call dit_midbGetData(dit_FAC_BY_EQP, selectHandle2, queryHandle2,

	rtnList2)

For each handle in rtnList2

			Populate interim_threat_structure

Create inline object and display in layer AAA and bucket INTERIM_MIDB_AAA

		Call dil_deleteHandleData(rtnList2)

	Call dil_deleteHandle(selectHandle)

Call dil_deleteHandle(queryHandle)

	Call dil_deleteHandle(selectHandle2)

Call dil_deleteHandle(queryHandle2)

	Call dil_deleteHandleData(rtnList)

New methodology for SAM site queries:

Replaces portions of dil_QuerySAMIdb() in dil_IdbfQueries.c

	Create selectHandle(DIT_FAC, DIT_SELECT_FIELDS)

	Set arguments for FAC_SK, COORD, MIL_GRID, BE_NUMBER,

CATEGORY, DATETIME_LAST_CHG, DOMAIN_LVL, OSUFFIX,

CC, FAC_NAME, ILAT, ILON, REVIEW_DATE, CONDITION,

OPER_STATUS, RECORD_STATUS, CLASS_LVL into selectHandle

	Create queryHandle(DIT_FAC, DIT_DATA_FIELDS)

Set arguments for CATEGORY like 872%, LL_LAT, LL_LONG, UR_LAT,

UR_LONG into queryHandle

	Call dit_midbGetData(DIT_FAC, selectHandle, queryHandle, rtnList)

	If rtnList not NULL

		Create selectHandle2(DIT_EQP_IDX_BY_FAC,DIT_SELECT_FIELDS)

		Create queryHandle2(DIT_EQP_IDX_BY_FAC,DIT_DATA_FIELDS)

		Set arguments for EQP_CODE, EQP_IDX_SK, NOMEN into

selectHandle2

		For each handle in rtnList

		Set argument for FAC_SK, LL_LAT, LL_LONG, UR_LAT,

UR_LONG into queryHandle2

			Call dit_midbGetData(DIT_EQP_IDX_BY_FAC, selectHandle2,

				queryHandle2, rtnList2)

			For each handle in rtnList2 (theoretically only 1)

				If EQP_CODE like ZGA%

					Select ALT_EQP_CODE from DD_SAM_XREF

where EQP_CODE = EQP.EQP_CODE

				Populate interim_threat_structure

				Create inline object and display in layer SAM and bucket						INTERIM_MIDB_SAM

			Call dit_deleteHandleData(rtnList2)

		Call dit_deleteHandleData(rtnList)

		Call dit_deleteHandle(queryHandle2)

		Call dit_deleteHandle(selectHandle2)

	Set argument for CATEGORY like 873% into queryHandle

	Call dit_midbGetData(DIT_FAC, selectHandle, queryHandle, rtnList)

	If rtnList not NULL

		Create selectHandle2(DIT_EQP_IDX_BY_FAC,DIT_SELECT_FIELDS)

		Create queryHandle2(DIT_EQP_IDX_BY_FAC, DIT_DATA_FIELDS)

		Set argument for EQP_CODE, EQP_IDX_SK, NOMEN into

selectHandle2

		For each handle in rtnList

			Set arguments for FAC_SK, LL_LAT, UR_LAT, LL_LONG,

UR_LONG into queryHandle2

			Call dit_midbGetData(DIT_EQP_IDX_BY_FAC, selectHandle2,

				queryHandle2, rtnList2)

			For each handle in rtnList2 (theoretically only 1)

				If EQP.EQP_CODE like ZGA%

					Select ALT_EQP_CODE from DD_SAM_XREF

where EQP_CODE = EQP.EQP_CODE

			Populate interim_threat_structure

				Create inline object and display in layer SAM and bucket						INTERIM_MIDB_SAM

			Call dit_deleteHandleData(rtnList2)

		Call dit_deleteHandleData(rtnList)

	Call dil_deleteHandle(selectHandle)

Call dil_deleteHandle(queryHandle)

Call dit_deleteHandle(selectHandle2)

Call dil_deleteHandle(queryHandle2)

New methodology for FW/RW equipment queries:

Replaced portions of dil_QueryAirIdb() in dil_IdbuQueries.c

	Create selectHandle(DIT_EQP, DIT_SELECT_FIELDS)

	Set arguments for EQP_SK, NOMEN, EQP_ID_NUM, QTY_OH, EQP_CODE,

QTY_OH_EVAL, DATETIME_LAST_OBS into selectHandle

	Create queryHandle(DIT_EQP, DIT_DATA_FIELDS)

	If FW

Set argument for EQP_CODE like A% in queryHandle

	Else

		Set argument for EQP_CODE like B% in queryHandle

Set arguments for LL_LAT, LL_LONG, UR_LAT, UR_LONG into queryHandle

	Call dit_midbGetData(DIT_EQP, selectHandle, queryHandle, rtnList)

For each handle in rtnList

	Create selectHandle2(DIT_UNIT_BY_EQP, SELECT_FIELDS)

	Create queryHandle2(DIT_UNIT_BY_EQP, DATA_FIELDS)

	Set arguments for UNIT_SK, COORD, MIL_GRID, DOMAIN_LVL, CC,

DATETIME_LAST_CHG, UNIT_NAME, LOC_REASON,

ILAT, ILON, REVIEW_DATE, CONDITION, UNIT_ID,

OPER_STATUS, RECORD_STATUS, CLASS_LVL into selectHandle2

	Set arguments for EQP_SK, LL_LAT, LL_LONG, UR_LAT,

UR_LONG into queryHandle2

		Call dit_midbGetData(DIT_UNIT_BY_EQP, selectHandle2,

queryHandle2, rtnList2)

For each handle in rtnList2

			Populate interim_threat_structure

			Create inline object and display in layer AIR and bucket

INTERIM_MIDB_AIR

		Call dit_deleteHandleData(rtnList2)

		Call dit_deleteHandle(selectHandle2)

		Call dit_deleteHandle(queryHandle2)

	Call dit_deleteHandleData(rtnList)

	Call dit_deleteHandle(selectHandle)

Call dit_deleteHandle(queryHandle)

Query MIDB for a specific record and convert to an Interim Threat

Purpose: To hook a threat and produce TAMPS_INTERIM_THREAT.

New methodology:

Replaces portions of dil_QueryIdb() in dil_IdbQueries.c

	Call getHookedItemAndLocation to get the hooked bucket object

	If bucket object has no EQP_CODE

		send error message ìCannot edit object. Must contain EQP_CODEî

	If bucket object has UNIT_SK and EQP_SK (SAM unit, AAA unit, FW, RW)

		Create selectHandle(DIT_UNIT, DIT_SELECT_FIELDS)

		Create queryHandle(DIT_UNIT, DIT_DATA_FIELDS)

		Set attributes for COORD, MIL_GRID, DATETIME_LAST_CHG, CC,

DOMAIN_LVL, UNIT_NAME, LOC_REASON, ILAT, ILON,

REVIEW_DATE, CONDITION, OPER_STATUS, UNIT_ID,

RECORD_STATUS, CLASS_LVL into selectHandle

		Set attribute for UNIT_SK into queryHandle

		Call dit_midbGetData(DIT_UNIT, selectHandle, queryHandle, rtnList)

Create selectHandle2(DIT_EQP, DIT_SELECT_FIELDS)

Create queryHandle2(DIT_EQP, DIT_DATA_FIELDS)

Set attributes for NOMEN, EQUIP_ID_NUM, QTY_OH, EQP_CODE,

	QTY_OH_EVAL, DATETIME_LAST_OBS into selectHandle2

		Set attribute for EQP_SK into queryHandle2

Call dit_midbGetData(DIT_EQP, selectHandle2, queryHandle2, rtnList2)

Populate interim_threat_structure

	Call dit_deleteHandleData(rtnList)

Call dit_deleteHandleData(rtnList2)

Call dit_deleteHandle(selectHandle)

Call dit_deleteHandle(queryHandle)

Call dit_deleteHandle(selectHandle2)

Call dit_deleteHandle(queryHandle2)

	other code unchanged

	Else if bucket object has FAC_SK and EQP_IDX_SK (SAM site)

		Create selectHandle(DIT_FAC, DIT_SELECT_FIELDS)

		Create queryHandle(DIT_FAC, DIT_DATA_FIELDS)

		Set attributes for COORD, MIL_GRID, BE_NUMBER, CATEGORY,

DATETIME_LAST_CHG, DOMAIN_LVL, OSUFFIX, CC,

FAC_NAME, ILAT, ILON, REVIEW_DATE, CONDITION,

OPER_STATUS, RECORD_STATUS, CLASS_LVL into

selectHandle

		Set attribute for FAC_SK into queryHandle

Call dit_midbGetData(DIT_FAC, selectHandle, queryHandle, rtnList)

Create selectHandle2(DIT_EQP_IDX_BY_FAC,DIT_SELECT_FIELDS)

		Create queryHandle2(DIT_EQP_IDX_BY_FAC,DIT_DATA_FIELDS)

 		Set attribute for EQP_CODE into selectHandle2

		Set attribute for FAC_SK into queryHandle2

		Call dit_midbGetData(DIT_EQP_IDX_BY_FAC, selectHandle2,

			queryHandle2, rtnList2)

		For each handle in rtnList2 (theoretically only 1)

			If EQP_CODE like ZGA%

				Select ALT_EQP_CODE from DD_SAM_XREF where

					EQUIP_CODE = EQP.EQP_CODE

		Populate interim_threat_structure

	Call dit_deleteHandleData(rtnList)

Call dit_deleteHandleData(rtnList2)

Call dit_deleteHandle(selectHandle)

Call dit_deleteHandle(queryHandle)

Call dit_deleteHandle(selectHandle2)

Call dit_deleteHandle(queryHandle2)

	other code unchanged

	Else if bucket object has FAC_SK and EQP_SK (AAA site)

		Create selectHandle(DIT_FAC, DIT_SELECT_FIELDS)

		Create queryHandle(DIT_FAC, DIT_DATA_FIELDS)

		Set attributes for COORD, MIL_GRID, BE_NUMBER, CATEGORY,

DATETIME_LAST_CHG, DOMAIN_LVL, OSUFFIX, CC,

FAC_NAME, ILAT, ILONG, REVIEW_DATE, CONDITION,

OPER_STATUS, RECORD_STATUS, CLASS_LVL into

selectHandle

		Set attribute for FAC_SK into queryHandle

Call dit_midbGetData(DIT_FAC, selectHandle, queryHandle, rntList)

Create selectHandle2(DIT_EQP_IDX_BY_FAC,DIT_SELECT_FIELDS)

		Create queryHandle2(DIT_EQP_IDX_BY_FAC,DIT_DATA_FIELDS)

		Set attribute for EQP_CODE, EQP_IDX_SK into selectHandle2

		Set attribute for FAC_SK into queryHandle2

Call dit_midbGetData(DIT_EQP_IDX_BY_FAC, selectHandle2,

	queryHandle2, rtnList2)

For each handle in rtnList2 (theoretically only 1)

			If EQP_CODE like ZGA%

				Selete ALT_EQP_CODE from DD_SAM_XREF where

EQP_CODE = EQP.EQP_CODE

		Create selectHandle3(DIT_EQP, DIT_SELECT_FIELDS)

		Create queryHandle3(DIT_EQP, DIT_DATA_FIELDS)

		Set attributes for EQP_ID_NUM, QTY_OH, EQP_CODE, NOMEN,

LOC_REASON, QTY_OH_EVAL, DATETIME_LAST_OBS, OPER_STATUS into selectHandle3

		Call dit_midbGetData(DIT_EQP, selectHandle3, queryHandle3, rtnList3)

Populate interim_threat_structure

		Call dit_deleteHandleData(rtnList)

Call dit_deleteHandleData(rtnList2)

Call dit_deleteHandleData(rtnList3)

Call dit_deleteHandle(selectHandle)

Call dit_deleteHandle(queryHandle)

Call dit_deleteHandle(selectHandle2)

Call dit_deleteHandle(queryHandle2)

Call dit_deleteHandle(selectHandle3)

Call dit_deleteHandle(queryHandle3)

		other code unchanged

	Else

		send error message: Cannot Edit Selected Object.

Promote Interim Threats to MIDB

Purpose: allow DBA to promote an Interim Threat into Database

New methodology:

Replaces portions of dil_DbaOKCallback() in dil_Callbacks.c

	If interim threat type is SAM site

If FAC_SK is NULL (planner created threat)

	Create selectHandle(DIT_EQP_IDX, DIT_SELECT_FIELDS)

	Create queryHandle(DIT_EQP_IDX, DIT_DATA_FIELDS)

	Set attribute for EQP_CODE into querytHandle

	Set attribute for EQP_IDX_SK into selectHandle

		Call dit_midbGetData(DIT_EQP_IDX, selectHandle,

queryHandle, rtnList)

			Call dit_deleteHandle(queryHandle)

			Call dit_deleteHandle(selectHandle)

If rtnList is NULL

	Create insertHandle(DIT_EQP_IDX,DIT_DATA_FIELDS)

	Set attributes for EQP_CODE, TBD into insertHandle

Call dit_midbCreateData(DIT_EQP_IDX, insertHandle,

&EQP_IDX_SK)

				Call dit_deleteHandle(insertHandle)

			Else

				Call dit_deleteHandleData(rtnList)

			If no create error

				Create insertHandle(DIT_FAC_BY_EQPIDX,

					DIT_DATA_FIELDS)

				Set attributes for EQP_IDX_SK, TBD (fac fields) into

insertHandle

				Call dit_midbCreateData(DIT_FAC_BY_EQPIDX,

					insertHandle, &FAC_SK)

				Call dit_deleteHandle(insertHandle)

			If create error

				send message that Create failed

		Else (MIDB derived threat)

			Create modifyHandle(DIT_FAC, DIT_DATA_FIELDS)

			Set attributes for TBD (fac fields) into modifyHandle

			Call dit_midbModifyData(DIT_FAC, modifyHandle, FAC_SK)

			If modify error

				send error message that Update failed

	Else if interim threat type is AAA site

		If EQP_SK is NULL (planner created threat)

			Create insertHandle(DIT_EQP, DIT_DATA_FIELDS)

			Set attributes for TBD (eqp fields) into insertHandle

			Call dit_midbCreateData(DIT_EQP, insertHandle, &EQP_SK)

			Call dit_deleteHandle(insertHandle)

			If no create error

				Create insertHandle(DIT_FAC_BY_EQP,

DIT_DATA_FIELDS)

				Set attributes for EQP_SK, TBD (fac fields) into

insertHandle

				Call dit_midbCreateData(DIT_FAC_BY_EQP,

					insertHandle, &FAC_SK)

				Call dit_deleteHandle(insertHandle)

		If create error

				send error message that Create failed

		Else (MIDB derived threat)

			Create modifyHandle(DIT_EQP, DIT_DATA_FIELDS)

			Set attributes for TBD (eqp fields) into modifyHandle

			Call dit_midbModifyData(DIT_EQP, modifyHandle, EQP_SK)

			Call dit_deleteHandle(modifyHandle)

			If modify error

				send error message that Update failed

			Else

				Create modifyHandle(DIT_FAC_BY_EQP,

DIT_DATA_FIELDS)

				Set attributes for EQP_SK, TBD (fac fields) into

modifyHandle

				Call dit_midbModifyData(DIT_FAC_BY_EQP,

					modifyHandle, &FAC_SK)

				Call dit_deleteHandle(modifyHandle)

				If modify error

					send error message that Update failed

	Else if AAA unit or SAM unit or FW or RW

		If EQP_SK is NULL (planner created threat)

			Create insertHandle(DIT_EQP, DIT_DATA_FIELDS)

			Set attributes for TBD (eqp fields) into insertHandle

			Call dit_midbCreateData(DIT_EQP, insertHandle, &EQP_SK)

			Call dit_deleteHandle(insertHandle)

			If no create error

				Create insertHandle(DIT_UNIT_BY_EQP,

DIT_DATA_FIELDS)

				Set attributes for EQP_SK, TBD (unit fields) into

insertHandle

				Call dit_midbCreateData(DIT_UNIT_BY_EQP,

					insertHandle, &EQP_SK)

				Call dit_deleteHandle(insertHandle)

		If create error

				send error message that Create failed

		Else (MIDB derived threat)

			Create modifyHandle(DIT_EQP, DIT_DATA_FIELDS)

			Set attributes for TBD (eqp fields) into modifyHandle

			Call dit_midbModifyData(DIT_EQP, modifyHandle, EQP_SK)

			Call dit_deleteHandle(modifyHandle)

			If no error

				Create modifyHandle(DIT_UNIT_BY_EQP,

DIT_DATA_FIELDS)

				Set attributes for EQP_SK, TBD (unit fields) into

modifyHandle

				Call dit_midbModifyData(DIT_UNIT_BY_EQP,

					modifyHandle, &EQP_SK)

				Call dit_deleteHandle(modifyHandle)

				If modify error

					send error message that Update failed

NOTE:

AAA assumes FAC is updated after EQP as is currently done (idbf after idbfql)

UNITs assumes UNIT is updated after EQP as is currently done (idbu,idbul after idbuql)

Delete MIDB record

Allow DBA to delete a threat from the MIDB

New methodology

Replaces portions of dil_DbaDeleteCallback() in dil_Callbacks.c

	If interim threat has EQP_SK or UNIT_SK or FAC_SK (MIDB derived threat)

		If interim threat type is AAA site

			Create handle(DIT_EQP, DIT_DATA_FIELDS)

			Set attribute for OPER_STATUS=NOP into handle

			Call dit_midbModifyData(DIT_EQP, handle, EQP_SK)

			Call dit_deleteHandle(handle)

		Else if interim threat type is SAM site

			Create handle(DIT_FAC, DIT_DATA_FIELDS)

			Set attribute for OPER_STATUS=NOP into handle

			Call dit_midbModifyData(DIT_FAC, handle, FAC_SK)

			Cal dit_deleteHandle(handle)

		Else if interim threat type is AAA unit or SAM unit or FW or RW

			Create handle(DIT_EQP, DIT_DATA_FIELDS)

			Set attribute for OPER_STATUS=NOP into handle

Call dit_midbModifyData(DIT_EQP, handle, EQP_SK)

Call dit_deleteHandle(handle)

If no error

Delete TAMPS_INTERIM_THREAT record

NOTE:

Assumes no actual deletion of MIDB data records, only flagging as NOP

�

Interim Threat MIDB 2.0 Pending Issues

Interim Threat Editor and DBA Threat Editor:

Presently location is displayed and input as LATITUDE and LONGITUDE according to the userís preferred unit selection. This will cause the precision of thousandths of seconds to be lost if editing an MIDB derived threat. There is no unit selection which has the precision, and to create one might involve widespread changes as some HMI fields may not accommodate the additional characters, and there is no modifyVerifyCallback selection to match the new format. It was suggested that the need to maintain the precision by using COORD-formatted fields outweighs the otherwise prudent TAMPS system-wide display of locations according to user preference.

Need a list of which MIDB columns are mandatory for which there will be no default values. This will determine the following:

Which fields which must be added to the interim_threat_structure

Which fields must be added to the TAMPS_INTERIM_THREAT table

Which fields must be queried from MIDB when interim threats are

derived from the MIDB

Which fields must appear in the DBA Threat Editor HMI

Need layout of core objects AMP display so inline objects can conform

�

New TAMPS_INTERIM_THREATS DATABASE SCHEMA

FIELD NAME	FIELD LENGTH	FIELD TYPE

COORD	dit_COORD_LEN	CHAR

MIL_GRID	dit_MIL_GRID_LEN	CHAR

BE_NUMBER	dit_BE_NUMBER_LEN	CHAR

CATEGORY	dit_CATEGORY_LEN	CHAR

DATETIME_LAST_CHG	dit_DATETIME_LAST_CHG(?)	CHAR

DOMAIN_LVL	dit_DOMAIN_LEVEL_LEN(?)	CHAR

OSUFFIX	dit_OSUFFIX_LEN	CHAR

CC	dit_COUNTRY_CODE_LEN(?)	CHAR

EQP_ID_NUM	dit_EQP_ID_NUM_LEN	CHAR

EQUIP_OPER_STATUS	dit_OPER_STATUS_LEN	CHAR

QTY_OH	dit_QTY_OH_LEN(?)	INT

EQP_CODE	dit_EQP_CODE_LEN	CHAR

FAC_NAME	dit_FAC_NAME_LEN	CHAR

NOMEN	dit_NOMEN_LEN	CHAR

UNIT_NAME	dit_UNIT_NAME_LEN	CHAR

LOC_REASON	dit_LOC_REASON_LEN	CHAR

ILAT	dit_ILAT_LEN(?)	CHAR

ILON	dit_ILON_LEN(?)	CHAR

REVIEW_DATE	dit_REVIEW_DATE_LEN	CHAR

CONDITION	dit_CONDITION_LEN	CHAR

FAC_OPER_STATUS	dit_OPER_STATUS_LEN	CHAR

MSL_SYS_ID	dit_EQP_CODE_LEN	CHAR

UNIT_ID	dit_UNIT_ID_LEN	CHAR

RECORD_STATUS	dit_RECORD_STATUS_LEN	CHAR

CLASS_LVL	dit_CLASS_LEVEL_LEN(?)	CHAR

QTY_OH_EVAL	dit_QTY_OH_LEN	CHAR

DATETIME_LAST_OBS	dit_DATETIME_LAST_OBS(?)	CHAR

FAC_SK (char14)		CHAR

EQP_SK (char 14)		CHAR

UNIT_SK (char 14)		CHAR

EQP_IDX_SK (char 14)		CHAR

RADAR_EQUIP_CODE	dit_EQP_CODE_LEN	CHAR

PLANNER	char 31	CHAR

INTERIM_THREAT_TYPE	char 6	CHAR

UNIQUE_ID_INT	char 81	CHAR

additional (TBD) which may be required to promote planner-created threats to MIDB

Interface Description

TBD

Unit Test Plans and Procedures

TBD

Assumptions from Preliminary Design

Current interim threat capability meets all requirements

Continue to delete interim threats from TAMPS db when threats are added to MIDB database

Concerns/Questions/Issues from Preliminary Design

None��Output Messages CSC

High-Level Design Updates

The Output Messages CSC will be removed from the TAMPS system. The only use of this CSC was by the TERPES system, which substitutes their own version of the CSC.

Database Schema

Not Applicable.

Control Flow

Not Applicable

Algorithms

None

Design Description

The following code will be modified for this CSC:

dmt_menu.c:	The include of ìpml_prot_proto.hî will be removed.

	The button ìMessagesî will be removed from the Output menu.

sit_defaultMenu.c: 	The include of ìpml_prot_proto.hî will be removed.

	The button ìMessagesî will be removed from the Output menu.

sit_intel_default.c:	The include of ìpml_prot_proto.hî will be removed.

The following function from within the ìpmlî library will be removed:

	pml_main()

Other code within the ìpmlî library will be removed as it is discovered to be obsolete; much of this code is also called by the prl library and should not be deleted at present. The one public function in this library, pml_FillWidgetWithFile(), will not be affected.

Interface Description

The ìMessagesî menu button under the ìObjectî menu will be removed in MPMs and in the Database Administrator application.

Unit Test Plans and Procedures

Verify that the Object(Messages menu item does not appear in 1) an MPM; and 2) the Database Administrator application.

Assumptions from Preliminary Design

Message formats are not changing. No longer applicable, since the code is being removed.

Concerns/Questions/Issues from Preliminary Design

What other parts of this SOR are affected by dqt_genJoinCond(), dqt_genUserCond()? No longer a concern, since the interfaces to these two functions are not changing.

�Modifications

System Generation CSC

Source Location�Action�Description��SetMidbEnv.sh�new �environment variables��BLTS startup script�new���DEX startup script�new���

MIDB Installation CSC

Source Location�Action�Description��/tamps/src/scripts/dbase

 dut_installMIDB.pl�

new�

Installation script for MIDB��

User Administration CSC

Source Location�Action�Description��/tamps/src/libs/zsystem/zet

 zet_userMMI.c

 zet_userMMIcb.c

 zet_passwdMMI.c�

modify

modify

modify�

create new role for DBA

create Network DBA privilege

��

MIDB Baseload CSC

Source Location�Action�Description��/tamps/src/libs/dbase/dlt

 dlt_load.c

 dlt_midb.c

 dlt_idbtf.c�

modify

new

delete�

add conditions for MIDB database

loading MIDB database��/tamps/src/libs/dbase/include

 dlt_base.h�

modify�

change IDB reference to MIDB��

JMCIS Baseload CSC

Source Location�Action�Description������

MIDB Subset CSC

Source Location�Action�Description������

Query Execution CSC

Source Location�Action�Description��/tamps/include/dbase

 dat_proto.h�

modify���/tamps/include_prot/dbase

 dat_prot_proto.h�

modify���/tamps/src/libs/dbase/include

 dat_priv_proto.h

 dqt_priv_proto.h�

modify

modify���/tamps/src/libs/util/include

 ust_priv_proto.h

 utt_priv_proto.h�

modify

modify���/tamps/include_prot/util

 utt_prot_proto.h�

modify���/tamps/src/libs/dbase/dat

 dat_execute.c

 dat_delQuery.c

 dat_getDbStr.c

 dat_queries.c

 dat_delete.c

 dat_insert.c

 dat_update.c

 dat_tab_defs.c�

modify

modify

modify

modify

delete

delete

delete

delete���/tamps/src/libs/dbase/dqt

 dqt_cond.c

 dqt_sql.c

 dqt_select.c�

modify

modify

modify���/tamps/src/libs/dbase/dbt

 dbt_bcp_input.c����/tamps/src/libs/dbase/dmt

 dmt_qnebcb.c

 dmt_qsavcb.c�

modify

modify���/tamps/src/libs/ethreat/edt

 edt_layer.c�

modify���/tamps/src/libs/intel/ist

 ist_amp.c�

modify���/tamps/src/libs/objh/oet

 oet_objDisp.c�

modify���/tamps/src/libs/objh/out

 out_dbfuncs.c�

modify���/tamps/src/libs/util/ust

 ust_utils.c�

modify�

delete ust_dropUpdTriggers() function��/tamps/src/libs/util/utt

 utt_build_tablist.c

 utt_createDBMenu.c

 utt_finds.c�

modify

modify

modify�

remove IDB specific functions��

Object Conversion CSC

Source Location�Action�Description��DD table SQL files�modify�removing DD tables no longer needed��

Object Editor CSC

Source Location�Action�Description��/tamps/include_prot/objh

 out_prot_proto.h�

modify

�

add function prototype to determine if a table has location column (latitude)��/tamps/src/libs/objh/out

 out_dbfuncs.c�

modify�

add function to determine if table includes location column (latitude)��/tamps/src/libs/objh/oet

 oet_lltab.c�

modify�

call new function to determine if table has lat/long columns��

Threat OOB Editor CSC

Source Location�Action�Description��/tamps/src/libs/dbase/include

 dmt_default_defines.h

 dmt_priv_proto.h�

modify

modify�

delete obsolete oob editor callbacks with MIDB callbacks

add new function prototypes��/tamps/src/libs/dbase/dmt

 dmt_menu.c

 dmt_editMidbCb.c�

modify

new�

add MIDB menu items

new Midb callback functions��

Data Archival CSC

Source Location�Action�Description��/tamps/src/libs/dbase/dut

 dut_archive_restore.c

 dut_arResMMI.c

 dut_datasets.c

 dut_dbucb.c

 dut_dumpResMMI.c

 dut_idb.c

 dut_matchRecs.c�

modify

modify

modify

modify

delete

delete�

add archive/restore toggle buttons

modify references to IDB

update commentary

add dump/restore toggle buttons

obsolete

not used��/tamps/src/libs/dbase/include

 dut_priv_proto.h

 dut_util_struct.h�

modify

modify�

delete dut_match_uql_to_uql_ext() function and dut_match_p_to_p_ext() function

update structure to include archive/restore

and dump/restore button widgets��/tamps/include_prot/util

 utt_prot_proto.h�

modify�

change function utt_createDBMenu() to include whereClause parameter��/tamps/src/libs/util/uut

 utt_createDBMenu.c�

modify�

change function utt_createDBMenu() to include whereClause parameter��

Threat Query CSC

Source Location�Action�Description��/tamps/src/libs/system/sit

 sit_defaultMenu.c�

modify�

streamline oob queries��/tamps/include_prot/system

 sit_default_defines.h�

modify�

streamline oob queries��/tamps/src/libs/intel/iot

 iot_aob.c

 iot_aobcap.c

 iot_aobfix.c

 iot_aobrot.c

 iot_aobspec.c

 iot_sam.c

 iot_samfix.c

 iot_samtac.c

 iot_samunit.c

 iot_aaa.c

 iot_aaafac.c

 iot_aaafcrdr.c

 iot_aaaUnit.c�

modify

delete

delete

delete

delete

modify

delete

delete

delete

modify

delete

delete

delete�

display specific queries in aob dialog

display specific queries for sam dialog

display specific queries for aaa dialog��/tamps/include/a_msn_plan

 amt_menu.h�

modify�

delete extra oob query #defines for aaa, aob and sam��/tamps/src/libs/dbase/dmt

 dmt_menu.c�

modify�

streamline oob queries for MIDB��/tamps/src/libs/dbase/include

 dmt_default_defines.h�

modify�

streamline oob queries for MIDB��

Target Query CSC

Source Location�Action�Description��TARGETS_DBA�query�access MIDB data tables��TARGETS_USER�query�access TAMPS_PLANNER_TARGETS data base��

Data Removal CSC

Source Location�Action�Description��/tamps/src/libs/dbase/dut

 dut_drmMMI.c��modify�

update call to uut_createDBMenu to include where clause��

Output Reports CSC

Source Location�Action�Description���new�add multiple database capability��/tamps/src/libs/products/prl

 prl_target_sql.c

 prl_format_target_land.c

 prl_format_target_port.c

 prl_select_report.c

 prl_obrpt_sql.c

 prl_filter_obrpt.c

 prl_format_obrpt_land.c

 prl_format_obrpt_port.c�

modify

modify

modify

modify

delete

delete

delete

delete�

use TAMPS_PLANNER_TARGETS data table

use new data table

use new data table

remove calls to oob report

��/tamps/src/libs/products/include

 prl_target_column_array.h�

modify�

convert to new data table TAMPS_PLANNER_TARGETS��

Application Interface CSC

Source Location�Action�Description��/tamps/src/libs/dbase/dit

 dit_sqlStmt_c.C

 dit_Aka_c.C

 dit_midbBase_c.C

 dit_Equipment_c.C

 dit_EquipmentIndex_c.C

 dit_Facility_c.C

 dit_Observeration_c.C

 dit_Remark_c.C

 dit_Target_c.C

 dit_Track_c.C

 dit_Unit_c.C�

new

new

new

new

new

new

new

new

new

new

new���/tamps/src/libs/dbase/include

 dit_sqlStmt_c.H

 dit_Aka_c.H

 dit_midbBase_c.H

 dit_Equipment_c.H

 dit_EquipmentIndex_c.H

 dit_Facility_c.H

 dit_Observeration_c.H

 dit_Remark_c.H

 dit_Target_c.H

 dit_Track_c.H

 dit_Unit_c.H�

new

new

new

new

new

new

new

new

new

new

new�prototype files��/tamps/include/dbase

 dit_defines.h

 dit_enums.h

 dit_proto.h�

new

new

new���/tamps/src/libs/util/uzt

 uzt_utils.c�

modify�

add function to return data structure��

Target Application Interface CSC

Source Location�Action�Description��/tamps/src/libs/dbase/dit

 dit_PlannerTarget_c.C�

new�

new accessor functions to target data��

Planner Target Editor CSC

Source Location�Action�Description��/tamps/src/libs/b_msn_tools/btt

 btt_deftgt.c

 btt_deftgtcb.c�

modify

modify�

update for new Planner Target dialog

update for new Planner Target dialog��/tamps/src/libs/b_msn_tools/

include

 btt_deftgtcb.h

 btt_deftgt.h�

modify

modify�

add new callback functions for new dialog

add new callback widget #defines��/tamps/include/a_msn_plan

 apt_route.h�

modify�

change APT_TARGET_T structure��

Open Mission and Save Mission CSCs

Source Location�Action�Description��/tamps/src/libs/a_msn_plan

 adt_obsoleteCHK.c

 adt_tgData.c�

modify

modify�

add function to check for obsolete target data

use new accessor functions to retreive and modify user target data��

Affected Files CSC

Source Location�Action�Description��/tamps/src/libs/a_msn_plan/amt

 amt_bkdata.c

 amt_rtdisp.c�

modify

modify�

use new APT_TARGET_T structure

use new APT_TARGET_T structure��/tamps/src/libs/a_msn_plan/aet

 aet_RefOAPCb.c�

modify�

use new APT_TARGET_T structure��/tamps/src/libs/b_msn_tools/bat

 bat_utils.c�

modify�

use new APT_TARGET_T structure��/tamps/src/libs/dbase/dft

 dft_getOrderOfBattle.c

 dft_OrderOfBattle_c.C

 dft_getTargetData.c

 dft_TargetData_c.C

 dft_IDBF.c

 dft_IDBFQL.c

 dft_IDBFSITE.c

 dft_IDBU.c

 dft_IDBUL.c

 dft_IDBUQL.c�

modify

new

modify

new

delete

delete

delete

delete

delete

delete�

use order of battle class

use new accessor functions to MIDB data

use target data class

use new accessor functions to MIDB target table and TAMPS target table

��/tamps/src/libs/dbase/dlt

 dlt_mission.c�

modify�

use new TAMPS_PLANNER_TARGETS data table��/tamps/src/libs/dbase/include

 dft_priv_proto.h�

modify�

delete idb functions��/tamps/include_prot/dbase

 dft_prot_proto.h�

modify�

delete idb functions��/tamps/src/libs/dbase/drt

 drt_remakrs.c

 drt_remkMMI.c

 drt_reUtils.c�

modify

modify

modify�

use new accessor functions to MIDB tables��

Threat Scenarios CSC

Source Location�Action�Description��/tamps/src/libs/system/sit

 sit_defaultMenu.c�

modify�

update for threat scenario menu item��/tamps/src/libs/dbase/dmt

 dmt_menu.c�

modify�

update for threat scenario menu item��/tamps/src/libs/dbase/include

 dmt_default_defines.h�

modify�

update for threat scenario menu item��/tamps/src/libs/dbase/include

 dut_priv_proto.h

 dut_util_struct.h�

modify

modify�

add scenario functions

add scenario structure��/tamps/src/libs/dbase/dut

 dut_scenario.c

 dut_scenarioMMI.c�

new

new�

scenario functions

scenario dialogs for the DBA and MPM��

Interim Threat CSC

Source Location�Action�Description��/tamps/src/libs/dbase/dil

 dil_DbaAddInterimThreatTo

 Idb.c

 dil_DeleteThreat.c

 dil_EditThreat.c

 dil_DbaThreatEditor.c

 dil_DataBucketRoutines.c

 dil_IdbQueries.c

 dil_IdbfQueries.c

 dil_IdbflQueries.c

 dil_IdbuQueries.c

 dil_InsertIdbRow.c

 dil_InsertIdbfRow.c

 dil_InsertIdbfqlRow.c

 dil_InsertIdbuRow.c

 dil_UpdateIdbData.c�

modify

modify

modify

modify

modify

delete

delete

delete

delete

delete

delete

delete

delete

delete�

use new accessor functions to MIDB threat data

update for object hierarchy changes

update image obj class structures��/tamps/include_prot/dbase

 dil_prot_proto.h�

modify�

delete idb functions��/tamps/src/libs/dbase/include

 dil_priv_proto.h�

modify�

delete idb functions��

��Interface Design Updates

Proposed IDD Modifications

Proposed IDD Deletions

adt_getTarget

Calling Sequence: ST_PUBLIC LIST *adt_getTarget

			 (short msn_id, int target_id, char *where_clause)

Proposed IDD Additions

const char *dat_getDatabaseForTable(const char*table)

This function will return the name of the Sybase database which contains the specified table. The table must already exist in one of the databases.

If the table could not be found in any database listed in the DD_DATABASES relation, then a NULL pointer will be returned. If the table is found in more than one database, then the name of the first database in which the table is found will be returned.

The returned pointer must not be freed, and the data pointed to must not be modified.

DBPROCESS *dat_open_dbproc(const char *db_name, Boolean for_update)

This function has been removed from the Preliminary IDD information for this SOR. The MPLAN SOR will be providing an IDD function with the same functionality.

void dat_close_dbproc(DBPROCESS *dbproc)

This function has been removed from the Preliminary IDD information for this SOR. The MPLAN SOR will be providing a public function similar to the dat_open_dbproc() described above, along with any related functions that may be required.

SQLHDBC dat_open_odbc(const char *db_name, Boolean for_update)

This function has been removed from the Preliminary IDD information for this SOR, since the use of ODBC has been removed from this SOR.

void dat_close_odbc(SQLHDBC hdbc)

This function has been removed from the Preliminary IDD information for this SOR, since the use of ODBC has been removed from this SOR.

dit_createHandle

==

 FUNCTION:	dit_createHandle

==

CALLING SEQUENCE:

	Handle = dit_createHandle (dataType, itemType)

PARAMETERS:

	Name	I/O	Type	Description

	dataType	I	dit_midbDataType	specifies the type of data to access in						the MIDB database

	itemType	I	dit_itemType	specifies the purpose of the handle whether it

				will be used to define select fields or to

				contain data values

	Handle	O	UZT_HANDLE	pointer to private structure which can be used

				to set and get individual fields

DESCRIPTION:

	This function provides the capability to define an object which can be used to request or set values to be used as SQL queries against the MIDB schema objects. The input parameters define the type of handle to be created. The dataType parameter specifies the MIDB schema object to be associated with the handle object. The itemType parameter specifies how the handle object will be used to identify the parts of the SQL statement. When itemType is set to DIT_COLUMN_FIELDS, this represents the select clause which identifies what columns to retrieve. When itemType is set to DIT_DATA_FIELDS, this represents the where clause which identifies what columns are used to limit the data retrieved. Also, a handle of this type is used in the manipulation (create, modify or delete) dit functions. If a handle could not be created, then a NULL value is returned by the function call.

EXAMPLE:

	See the following IDD function descriptions for detailed examples of how this function is used with the other DIT functions.

dit_getMidbData

dit_createMidbData

dit_modifyMidbData

dit_deleteHandle

==

 FUNCTION:	dit_deleteHandle

==

CALLING SEQUENCE:

	dit_deleteHandle (handle)

PARAMETERS:

	Name	I/O	Type	Description

	handle	I	UZT_HANDLE	pointer to private structure which was created

				by dit_createHandle or dit_createTargetHandle

				function

DESCRIPTION:

	This function provides the capability to destroy the handle returned by the dit_createHandle function. If the handle is null, the function returns without an error.

EXAMPLE:

	#include “dbase/dit_defines.h”

	#include “dbase/dit_proto.h”

	int main ()

	{

		UZT_HANDLE	handle = NULL;

		handle = dit_createHandle (DIT_FAC_BY_UNIT, DIT_SELECT_FIELDS);

		.

		. /* code where midb handle is used */

		.

		/* delete the handle created by the dit_createHandle function */

		dit_deleteHandle (handle);

		handle = NULL;

		.

		.

		.

		handle = dit_createTargetHandle (DIT_DATA_FIELDS);

		.

		. /* code where target handle is used */

		.

		/* delete the handle created by the dit_createTargetHandle function */

		dit_deleteHandle (handle);

		return 0;

	} /* end main routine */

	See the following IDD function descriptions for detailed examples of how this function is used with the other DIT functions.

dit_getMidbData

dit_createMidbData

dit_modifyMidbData

dit_deleteHandleData

==

 FUNCTION:	dit_deleteHandleData

==

CALLING SEQUENCE:

	dit_deleteHandleData (data)

PARAMETERS:

	Name	I/O	Type	Description

	data	I	LIST*	pointer to a list of UZT_HANDLES

DESCRIPTION:

	This function provides the capability to destroy the list of handles that are returned by the dit_getMidbData function. If the list pointer is null, the function returns without an error.

EXAMPLE:

	#include “util/ult_structs.h”

	#include “util/uzt_defines.h”

	#include “util/uzt_structs.h”

	#include “util/ult_proto.h”

	#include “util/uzt_proto.h”

	#include “dbase/dit_defines.h”

	#include “dbase/dit_enums.h”

	#include “dbase/dit_proto.h”

	int main()

	{

		DIT_STATUS	ditStatus = DIT_SUCCESS;

		LIST *	rtnData = NULL;

		UZT_HANDLE	selectHandle = NULL;

		ditStatus = dit_getMidbData (DIT_EQP_IDX, selectHandle, NULL, rtnData);

		/* check status for errors */

		if (ditStatus != DIT_SUCCESS)

			then

			/* process error conditions */

			...

			return 1;

		endif

		/* delete the list of handles returned by the dit_getMidbData function */

		dit_deleteHandleData (rtnData);

		return 0;

	} /* end main routine */

	See the following IDD function descriptions for detailed examples of how this function is used with the other DIT functions.

dit_getMidbData

dit_createMidbData

dit_modifyMidbData

dit_getMidbData

==

FUNCTION:	dit_getMidbData

==

CALLING SEQUENCE:

	status = dit_getMidbData (dataType, selectHandle, queryHandle, &returnData)

PARAMETERS:

	Name	I/O	Type	Description

	dataType	I	dit_midbDataType	specifies the GMI data to access in the MIDB

				database

	selectHandle	I	UZT_HANDLE	specifies the fields for the GMI data to

				retrieve

	queryHandle	I	UZT_HANDLE	specifies the fields and values to be used to

				limit the amount of data returned

	returnData	O	LIST **	pointer to a list of UZT_HANDLES

	status	O	DIT_STATUS	returns SUCCESS or other failure

				enumeration values

DESCRIPTION:

	This function provides the capability to retrieve GMI data from the MIDB database. The records are returned in the LIST *returnData parameter. The list contains handles which can be used to retrieve the record data. If no records were found to match the query, the status return value will be set to DIT_NO_DATA_FOUND and the returnData value is an empty list. When all other SQL errors occur, the status return value will be set to DIT_QUERY_ERROR. Each handle in the list represents one record from the MIDB schema object. The dataType parameter specifies which MIDB schema object, the selectHandle parameter specifies which fields to retrieve from the MIDB schema object, and the queryHandle parameter specifies fields to limit which records are returned. When the selectHandle is NULL, all fields for the MIDB object are returned. When the queryHandle is NULL, all records for the query are returned.

EXAMPLE 1:

	#include “util/ult_structs.h”

	#include “util/uzt_defines.h”

	#include “util/uzt_structs.h”

	#include “util/ult_proto.h”

	#include “util/uzt_proto.h”

	#include “dbase/dit_defines.h”

	#include “dbase/dit_enums.h”

	#include “dbase/dit_proto.h”

	//

	// This routine retrieves all records from a GMI table.

	//

	int main ()

	{

		ST_STATUS	status = ST_SUCCESS;

		DIT_STATUS 	ditStatus = DIT_SUCCESS;

		UZT_HANDLE 	selectHandle = NULL;

		UZT_HANDLE	dataHandle = NULL;

		LIST *	rtnData = NULL;

		LIST *	lp = NULL;

		uzt_Arg 	args [100];

		uzt_Cardinal	argcnt = 0;

		

		char	FieldOn = DIT_FIELD_ON;

		char	classLevel [dit_CLASS_LEVEL_LEN] = {ë\0í};

		char	domainLevel [dit_DOMAIN_LEVEL_LEN] = {ë\0í};

		char	eqpCode [dit_EQP_CODE_LEN] = {ë\0í};

		char	eqpType [dit_EQP_TYPE_LEN] = {ë\0í};

		char	eval [dit_EVAL_LEN] = {ë\0í};

		char	nomen [dit_NOMEN_LEN] = {ë\0í};

		char	recordStatus [dit_RECORD_STATUS_LEN] = {ë\0í};

		char	requestingOrg [dit_REQUESTING_ORG_LEN] = {ë\0í};

		char	resProd [dit_RES_PROD_LEN] = {ë\0í};

		selectHandle = dit_createHandle (DIT_EQP_IDX, DIT_SELECT_FIELDS);

		if (selectHandle == NULL)

		{

			/* process error condition */

			...

			return 1;

		}

		/*

		** Get equipment index data

		*/

		/* set fields to retrieve from GMI table in select handle */

		argcnt = 0;

		uzt_setArgs (args[argcnt], dit_CLASS_LEVEL, &FieldOn); argcnt++;

		uzt_setArgs (args[argcnt], dit_DOMAIN_LEVEL, &FieldOn); argcnt++;

		uzt_setArgs (args[argcnt], dit_EQP_CODE, &FieldOn); argcnt++;

		uzt_setArgs (args[argcnt], dit_EQP_TYPE, &FieldOn); argcnt++;

		uzt_setArgs (args[argcnt], dit_EVAL, &FieldOn); argcnt++;

		uzt_setArgs (args[argcnt], dit_NOMEN, &FieldOn); argcnt++;

		uzt_setArgs (args[argcnt], dit_RECORD_STATUS, &FieldOn); argcnt++;

		uzt_setArgs (args[argcnt], dit_REQUESTING_ORG, &FieldOn); argcnt++;

		uzt_setArgs (args[argcnt], dit_RES_PROD, &FieldOn); argcnt++;

		status = uzt_setValues (selectHandle, args, argcnt);

		/* check status for errors */

		if (status != ST_SUCCESS)

		{

			/* process error condition */

			...

			return 1;

		}

		/* use select handle to get GMI record(s) */

		ditStatus = dit_getMidbData (DIT_EQP_IDX, selectHandle, NULL, &rtnData);

		/* check status for errors */

		if (ditStatus != DIT_SUCCESS)

		{

			/* process error conditions */

			...

			return 1;

		}

		lp = rtnData;

		for (lp->next; lp != rtnData; lp=lp->next)

		{

		/* retrieve data handle from list */

		dataHandle = (UZT_HANDLE) lp->data;

			if (dataHandle == NULL)

			{

			/* process error condition */

			...

			return 1;

			}

		argcnt = 0;

		uzt_setArgs (args[argcnt], dit_CLASS_LEVEL, &classLevel); argcnt++;

		uzt_setArgs (args[argcnt], dit_DOMAIN_LEVEL, &domainLevel);

		argcnt++;

		uzt_setArgs (args[argcnt], dit_EQP_CODE, &eqpCode); argcnt++;

		uzt_setArgs (args[argcnt], dit_EQP_TYPE, &eqpType); argcnt++;

		uzt_setArgs (args[argcnt], dit_EVAL, &eval); argcnt++;

		uzt_setArgs (args[argcnt], dit_NOMEN, &nomen); argcnt++;

		uzt_setArgs (args[argcnt], dit_RECORD_STATUS, &recordStatus);

		argcnt++;

		uzt_setArgs (args[argcnt], dit_REQUESTING_ORG, &requestingOrg);

		argcnt++;

		uzt_setArgs (args[argcnt], dit_RES_PROD, &resProd); argcnt++;

		status = uzt_getValues (dataHandle, args, argcnt);

		/* check status for errors */

			if (status != ST_SUCCESS)

			{

				/* process error conditions */

				...

				return 1;

			}

		/* use local variables for specific functional processing */

		...

		} /* end for loop */

		dit_deleteHandleData (rtnData);

		dit_deleteHandle (selectHandle);

		return 0;

	} /* end main routine */

EXAMPLE 2:

	#include “util/ult_structs.h”

	#include “util/uzt_defines.h”

	#include “util/uzt_structs.h”

	#include “util/ult_proto.h”

	#include “util/uzt_proto.h”

	#include “dbase/dit_defines.h”

	#include “dbase/dit_enums.h”

	#include “dbase/dit_proto.h”

	//

	// This routine retrieves records bounded by latitude/longitude and country code

	// from a GMI table.

	//

	int main ()

	{

		ST_STATUS	status = ST_SUCCESS;

		DIT_STATUS 	ditStatus = DIT_SUCCESS;

		UZT_HANDLE 	selectHandle = NULL;

		UZT_HANDLE 	queryHandle = NULL;

		UZT_HANDLE	dataHandle= NULL;

		LIST *	rtnData = NULL;

		LIST *	lp = NULL;

		uzt_Arg 	args [100];

		uzt_Cardinal	argcnt = 0;

		

		char	FieldOn = DIT_FIELD_ON;

		char	classLevel [dit_CLASS_LEVEL_LEN] = {ë\0í};

		char	domainLevel [dit_DOMAIN_LEVEL_LEN] = {ë\0í};

		char	eqpCode [dit_EQP_CODE_LEN] = {ë\0í};

		char	eqpIdNum [dit_EQP_ID_NUM_LEN] = {ë\0í};

		char	eval [dit_EVAL_LEN] = {ë\0í};

		char	nomen [dit_NOMEN_LEN] = {ë\0í};

		char	recordStatus [dit_RECORD_STATUS_LEN] = {ë\0í};

		char	requestingOrg [dit_REQUESTING_ORG_LEN] = {ë\0í};

		char	resProd [dit_RES_PROD_LEN] = {ë\0í};

		char	countryCode [dit_COUNTRY_CODE_LEN] = {ë\0í};

		float	ll_lat, ll_long, ur_lat, ur_long;

	/* begin code */

		selectHandle = dit_createHandle (DIT_EQP, DIT_SELECT_FIELDS);

		if (selectHandle == NULL)

		{

			/* process error condition */

			...

			return 1;

		}

		queryHandle = dit_createHandle (DIT_EQP, DIT_DATA_FIELDS);

		if (queryHandle == NULL)

		{

			/* process error condition */

			...

			return 1;

		}

		/*

		** Get equipment index data

		*/

		/* set fields to retrieve from GMI table in select handle */

		argcnt = 0;

		uzt_setArgs (args[argcnt], dit_CLASS_LEVEL, &FieldOn); argcnt++;

		uzt_setArgs (args[argcnt], dit_DOMAIN_LEVEL, &FieldOn); argcnt++;

		uzt_setArgs (args[argcnt], dit_EQP_CODE, &FieldOn); argcnt++;

		uzt_setArgs (args[argcnt], dit_EQP_ID_NUM, &FieldOn); argcnt++;

		uzt_setArgs (args[argcnt], dit_EVAL, &FieldOn); argcnt++;

		uzt_setArgs (args[argcnt], dit_NOMEN, &FieldOn); argcnt++;

		uzt_setArgs (args[argcnt], dit_RECORD_STATUS, &FieldOn); argcnt++;

		uzt_setArgs (args[argcnt], dit_REQUESTING_ORG, &FieldOn); argcnt++;

		uzt_setArgs (args[argcnt], dit_RES_PROD, &FieldOn); argcnt++;

		status = uzt_setValues (selectHandle, args, argcnt);

		/* check status for errors */

		if (status != ST_SUCCESS)

		{

			/* process error condition */

			...

			return 1;

		}

		/* user will need to copy data into local variables to limit data returned by the

		** SQL query such as strcpy (countryCode, “US”) or set lat/long values to a

		** bounding area */

	

		/* set condition query values in query handle*/

		argcnt = 0;

		uzt_setArg (args[argcnt], dit_LL_LAT, &ll_lat); argcnt++;

		uzt_setArg (args[argcnt], dit_LL_LONG, &ur_long); argcnt++;

		uzt_setArg (args[argcnt], dit_UR_LAT, &ur_lat); argcnt++;

		uzt_setArg (args[argcnt], dit_UR_LONG, &ur_long); argcnt++;

		uzt_setArg (args[argcnt], dit_COUNTRY_CODE, &countryCode); argcnt++;

		status = uzt_setValues (queryHandle, args, argcnt);

		/* check status for errors */

		if (status != ST_SUCCESS)

		{

			/* process error condition */

			...

			return 1;

		}

		/* use select and query handles to get GMI record(s) */

		ditStatus = dit_getMidbData (DIT_EQP, selectHandle, queryHandle, &rtnData);

		/* check status for errors */

		if (ditStatus != DIT_SUCCESS)

		{

			/* process error conditions */

			...

			return 1;

		}

		lp = rtnData;

		for (lp->next; lp != rtnData; lp=lp->next)

		{

		/* retrieve data handle from list */

		dataHandle = (UZT_HANDLE) lp->data;

			if (dataHandle == NULL)

			{

			/* process error condition */

			...

			return 1;

			}

		argcnt = 0;

		uzt_setArgs (args[argcnt], dit_CLASS_LEVEL, &classLevel); argcnt++;

		uzt_setArgs (args[argcnt], dit_DOMAIN_LEVEL, &domainLevel);

		argcnt++;

		uzt_setArgs (args[argcnt], dit_EQP_CODE, &eqpCode); argcnt++;

		uzt_setArgs (args[argcnt], dit_EQP_ID_NUM, &eqpIdNum); argcnt++;

		uzt_setArgs (args[argcnt], dit_EVAL, &eval); argcnt++;

		uzt_setArgs (args[argcnt], dit_NOMEN, &nomen); argcnt++;

		uzt_setArgs (args[argcnt], dit_RECORD_STATUS, &recordStatus);

		argcnt++;

		uzt_setArgs (args[argcnt], dit_ REQUESTING_ORG, &requestingOrg);

		argcnt++;

		uzt_setArgs (args[argcnt], dit_ RES_PROD, &resProd); argcnt++;

		status = uzt_getValues (dataHandle, args, argcnt);

		/* check status for errors */

			if (status != ST_SUCCESS)

			{

				/* process error condition */

				...

				return 1;

			}

		/* use local variables for specific functional processing */

		...

		} /* end for loop */

		dit_deleteHandleData (rtnData);

		dit_deleteHandle (selectHandle);

		dit_deleteHandle (queryHandle);

		return 0;

	} /* end main routine */

dit_createMidbData

==

 FUNCTION:	dit_createMidbData

==

CALLING SEQUENCE:

	status = dit_createMidbData (dataType, handle, returnSK)

PARAMETERS:

	Name	I/O	Type	Description

	dataType	I	dit_midbDataType	specifies the GMI data to access in the MIDB

				database

	handle	I	UZT_HANDLE	specifies the fields and values to be used to

				create a new GMI record

	returnSK	O	char *	the surrogate key of the new GMI

				record

	status	O	DIT_STATUS	returns SUCCESS or other failure

				enumeration values

DESCRIPTION:

	This function provides the capability to programmatically create a record in a GMI table. The dataType parameter specifies which GMI table and the handle parameter specifies the fields and values of the new record. The handle parameter specifies the fields and values that are used to create a new GMI record. If no values are specified in the handle parameter, the status return value will be set to DIT_MISSING_DATA_ERROR. If the handle does not contain all the required fields to create a new GMI record, the status return value will be set to DIT_MISSING_DATA_ERROR. If an SQL error occurs while creating the new record, the status return value will be set to DIT_CREATE_DATA_ERROR. The returnSK parameter is the surrogate key of the new record that was generated. (The user should not modify this value.)

	When creating a new record based on the surrogate key of another record, the input handle will contain the required surrogate key. For example, when dataType set to DIT_FAC_BY_UNIT, the handle must have the surrogate key of the unit specified in order to create tie records between the facility and unit objects. If the surrogate key value for the other record has not been specified, the status return value will be set to DIT_MISSING_DATA_ERROR. If the surrogate key value for the other record does not exist in that GMI object, the status return value will be set to DIT_NO_DATA_FOUND.

EXAMPLE:

	#include “util/ult_structs.h”

	#include “util/uzt_defines.h”

	#include “util/uzt_structs.h”

	#include “util/ult_proto.h”

	#include “util/uzt_proto.h”

	#include “dbase/dit_defines.h”

	#include “dbase/dit_enums.h”

	#include “dbase/dit_proto.h”

	int main ()

	{

		ST_STATUS	status = ST_SUCCESS;

		DIT_STATUS 	ditStatus = DIT_SUCCESS;

		UZT_HANDLE 	handle = NULL;

		uzt_Arg 	args [100];

		uzt_Cardinal	argcnt = 0;

		char	localSK[dit_SK_LEN] = {ë\0í};

		char	FieldOn = DIT_FIELD_ON;

		char	classLevel [dit_CLASS_LEVEL_LEN] = {ë\0í};

		char	domainLevel [dit_DOMAIN_LEVEL_LEN] = {ë\0í};

		char	eqpCode [dit_EQP_CODE_LEN] = {ë\0í};

		char	eqpType [dit_EQP_TYPE_LEN] = {ë\0í};

		char	eval [dit_EVAL_LEN] = {ë\0í};

		char	nomen [dit_NOMEN_LEN] = {ë\0í};

		char	recordStatus [dit_RECORD_STATUS_LEN] = {ë\0í};

		char	requestingOrg [dit_REQUESTING_ORG_LEN] = {ë\0í};

		char	resProd [dit_RES_PROD_LEN] = {ë\0í};

	/* begin code */

		/* create handle for new values */

		handle = dit_createHandle (DIT_EQP_IDX, DIT_DATA_FIELDS);

		if (handle == NULL)

		{

			/* process error condition */

			...

			return 1;

		}

		/*

		** Create an equipment index record

		*/

		/* copy data into local variables */

		strcpy (eqpCode, “X2”);

		...

		/* set local variables in handle */

		argcnt = 0;

		uzt_setArgs (args[argcnt], dit_CLASS_LEVEL, &classLevel); argcnt++;

		uzt_setArgs (args[argcnt], dit_DOMAIN_LEVEL, &domainLevel);

		argcnt++;

		uzt_setArgs (args[argcnt], dit_EQP_CODE, &eqpCode); argcnt++;

		uzt_setArgs (args[argcnt], dit_EQP_TYPE, &eqpType); argcnt++;

		uzt_setArgs (args[argcnt], dit_EVAL, &eval); argcnt++;

		uzt_setArgs (args[argcnt], dit_NOMEN, &nomen); argcnt++;

		uzt_setArgs (args[argcnt], dit_RECORD_STATUS, &recordStatus); argcnt++;

		uzt_setArgs (args[argcnt], dit_REQUESTING_ORG, &requestingOrg);

		argcnt++;

		uzt_setArgs (args[argcnt], dit_RES_PROD, &resProd); argcnt++;

		status = uzt_setValues (handle, args, argcnt);

		/* check status for errors */

		if (status != ST_SUCCESS)

		{

			/* process error condition */

			...

			return 1;

		}

		/* use handle to create GMI record

		** - localSK is the surrogate key for the new GMI record

		*/

		ditStatus = dit_createMidbData (DIT_EQP_IDX, handle, localSK);

		/* check status for errors */

		if (ditStatus != DIT_SUCCESS)

		{

			/* process error conditions */

			...

			return 1;

		}

		dit_deleteHandle (handle);

		return 0;

	} /* end main routine */

dit_modifyMidbData

==

 FUNCTION:	dit_modifyMidbData

==

CALLING SEQUENCE:

	status = dit_modifyMidbData (dataType, dataSK, handle)

PARAMETERS:

	Name	I/O	Type	Description

	dataType	I	dit_midbDataType	specifies the GMI data to access in the MIDB

				database

	dataSK	I	char* 	surrogate key of the GMI record to modify

	handle	I	UZT_HANDLE	specifies the fields and values to be used to

				modify a GMI record

	status	O	DIT_STATUS	returns SUCCESS or other failure

				enumeration values

DESCRIPTION:

	This function provides the capability to programmatically modify a record in a GMI table. The surrogate key for the record being modified is required and is not modifiable. The dataType parameter can only be set to the enumeration values which correspond to a single table definition, i.e. DIT_FAC or DIT_UNIT. If the dataSK parameter is set to an invalid surrogate key value, the status return value will be set to DIT_INVALID_SK_VALUE. The handle parameter specifies the fields and values that are used to update the GMI record. If no values are set in the handle parameter, the status return value will be set to DIT_MISSING_DATA_ERROR. If an SQL error occurs while modifying the record, the status return value will be set to DIT_MODIFY_DATA_ERROR. If the dataType parameter is set to multiple table (i.e., DIT_FAC_BY_EQP), the status return values will be set to DIT_INVALID_DATA_OBJECT.

EXAMPLE:

	#include “util/ult_structs.h”

	#include “util/uzt_defines.h”

	#include “util/uzt_structs.h”

	#include “util/ult_proto.h”

	#include “util/uzt_proto.h”

	#include “dbase/dit_defines.h”

	#include “dbase/dit_enums.h”

	#include “dbase/dit_proto.h”

	int main ()

	{

		ST_STATUS	status = ST_SUCCESS;

		DIT_STATUS 	ditStatus = DIT_SUCCESS;

		UZT_HANDLE 	modHandle = NULL;

		UZT_HANDLE	dataHandle = NULL;

		LIST *	rtnData = NULL;

		LIST *	lp = NULL;

		uzt_Arg 	args [100];

		uzt_Cardinal	argcnt = 0;

		char	facSK[dit_SK_LEN] = {ë\0í};

		char	graphicSeries [dit_GRAPHIC_SERIES_LEN] = {ë\0í};

	/* begin code */

		/*

		** Use dit_getMidbData to retrieve data

		** - set selectHandle and queryHandle values as described in that function

		*/

		...

		ditStatus = dit_midbGetData (DIT_FACILITY, selectHandle,

		queryHandle, &rtnData);

		/* check status for errors */

		if (ditStatus != DIT_SUCCESS)

		{

			/* process error conditions */

			...

			return 1;

		}

		/* create handle for modify values */

		modHandle = dit_createHandle (DIT_FACILITY, DIT_DATA_FIELDS);

		if (modHandle == NULL)

		{

			/* process error condition */

			...

			return 1;

		}

		lp = rtnData;

		for (lp->next; lp != rtnData; lp=lp->next)

		{

		/* retrieve data handle from list */

		dataHandle = (UZT_HANDLE) lp->data;

			if (dataHandle == NULL)

			{

			/* process error condition */

			...

			return 1;

			}

		/* get surrogate key value from handle */

		argcnt = 0;

		uzt_setArgs (args[argcnt], dit_FAC_SK, (uzt_ArgVal) &facSK);

		argcnt++;

		status = uzt_getValues (dataHandle, args, argcnt);

			/* check status for errors */

			if (status != ST_SUCCESS)

			{

			/* process error conditions */

			...

			return 1;

			}

		/*

		** Modify each facility record to change graphic series

		*/

		argcnt = 0;

		strcpy (graphicSeries, “X123”);

		uzt_setArgs (args[argcnt], dit_GRAPHIC_SERIES, &graphicSeries);

		argcnt++;

		status = uzt_setValues (modHandle, args, argcnt);

			/* check status for errors */

			if (status != ST_SUCCESS)

			{

			/* process error conditions */

			...

			return 1;

			endif

		/* use modify handle and surrogate key to modify GMI record */

		ditStatus = dit_midbModifyData (DIT_FACILITY, modHandle, facSK);

			/* check status for errors */

			if (ditStatus != DIT_SUCCESS)

			then

			/* process error conditions */

			...

			return 1;

			}

		} /* end for loop */

		dit_deleteHandleData (rtnData);

		dit_deleteHandle (handle);

		return 0;

	} /* end main routine */

dit_createTargetHandle

==

 FUNCTION:	dit_createTargetHandle

==

CALLING SEQUENCE:

	Handle = dit_createTargetHandle (dataType, itemType)

PARAMETERS:

	Name	I/O	Type	Description

	itemType	I	dit_itemType	specifies the purpose of the handle whether it

				will be used to define select fields or to

				contain data values

	Handle	O	UZT_HANDLE	pointer to private structure which can be used

				to set and get individual fields

DESCRIPTION:

	This function provides the capability to define an object which can be used to request or set values to be used as SQL queries against the TAMPS_PLANNER_TARGETS data table. The itemType input parameter specifies whether the handle object will be used to identify the parts of the SQL statement. When itemType is set to DIT_COLUMN_FIELDS this represents the select clause which identifies what columns to retrieve. When itemType is set to DIT_DATA_FIELDS this represents the where clause which identifies what columns are used to limit the data retrieved. This handle type is an input parameter when using the DIT query and manipulation functions: dit_getTargets, dit_createTarget, dit_modifyTarget and dit_deleteTarget. If a handle could not be created, then a NULL value is returned by the function call.

EXAMPLE:

	See the following IDD function descriptions for detailed examples of how this function is used with the other DIT functions.

dit_getTargets

dit_createTarget

dit_modifyTarget

dit_deleteTarget

dit_createTarget

==

 FUNCTION:	dit_createTarget

==

CALLING SEQUENCE:

	status = dit_createTarget (handle, returnSK)

PARAMETERS:

	Name	I/O	Type	Description

	handle	I	UZT_HANDLE	specifies the fields and values to be used to

				create a new GMI record

	returnSK	O	char *	the surrogate key of the new GMI

				record

	status	O	DIT_STATUS	returns SUCCESS or other failure

				enumeration values

DESCRIPTION:

	This function provides the capability to programmatically create a record in the TAMPS_PLANNER_TARGET data table. The handle parameter specifies the fields and values that are used to create a new GMI record. If no values are specified in the handle parameter, the status return value will be set to DIT_MISSING_DATA_ERROR. If the handle does not contain all the required fields to create a new target record the status return value will be set to DIT_MISSING_DATA_ERROR. If an SQL error occurs while creating the new record, the status return value will be set to DIT_CREATE_DATA_ERROR. The returnSK parameter is the surrogate key of the new record that was generated.

EXAMPLE:

	#include “maps/mt_defs.h”

	#include “util/ult_structs.h”

	#include “util/uzt_defines.h”

	#include “util/uzt_structs.h”

	#include “util/ult_proto.h”

	#include “util/uzt_proto.h”

	#include “dbase/dit_defines.h”

	#include “dbase/dit_enums.h”

	#include “dbase/dit_proto.h”

	int main ()

	{

		ST_STATUS	status = ST_SUCCESS;

		DIT_STATUS 	ditStatus = DIT_SUCCESS;

		UZT_HANDLE 	handle = NULL;

		UZT_HANDLE	dataHndl = NULL;

		uzt_Arg 	args [100];

		uzt_Cardinal	argcnt = 0;

		char	localSK[dit_SK_LEN] = {ë\0í};

		char	FieldOn = DIT_FIELD_ON;

		char	countryCode [dit_COUNTRY_CODE_LEN] = {ë\0í};

		char	targetName [dit_PLNR_TARGET_NAME_LEN] = {ë\0í};

		char	description [dit_PLNR_TARGET_DESCRPT_LEN] = = {ë\0í};

		float	elevation = 10.123;

		short	elevation_um = MT_FEET;

		float	height = 55.05;

		short	height_um = MT_FEET;

		float	latitude = -15.3457;

		float	longitude = -124.3456

		float	length = 55.05;

		short	length_um = MT_FEET;

		float	width = 30.0;

		short	width_um = MT_FEET;

	/* begin code */

		handle = dit_createTargetHandle (DIT_DATA_FIELDS);

		if (handle == NULL)

		{

			/* process error condition */

			...

			return 1;

		}

		/*

		** Create an target record

		*/

		/* copy data into local variables */

		strcpy (countryCode, “US”);

		strcpy (targetName, “New planner target name”);

		strcpy (description, “New planner target full textual description”);

		/* set local variables in handle */

		argcnt = 0;

		uzt_setArgs (args[argcnt], dit_COUNTRY_CODE, &classLevel); argcnt++;

		uzt_setArgs (args[argcnt], dit_ELEVATION, &elevation); argcnt++;

		uzt_setArgs (args[argcnt], dit_ELEVATION_UM, &elevation_um); argcnt++;

		uzt_setArgs (args[argcnt], dit_HEIGHT, &height); argcnt++;

		uzt_setArgs (args[argcnt], dit_HEIGHT_UM, &height_um); argcnt++;

		uzt_setArgs (args[argcnt], dit_LAT, &latitude); argcnt++;

		uzt_setArgs (args[argcnt], dit_LONG, &longitude); argcnt++;

		uzt_setArgs (args[argcnt], dit_LENGTH, &length); argcnt++;

		uzt_setArgs (args[argcnt], dit_LENGTH_UM, &length_um); argcnt++;

		uzt_setArgs (args[argcnt], dit_ PLNR_TARGET_DESCRIPTION,

			&description); argcnt++;

		uzt_setArgs (args[argcnt], dit_ PLNR_TARGET_NAME, &longitude); argcnt++;

		uzt_setArgs (args[argcnt], dit_WIDTH, &width); argcnt++;

		uzt_setArgs (args[argcnt], dit_WIDTH_UM, &width_um); argcnt++;

		status = uzt_setValues (handle, args, argcnt);

		/* check status for errors */

		if (status != ST_SUCCESS)

		{

			/* process error condition */

			...

			return 1;

		}

		/* use handle to create target record

		** - localSK is the surrogate key for the new target record

		*/

		ditStatus = dit_createTarget (handle, localSK);

		/* check status for errors */

		if (ditStatus != DIT_SUCCESS)

		{

			/* process error conditions */

			...

			return 1;

		}

		dit_deleteHandle (handle);

		return 0;

	} /* end main routine */

dit_modifyTarget

==

 FUNCTION:	dit_modifyTarget

==

CALLING SEQUENCE:

	status = dit_modifyTarget (dataSK, handle)

PARAMETERS:

	Name	I/O	Type	Description

	dataSK	I	char* 	surrogate key of the GMI record to modify

	handle	I	UZT_HANDLE	specifies the fields and values to be used to

				modify a GMI record

	status	O	DIT_STATUS	returns SUCCESS or other failure

				enumeration values

DESCRIPTION:

	This function provides the capability to programmatically modify a record in the PLANNER_TARGETS table. The surrogate key for the record being modified is required and is not modifiable. If the dataSK parameter is set to an invalid surrogate key value and the status return value will be set to DIT_MODIFY_DATA_ERROR. If no values are set in the handle parameter, then the status return value will be set to DIT_MISSING_DATA_ERROR.

EXAMPLE:

	#include “util/ult_structs.h”

	#include “util/uzt_defines.h”

	#include “util/uzt_structs.h”

	#include “util/ult_proto.h”

	#include “util/uzt_proto.h”

	#include “dbase/dit_defines.h”

	#include “dbase/dit_enums.h”

	#include “dbase/dit_proto.h”

	int main ()

	{

		ST_STATUS	status = ST_SUCCESS;

		DIT_STATUS 	ditStatus = DIT_SUCCESS;

		UZT_HANDLE 	modHandle = NULL;

		UZT_HANDLE	dataHandle = NULL;

		LIST *	rtnData = NULL;

		LIST *	lp = NULL;

		uzt_Arg 	args [100];

		uzt_Cardinal	argcnt = 0;

		char	localSK[dit_SK_LEN] = {ë\0í};

		float		elevation = 0;

	/* begin code */

		modHandle = dit_createTargetHandle (DIT_DATA_FIELDS);

		/*

		** Use dit_ getTargets to retrieve data

		** - set selectHandle and queryHandle values as described for that function

		*/

		...

		ditStatus = dit_getTargets (selectHandle, queryHandle, &rtnData);

		/* check status for errors */

		if (ditStatus != DIT_SUCCESS)

		{

			/* process error conditions */

			...

			return 1;

		}

		lp = rtnData;

		for (lp->next; lp != rtnData; lp=lp->next)

		{

		/* retrieve data handle from list */

		dataHandle = (UZT_HANDLE) lp->data;

			if (dataHandle == NULL)

			{

			/* process error condition */

			...

			return 1;

			}

		/* get surrogate key value from handle */

		argcnt = 0;

		uzt_setArgs (args[argcnt], dit_PLNR_TARGET_SK,

			(uzt_ArgVal) &LocalSK); argcnt++;

		status = uzt_getValues (dataHndl, args, argcnt);

			/* check status for errors */

			if (status != ST_SUCCESS)

			{

			/* process error conditions */

			...

			return 1;

			}

		/*

		** Modify each target record to change elevation

		*/

		argcnt = 0;

		elevation = 1000.55;

		uzt_setArgs (args[argcnt], dit_ELEVATION, &elevation); argcnt++;

		status = uzt_setValues (modHandle, args, argcnt);

			/* check status for errors */

			/* check status for errors */

			if (status != ST_SUCCESS)

			{

			/* process error conditions */

			...

			return 1;

			endif

		/* use handle and surrogate key to modify target record */

			ditStatus = dit_modifyTarget (modHandle, localSK);

			/* check status for errors */

			if (ditStatus != DIT_SUCCESS)

			then

			/* process error conditions */

			...

			return 1;

			}

		} /* end for loop */

		dit_deleteHandleData (rtnData);

		dit_deleteHandle (handle);

		return 0;

	} /* end main routine */

dit_deleteTarget

==

 FUNCTION:	dit_deleteTarget

==

CALLING SEQUENCE:

	status = dit_deleteTarget (dataSK)

PARAMETERS:

	Name	I/O	Type	Description

	dataSK	I	char* 	surrogate key of the GMI record to modify

	status	O	DIT_STATUS	returns SUCCESS or other failure

				enumeration values

DESCRIPTION:

	This function provides the capability to programmatically delete a record in the PLANNER_TARGETS table. The surrogate key for the record being deleted is required and is not modifiable. If the dataSK parameter is set to an invalid surrogate key value and the status return value will be set to DIT_DELETE_DATA_ERROR.

EXAMPLE:

	#include “util/ult_structs.h”

	#include “util/uzt_defines.h”

	#include “util/uzt_structs.h”

	#include “util/ult_proto.h”

	#include “util/uzt_proto.h”

	#include “dbase/dit_defines.h”

	#include “dbase/dit_enums.h”

	#include “dbase/dit_proto.h”

	int main ()

	{

		ST_STATUS	status = ST_SUCCESS;

		DIT_STATUS 	ditStatus = DIT_SUCCESS;

		UZT_HANDLE 	handle = NULL;

		UZT_HANDLE	dataHandle = NULL;

		LIST *	rtnData = NULL;

		LIST *	lp = NULL;

		uzt_Arg 	args [100];

		uzt_Cardinal	argcnt = 0;

		char	localSK[dit_SK_LEN] = {ë\0í};

	/* begin code */

		handle = dit_createTargetHandle (DIT_DATA_FIELDS);

		if (handle == NULL)

		{

			/* process error condition */

			...

			return 1;

		}

		/*

		** Use dit_getTargets to retrieve data

		** - set selectHandle and queryHandle values as described for this function

		*/

		ditStatus = dit_getTargets (selectHandle, queryHandle, &rtnData);

		/* check status for errors */

		if (ditStatus != DIT_SUCCESS)

		{

			/* process error conditions */

			...

			return 1;

		}

		lp = rtnData;

		for (lp->next; lp != rtnData; lp=lp->next)

		{

		/* retrieve data handle from list */

		dataHndl = (UZT_HANDLE) lp->data;

		/* get surrogate key value from handle */

		argcnt = 0;

		uzt_setArgs (args[argcnt], dit_xx_SK, (uzt_ArgVal) &localSK);

		argcnt++;

		status = uzt_getValues (dataHndl, args, argcnt);

			/* check status for errors */

			if (status != ST_SUCCESS)

			{

			/* process error conditions */

			...

			return 1;

			}

		/*

		** Delete each target record

		*/

		/* surrogate key to delete target record */

		ditStatus = dit_deleteTarget (localSK);

			/* check status for errors */

			if (ditStatus != DIT_SUCCESS)

			then

			/* process error conditions */

			...

			return 1;

			}

		} /* end for loop */

		dit_deleteHandleData (rtnData);

		dit_deleteHandle (handle);

		return 0;

	} /* end main routine */

dit_getTargets

==

 FUNCTION:	dit_getTargets

==

CALLING SEQUENCE:

	status = dit_getTargets (selectHandle, queryHandle, &returnData)

PARAMETERS:

	Name	I/O	Type	Description

	selectHandle	I	UZT_HANDLE	specifies the fields for the GMI data to

				retrieve

	queryHandle	I	UZT_HANDLE	specifies the fields and values to be used to

				limit the amount of data returned

	returnData	O	LIST **	pointer to a list of UZT_HANDLES

	status	O	DIT_STATUS	returns SUCCESS or other failure

				enumeration values

DESCRIPTION:

	This function provides the capability to retrieve target data from the TAMPS PLANNER_TARGETS table. The selectHandle parameter specifies which fields to retrieve from the database object, and the queryHandle parameter specifies fields to limit what data is returned. The records are returned in the LIST *returnData parameter which contains handles to retrieve the individual record data. Each handle in the list represents one record from the PLANNER_TARGETS object. If no records were found to match the query, the status return value will be set to DIT_NO_DATA_FOUND and the returnData value is an empty list. When all other SQL errors occur, the status return value will be set to DIT_QUERY_ERROR. When the selectHandle is NULL, all fields for the PLANNER_TARGET object are returned. When the queryHandle is NULL, all records for the query are returned.

EXAMPLE:

	#include “util/ult_structs.h”

	#include “util/uzt_defines.h”

	#include “util/uzt_structs.h”

	#include “util/ult_proto.h”

	#include “util/uzt_proto.h”

	#include “dbase/dit_defines.h”

	#include “dbase/dit_enums.h”

	#include “dbase/dit_proto.h”

	//

	// This routine retrieves all records from PLANNER_TARGETS.

	//

	int main ()

	{

		ST_STATUS	status = ST_SUCCESS;

		DIT_STATUS 	ditStatus = DIT_SUCCESS;

		UZT_HANDLE 	selectHandle = NULL;

		UZT_HANDLE	dataHandle = NULL;

		LIST *	rtnData = NULL;

		LIST *	lp = NULL;

		uzt_Arg 	args [100];

		uzt_Cardinal	argcnt = 0;

		

		char	FieldOn = DIT_FIELD_ON;

		char	countryCode [dit_COUNTRY_CODE_LEN] = {ë\0í};

		char	targetName [dit_PLNR_TARGET_NAME_LEN] = {ë\0í};

		char	description [dit_PLNR_TARGET_DESCRPT_LEN] = {ë\0í};

		float	elevation = 0;

		float	height = 0;

		float	latitude = 0;

		float	longitude =0;

		float	length = 0;

		float	width = 0;

		short	elevation_um = 0;

		short	height_um = 0;

		short	length_um = 0;

		short	width_um = 0;

		selectHandle = dit_createTargetHandle (DIT_SELECT_FIELDS);

		if (selectHandle == NULL)

		{

			/* process error condition */

			...

			return 1;

		}

		/*

		** Get equipment index data

		*/

		/* set fields to retrieve from planner target table in select handle */

		argcnt = 0;

		uzt_setArgs (args[argcnt], dit_COUNTRY_CODE, & FieldOn); argcnt++;

		uzt_setArgs (args[argcnt], dit_ELEVATION, & FieldOn); argcnt++;

		uzt_setArgs (args[argcnt], dit_ELEVATION_UM, & FieldOn); argcnt++;

		uzt_setArgs (args[argcnt], dit_HEIGHT, & FieldOn); argcnt++;

		uzt_setArgs (args[argcnt], dit_HEIGHT_UM, & FieldOn); argcnt++;

		uzt_setArgs (args[argcnt], dit_LAT, & FieldOn); argcnt++;

		uzt_setArgs (args[argcnt], dit_LONG, & FieldOn); argcnt++;

		uzt_setArgs (args[argcnt], dit_LENGTH, & FieldOn); argcnt++;

		uzt_setArgs (args[argcnt], dit_LENGTH_UM, & FieldOn); argcnt++;

		uzt_setArgs (args[argcnt], dit_ PLNR_TARGET_DESCRIPTION,

			& FieldOn); argcnt++;

		uzt_setArgs (args[argcnt], dit_ PLNR_TARGET_NAME, & FieldOn);

		argcnt++;

		uzt_setArgs (args[argcnt], dit_WIDTH, & FieldOn); argcnt++;

		uzt_setArgs (args[argcnt], dit_WIDTH_UM, & FieldOn); argcnt++;

		status = uzt_setValues (handle, args, argcnt);

		/* check status for errors */

		if (status != ST_SUCCESS)

		{

			/* process error condition */

			...

			return 1;

		}

		/* use select handle to get target record(s) */

		ditStatus = dit_getTargets (selectHandle, NULL, &rtnData);

		/* check status for errors */

		if (ditStatus != DIT_SUCCESS)

		{

			/* process error conditions */

			...

			return 1;

		}

		lp = rtnData;

		for (lp->next; lp != rtnData; lp=lp->next)

		{

		/* retrieve data handle from list */

		dataHandle = (UZT_HANDLE) lp->data;

			if (dataHandle == NULL)

			{

			/* process error condition */

			...

			return 1;

			}

		argcnt = 0;

		uzt_setArgs (args[argcnt], dit_COUNTRY_CODE, &classLevel); argcnt++;

		uzt_setArgs (args[argcnt], dit_ELEVATION, &elevation); argcnt++;

		uzt_setArgs (args[argcnt], dit_ELEVATION_UM, &elevation_um);

		argcnt++;

		uzt_setArgs (args[argcnt], dit_HEIGHT, &height); argcnt++;

		uzt_setArgs (args[argcnt], dit_HEIGHT_UM, &height_um); argcnt++;

		uzt_setArgs (args[argcnt], dit_LAT, &latitude); argcnt++;

		uzt_setArgs (args[argcnt], dit_LONG, &longitude); argcnt++;

		uzt_setArgs (args[argcnt], dit_LENGTH, &length); argcnt++;

		uzt_setArgs (args[argcnt], dit_LENGTH_UM, &length_um); argcnt++;

		uzt_setArgs (args[argcnt], dit_ PLNR_TARGET_DESCRIPTION,

			&description); argcnt++;

		uzt_setArgs (args[argcnt], dit_ PLNR_TARGET_NAME, &longitude);

		argcnt++;

		uzt_setArgs (args[argcnt], dit_WIDTH, &width); argcnt++;

		uzt_setArgs (args[argcnt], dit_WIDTH_UM, &width_um); argcnt++;

		status = uzt_getValues (dataHandle, args, argcnt);

		/* check status for errors */

			if (status != ST_SUCCESS)

			{

				/* process error conditions */

				...

				return 1;

			}

		/* use local variables for specific functional processing */

		...

		} /* end for loop */

		dit_deleteHandleData (rtnData);

		dit_deleteHandle (selectHandle);

		return 0;

	} /* end main routine */

��Notes

Task Description

Within the following effort/task description, the software development tasks have, for the most part, been partitioned into what we consider the most reasonable breakdown. The following table is provided as a key to what each sub-task contains, along with the CSCs defined in the SOF/SRS that these tasks can be mapped to.

TASK DESCRIPTION��Task�Description�SOF/SRS CSC��System Generation

Installation

Administration�All tasks that have to do with creating initial TAMPS environment, creating user accounts, setting up required COTS/GOTS, creating/initializing servers/databases.�System Generation

MIDB Installation

System Administration ��MIDB Load�All tasks that have to do with loading/updating the MIDB database, including Archive/Restore.�MIDB GMI Data Load

MIDB Target Data Load

TAMPS Data Archive��MIDB DBA Integration�All tasks that have to do with providing the DBA the capability to maintain the MIDB database, except for data load/update. Includes Add/Edit, JMCIS, Target Definition, Scenario support.�MIDB GMI Data

MIDB GMI Editor

MIDB Target Data

MIDB Target Editor��MIDB Accessor API�All tasks that have to do with accessing the MIDB data from within an application. Includes API functions, as well as modifications to RTM/MERA, Messages, Reports.�MIDB GMI Interface

MIDB Target Interface��Object Database/Hierarchy�All tasks that have to do with accessing the MIDB data through the TAMPS object hierarchy. Includes the Object Editor, Query Tool, conversion scripts, and the underlying databases/data tables.�MIDB GMI Query

TAMPS Data Query

TAMPS Object Editor

TAMPS Query Tool ��MIDB MPM Integration�All tasks that have to do with integrating the various MPM capabilities with MIDB.�Interim Threat

Target Planning

Reports

Messages

RTM/Range Ring��

Source Lines of Code Estimates

CSC Name�New�Modify�Delete�Other��System Generation CSC�100�25��50��System Administration CSC�400�300��0��MIDB Installation CSC�1000�0����MIDB Data CSC�0�0����MIDB Dataload CSC�2000�2000����MIDB Interface CSC�2000�5000����Data Archive CSC�1000�500����Interim Threat CSC�400�1000��0��MIDB Editor�500�0����Data Query CSC�1000�1000����Object Editor CSC�1500�1500����Query Processing CSC�500�1000����Query Tool CSC�0�1300����Target Data CSC�500�1500����Target Dataload CSC�500�0����Target Editor CSC�500�0����Target Interface CSC�2000�0����Target Planning CSC�500�300����Total�� =SUM(ABOVE) �14400��� =SUM(ABOVE) �15425�����

Dependencies

DIA Software

to provide create scripts for the MIDB schema

to provide load scripts to populate the MIDB objects

to provide individual editors for each MIDB object

MP LAN

to provide MIDB database updates to the client

ODBC

to provide public interface access to Sybase database

Sybase Replication Server

to provide replication from JMCIS CDBS to each client MIDB database

Risks

DIA software

The load scripts may not work as advertised causing extra workingwoking to be done which impacts the schedule.

The table editors may not work as advertised causing extra workingwoking to be done which impacts the schedule.

The API functions to the editor may not work

Subsequent delivers of the software could cause re-work to be done

MP LAN

may not do what we expect it to do

may not be available to use

ODBC

might require extra code in order to work

learning time

JSIPS-N and targeting

difference in schema between JSIPS-N ETF/MTFs and TAMPS MIDB target tables

schedule migration of ETF/MTFs to MIDB schema format

configuration and control of data in target tables

Schedule

See Appendix B for copy of current schedule.

��Appendices

Appendix A. TAMPS MIDB 2.0 Data Element Requirements

A.1 Introduction

This appendix is provided to document the columns required by various TAMPS Core software, as well as existing MPMs and planned MPMs. It is based on the MIDB GMI schema provided by DIA with MIDB 2.0.1 (aka Egues).

This appendix has also been compared to the Ferdinand create scripts, but changes are not included in the document. The Ferdinand changes include:

A new 54 character free-text field, SCENARIO_SET, has been added to FAC, EQP, and UNIT.

The field FPA is no longer mandatory in any tables.

In the table EQP_ELINT_MODE, ELNOT and EMITTER_MODE are now mandatory.

The RMK_LINE table had two related changes. The field RMK_TEXT has changed from “char 255” to “char 65.” A new non-mandatory field, SEQ_NUM has been added.

In the OBS_REPORT table, the field EQP_CODE was renamed EQP_CODE_REF; the field UNIT_ID was renamed UNIT_ID_REF.

New non-mandatory fields BE_NUMBER_REF, CATEGORY_REF, EQP_CODE_REF, OSUFFIX_REF, and UNIT_ID_REF were added to TRACK.

The table TGT_DETAIL was renamed TGT_DTL. The field TGT_DETAIL_NAME was renamed TGT_DTL_NAME; the field TGT_DETAIL_SK was renamed TGT_DTL_SK.

Only the tables and columns specifically identified as Core or MPM requirements are included in this appendix, except where certain columns are shown for completeness. Mandatory fields are indicated by an M; fields which are system-generated are indicated by SG. The tie tables are not shown, since they will be handled internally by Core.

The key to understanding the data requirements shown in the following tables is:

I	Core Interim Threat Programmatic Update Access

O	Core Object Hierarchy and System Queries

Q	Programmatic Query Access

U	Programmatic Update Access

H	HARM MPM Programmatic Query Access

For example, FAC.BE_NUMBER is critical to the Core Object Hierarchy, updated via the Interim Threat Update function, updated by TERPES, and queried by TAMMAC and the HARM MPM.

�A.2 Facility Data Set

FAC Table

Column Name�Type�CORE

�A/C MPM�PGM MPM�TERPES�TAMMAC�JSIPS-N��activity (M)�char 3����U����air_def_area�char 5��������allegiance�char 3��������be�char 1��������be_number (M,SG)�char 10�O,I��H�U�Q���category (M)�char 5�O,I��H�U,Q�Q���cc (M)�char 2�O,I���U�Q���class_lvl (M)�char 1�O,I���U�Q���condition (M)�char 4�O,I���U�Q���coord (M)�char 21�O,I��H�U,Q�Q���coord_basis (M)�char 2����U�Q���coord_datetime�char 14��������coord_datum (M)�char 3�O���U�Q���coord_deriv (M)�char 2����U�Q���coord_roa�float����U,Q����coord_roa_um�char 9����U,Q����cpfl�char 1��������datetime_created (M,SG)�char 14����U����datetime_first_info�char 14����U����datetime_last_chg (M,SG)�char 14�O,I���U����declass_on�char 2����U����declass_on_date�char 8����U����degree_interest�char 1����U����domain_lvl (M)�char 2�I���U�Q���eval (M)�char 1�O���U,Q�Q���elevation�float��������elevation_um�char 9��������fac_name (M)�char 54�O,I���U,Q�Q���fac_sk (M)�numeric 14�O��H�U����funct_primary�char 4�O���U,Q����graphic_agency (M)�char 15����U����graphic_cc (M)�char 2����U����graphic_ed_date (M)�char 8����U�Q���graphic_ed_num (M)�int����U�Q���graphic_scale (M)�int����U�Q���graphic_series (M)�char 5����U�Q���graphic_sheet (M)�char 15����U�Q���ilat�int�O,I��H�U����ilon�int�O,I��H�U����last_chg_userid (M,SG)�char 8����U����max_demo_use�char 30�O�������midb_timestamp (M,SG)�timestamp����U����mil_grid�char 15�O,I�������mil_grid_sys�char 3��������oper_status (M)�char 3�O,I���U,Q�Q���osuffix (M,SG)�char 5�O,I���U����pin�char 5�O���U����prod_lvl_cap (M,SG)�char 1����U����prod_lvl_req (M,SG)�char 1����U����record_status (M)�char 1�I��H�U�Q���res_prod (M)�char 4�I���U����review_date (M)�char 8�O,I���U�Q���tdi�char 3����U����wac�char 4����U����

�A.3 Equipment Data Set

EQP Table

Column Name�Type�CORE

�A/C

MPM�PGM

MPM�TERPES�TAMMAC�JSIPS-N��activity (M)�char 3����U����allegiance (M)�char 3�O���U����capacity�float��������capacity_um�char 9��������capacity_max�float��������cc (M)�char 2�O,I���U,Q����class_lvl (M)�char 1�O,I���U����condition (M)�char 4�O���U����coord (M)�char 21�O,I��H�U����coord_basis (M)�char 2����U����coord_datum (M)�char 3����U����coord_deriv (M)�char 2����U����coord_datetime�char 14����U����coord_roa�float�O���U����coord_roa_um�char 9����U����datetime_created (M,SG)�char 14����U����datetime_first_info�char 14����U����datetime_last_chg (M,SG)�char 14�O,I���U����datetime_last_obs�char 14�O,I���U����declass_on�char 2����U����declass_on_date�char 8����U����degree_interest�char 1����U����domain_lvl (M)�char 2�I���U����elevation�float��������elevation_um�char 9��������eqp_code (M)�char 7�O,I��H�U,Q����eqp_id_num (M)�char 3�O,I���U,Q����eqp_sk (M)�numeric 14�O��H�U����eval (M)�char 1�O���U,Q����funct_primary�char 4�O���U,Q����funct_secondary�char 4����U����ilat�int�O,I��H�U����ilon�int�O,I��H�U����last_chg_userid (M,SG)�char 8����U����loc_reason (M)�char 9�O,I���U����max_demo_use�char 30��������midb_timestamp (M,SG)�timestamp����U����mil_grid�char 15�I�������mil_grid_sys�char 3��������nomen�char 54�O,I��H�U,Q����ob_type�char 1��������oper_area_primary�char 2�O�������oper_area_secondary�char 2�O�������oper_status (M)�char 3�O,I���U,Q����prod_lvl_cap (M,SG)�char 1����U����prod_lvl_req (M,SG)�char 1����U����qty_oh�int�O,I�������qty_oh_eval�char 1��������qty_pa�int��������qty_wa�int��������record_status (M)�char 1�I��H�U����res_prod (M)�char 4�I���U����review_date (M)�char 8�O,I���U����wac�char 4����U����

�EQP_ELINT_MODE Table

Column Name�Type�CORE

�A/C MPM�PGM MPM�TERPES�TAMMAC�JSIPS-N��class_lvl (M)�char 1�O���U����datetime_created (M,SG)�char 14����U����datetime_last_chg (M,SG)�char 14�O���U����domain_lvl (M)�char 2����U����elnot�char 5�O��H�U,Q����emitter_height�float��������emitter_height_um�char 9��������emitter_mode�int�O��H�U,Q����eqp_elint_mode_sk (M)�numeric 14�O��H�U����eqp_id_num (M)�char 3�O���U,Q����eqp_sk (M)�numeric 14�O��H�U����eval (M)�char 1����U����last_chg_userid (M,SG)�char 8����U����midb_timestamp (M,SG)�timestamp����U����pin�char 5����U����prod_lvl_cap (M,SG)�char 1����U����prod_lvl_req (M,SG)�char 1����U����record_status (M)�char 1���H�U����res_prod (M)�char 4����U����review_date (M)�char 8�O���U����

�EQP_IDX Table

Column Name�Type�CORE

�A/C MPM�PGM MPM�TERPES�TAMMAC�JSIPS-N��class_lvl (M)�char 1�O�������datetime_created (M,SG)�char 14��������datetime_last_chg (M,SG)�char 14�O�������domain_lvl (M)�char 2��������eqp_code (M)�char 7�O��H�����eqp_idx_sk (M)�numeric 14�O��H�����eqp_type�char 30��������eval (M)�char 1��������last_chg_userid (M,SG)�char 8��������midb_timestamp (M,SG)�timestamp��������nomen�char 54�O�������prod_lvl_cap (M,SG)�char 1��������prod_lvl_req (M,SG)�char 1��������record_status (M)�char 1��������requesting_org (M)�char 2��������res_prod (M)�char 4��������review_date (M)�char 8�O�������ship_class_name�char 54�O�������ship_type�char 6�O�������

EQP_IDX_AKA Table

Column Name�Type�CORE

�A/C MPM�PGM MPM�TERPES�TAMMAC�JSIPS-N��aka (M)�char 54�O�������aka_type (M)�char 4�O�������class_lvl (M)�char 1�O�������datetime_created (M,SG)�char 14��������datetime_last_chg (M,SG)�char 14�O�������domain_lvl (M)�char 2��������eqp_idx_aka_sk (M)�numeric 14�O�������eqp_idx_sk (M)�numeric 14�O�������eval (M)�char 1��������last_chg_userid (M,SG)�char 8��������midb_timestamp (M,SG)�timestamp��������prod_lvl_cap (M,SG)�char 1��������prod_lvl_req (M,SG)�char 1��������record_status (M)�char 1��������res_prod (M)�char 4��������review_date (M)�char 8�O�������

�A.4 Unit Data Set

UNIT Table

Column Name�Type�CORE

�A/C MPM�PGM MPM�TERPES�TAMMAC�JSIPS-N��allegiance (M)�char 3�O���U����cc (M)�char 2�O,I���U����class_lvl (M)�char 1�O,I���U����coord (M)�char 21�O,I���U����coord_basis (M)�char 2����U����coord_datum (M)�char 3����U����coord_deriv (M)�char 2����U����coord_roa�float��������coord_roa_um�char 9��������coord_datetime�char 14�O�������condition (M)�char 4�O���U����datetime_created (M,SG)�char 14����U����datetime_last_chg (M,SG)�char 14�O,I���U����domain_lvl (M)�char 2�I���U����duty_status�char 1�O�������echelon (M)�char 4�O���U����elevation�float��������elevation_um�char 9��������eval (M)�char 1�O���U����force (M)�char 4����U����funct_role (M)�char 3�O���U����ilat�int�O,I���U����ilon�int�O,I���U����last_chg_userid (M,SG)�char 8����U����loc_reason (M)�char 9�I,O���U����midb_timestamp (M,SG)�timestamp����U����msn_primary�char 4�O�������msn_primary_specialty�char 4�O�������mil_grid�char 15��������nuclear_cap (M)�char 1�O���U����ob_type (M)�char 1�O���U����oper_status (M)�char 3�O���U����prod_lvl_cap (M,SG)�char 1����U����prod_lvl_req (M,SG)�char 1����U����record_status (M)�char 1�I���U����res_prod (M)�char 4�I���U����review_date (M)�char 8�O���U����unit_id (M,SG)�char 10�O,I���U����unit_name (M)�char 54�O���U����unit_num�char 6��������unit_sk (M)�numeric 14�O���U����wac�char 4��������

�A.5 Remark Data Set

RMK Table

Column Name�Type�CORE

�A/C MPM�PGM MPM�TERPES�TAMMAC�JSIPS-N��class_lvl (M)�char 1�O�������datetime_created (M,SG)�char 14��������datetime_last_chg (M,SG)�char 14�O�������domain_lvl (M)�char 2��������eval (M)�char 1��������last_chg_userid (M,SG)�char 8��������midb_timestamp (M,SG)�timestamp��������prod_lvl_cap (M,SG)�char 1��������prod_lvl_req (M,SG)�char 1��������rmk_name (M)�char 54��������rmk_sk (M)�numeric 14�O�������rmk_type (M)�char 4�O�������record_status (M)�char 1��������res_prod (M)�char 4��������review_date (M)�char 8�O�������

RMK_LINE Table

Column Name�Type�CORE�A/C MPM�PGM MPM�TERPES�TAMMAC�JSIPS-N��class_lvl (M)�char 1�O�������datetime_created (M,SG)�char 14��������datetime_last_chg (M,SG)�char 14�O�������domain_lvl (M)�char 2��������eval (M)�char 1��������last_chg_userid (M,SG)�char 8��������midb_timestamp (M,SG)�timestamp��������prod_lvl_cap (M,SG)�char 1��������prod_lvl_req (M,SG)�char 1��������record_status (M)�char 1��������review_date (M)�char 8�O�������res_prod (M)�char 4��������rmk_line_sk (M)�numeric 14�O�������rmk_sk (M)�numeric 14�O�������rmk_text (M)�char 255�O��������A.6 Observation Data Set

OBS Table

Column Name�Type�CORE

�A/C MPM�PGM MPM�TERPES�TAMMAC�JSIPS-N��allegiance�char 3��������azimuth�float����U����azimuth_ref�char 3����U����cc (M)�char 2����U����class_lvl (M)�char 1����U����coord�char 21����U,Q����coord_basis�char 2��������coord_datum�char 3��������coord_deriv�char 2��������coord_roa�float��������coord_roa_um�char 9��������coord_datetime�char 14��������datetime_created (M,SG)�char 14����U����datetime_last_chg (M,SG)�char 14����U,Q����domain_lvl (M)�char 2����U����eval (M)�char 1����U����external_id (M)�char 30����U����ilat�int����U����ilon�int����U����last_chg_userid (M,SG)�char 8����U����midb_timestamp (M,SG)�timestamp����U����obs_name (M)�char 54����U����obs_sk (M)�numeric 14����U����pgri�float����U,Q����pri_leg_qty�int����U����prod_lvl_cap (M,SG)�char 1����U����prod_lvl_req (M,SG)�char 1����U����pulse_duration�float����U,Q����record_status (M)�char 1����U����res_prod (M)�char 4����U����review_date (M)�char 8����U����scan�float����U,Q����semi_major�float����U����semi_minor�float����U����semi_um�char 9����U����

�OBS_REPORT Table

Column Name�Type�CORE

�A/C MPM�PGM MPM�TERPES�TAMMAC�JSIPS-N��be_number_ref�char 10����U,Q����category_ref�char 5����U,Q����class_lvl (M)�char 1����U����datetime_created (M,SG)�char 14����U����datetime_last_chg (M,SG)�char 14����U,Q����domain_lvl (M)�char 2����U����eqp_code�char 7����U,Q����eval (M)�char 1����U����funct_role (M)�char 3����U����funct_primary�char 4����U,Q����last_chg_userid (M,SG)�char 8����U����midb_timestamp (M,SG)�timestamp����U����obs_report_sk (M)�numeric 14����U����obs_sk (M)�numeric 14����U����oper_status (M)�char 3����U����osuffix_ref�char 5����U,Q����prod_lvl_cap (M,SG)�char 1����U����prod_lvl_req (M,SG)�char 1����U����record_status (M)�char 1����U����res_prod (M)�char 4����U����review_date (M)�char 8����U����unit_id�char 10����U,Q����

�OBS_ELNOT Table

Column Name�Type�CORE

�A/C MPM�PGM MPM�TERPES�TAMMAC�JSIPS-N��class_lvl (M)�char 1����U����datetime_created (M)�char 14����U����datetime_last_chg (M,SG)�char 14����U,Q����domain_lvl (M,SG)�char 2����U����elnot�char 5����U,Q����eval (M)�char 1����U����last_chg_userid (M,SG)�char 8����U����midb_timestamp (M,SG)�timestamp����U����obs_elnot_sk (M)�numeric 14����U����obs_sk (M)�numeric 14����U����prod_lvl_cap (M,SG)�char 1����U����prod_lvl_req (M,SG)�char 1����U����seq_num (M)�int����U����record_status (M)�char 1����U����res_prod (M)�char 4����U����review_date (M)�char 8����U����

OBS_PAR Table

Column Name�Type�CORE

�A/C MPM�PGM MPM�TERPES�TAMMAC�JSIPS-N��class_lvl (M)�char 1����U����datetime_created (M,SG)�char 14����U����datetime_last_chg (M,SG)�char 14����U,Q����domain_lvl (M)�char 2����U����eval (M)�char 1����U����last_chg_userid (M,SG)�char 8����U����midb_timestamp (M,SG)�timestamp����U����obs_par_sk (M)�numeric 14����U����obs_sk (M)�numeric 14����U����prod_lvl_cap (M.SG)�char 1����U����prod_lvl_req (M,SG)�char 1����U����rf�float����U,Q����record_status (M)�char 1����U����res_prod (M)�char 4����U����review_date (M)�char 8����U����seq_num (M)�int����U�����A.7 Track Data Set

TRACK Table

Column Name�Type�CORE

�A/C MPM�PGM MPM�TERPES�TAMMAC�JSIPS-N��class_lvl (M)�char 1����U����datetime_created (M,SG)�char 14����U����datetime_last_chg (M,SG)�char 14����U,Q����domain_lvl (M)�char 2����U����eval (M)�char 1����U����last_chg_userid (M,SG)�char 8����U����midb_timestamp (M,SG)�timestamp����U����oper_status (M)�char 3����U����prod_lvl_cap (M,SG)�char 1����U����prod_lvl_req (M,SG)�char 1

����U����record_status (M)�char 1����U����res_prod (M)�char 4����U����review_date (M)�char 8����U����track_name (M)�char 54����U����track_type (M)�char 4����U����track_sk (M)�numeric 14����U�����TRACK_LOC Table

Column Name�Type�CORE

�A/C MPM�PGM MPM�TERPES�TAMMAC�JSIPS-N��azimuth�float����U����azimuth_ref�char 3����U����cc (M)�char 2����U����class_lvl (M)�char 1����U����coord (M)�char 21����U,Q����coord_basis (M)�char 2����U����coord_datum (M)�char 3����U����coord_deriv (M)�char 2����U����coord_roa�float��������coord_roa_um�char 9��������coord_datetime�char 14��������datetime_created (M,SG)�char 14����U����datetime_last_chg (M,SG)�char 14����U,Q����domain_lvl (M)�char 2����U����eval (M)�char 1����U����ilat�int����U����ilon�int����U����last_chg_userid (M,SG)�char 8����U����loc_reason (M)�char 9����U����midb_timestamp (M,SG)�timestamp����U����prod_lvl_cap (M,SG)�char 1����U����prod_lvl_req (M,SG)�char 1����U����record_status (M)�char 1����U����res_prod (M)�char 4����U����review_date (M)�char 8����U����semi_major�float����U����semi_minor�float����U����semi_um�char 9����U����track_loc_sk (M)�numeric 14����U����track_sk (M)�numeric 14����U����

�TRACK_ELINT_MODE Table

Column Name�Type�CORE

�A/C MPM�PGM MPM�TERPES�TAMMAC�JSIPS-N��class_lvl (M)�char 1����U����datetime_created (M,SG)�char 14����U����datetime_last_chg (M,SG)�char 14����U,Q����domain_lvl (M)�char 2����U����elnot�char 5����U,Q����eval (M)�char 1����U����last_chg_userid (M,SG)�char 8����U����midb_timestamp (M,SG)�timestamp����U����pin�char 5��������prod_lvl_cap (M,SG)�char 1����U����prod_lvl_req (M,SG)�char 1����U����record_status (M)�char 1����U����res_prod (M)�char 4����U����review_date (M)�char 8����U����track_elint_mode_sk (M)�numeric 14����U����track_sk (M)�numeric 14����U�����A.8 Target Data Set

TGT_DETAIL Table

Column Name�Type�CORE�A/C MPM�PGM MPM�TERPES�TAMMAC�JSIPS-N��azimuth�float��������azimuth_ref�char 3��������cc (M)�char 2�O�������class_lvl (M)�char 1�O�������condition (M)�char 4��������coord (M)�char 21�O�������coord_basis (M)�char 2�O�������coord_datetime�char 14�O�������coord_datum (M)�char 3�O�������coord_deriv (M)�char 2�O�������coord_deriv_acc�float�O�������coord_deriv_acc_um�char 9�O�������coord_roa�float�O�������coord_roa_conf_lvl�int�O�������coord_roa_um�char 9�O�������datetime_created (M,SG)�char 14��������datetime_last_chg (M,SG)�char 14�O�������domain_lvl (M)�char 2��������dmpi_id�char 30�O�������elevation�float��������elevation_acc�float��������elevation_conf_lvl�int��������elevation_deriv�char 2��������elevation_deriv_acc�float��������elevation_deriv_acc_um�char 9��������elevation_datum�char 3�O�������elevation_msl�float�O�������elevation_msl_acc�float�O�������elevation_msl_conf_lvl�int�O�������elevation_msl_deriv�char 2�O�������elevation_msl_deriv_acc	VERTICAL_ORIENT �float�O�������elevation_msl_deriv_acc_um	VERTICAL_ORIENT �char 9�O�������elevation_msl_um�char 9�O�������elevation_um�char 9�O�������eval (M)�char 1�O�������hardness�char 1�O�������height�float�O�������height_um�char 9�O�������ilat�int�O�������ilon�int�O�������jmem_type�char 54�O�������last_chg_userid (M,SG)�char 8�O�������loc_name�char 54�O�������length�float�O�������length_um�char 9�O�������midb_timestamp (M,SG)�timestamp��������mil_grid�char 15�O�������mil_grid_sys�char 3�O�������oper_status (M)�char 3�O�������photo_date�char 8��������prod_lvl_cap (M,SG)�char 1��������prod_lvl_req (M,SG)�char 1��������record_status (M)�char 1��������res_prod (M)�char 4��������review_date (M)�char 8�O�������shape�char 4�O�������tgt_detail_name (M)�char 54�O�������tgt_detail_sk (M)�numeric 14�O�������utm�char 16�O�������vertical_orient�float�O�������wac�char 4��������width�float�O�������width_um�char 9�O��������

Appendix B. TAMPS 6.1<-->MIDB 2.0 Mappings

B.1 Table Mapping

The following table shows the overall relationship between the MIIDS/IDB tables and the MIDB 2.0 General Military Intelligence (GMI) tables.

TAMPS MIIDS/IDB Table�MIDB 2.0 Table �Comments��IDBF�FAC�Exceptions are MSL_SYS_ID, which maps to EQP_IDX.EQP_CODE, and a few non-critical fields which map to FAC “subtables.” A tie table can be used to join “FAC and EQP_IDX.”��IDBFQL�EQP�Exceptions are that some “identifying” fields for the facility map to fields in FAC and are not repeated in EQP, as well as some fields which map to EQP “subtables.” A tie table can be used to join “EQP and FAC.”��IDBFQL_ELINT_NOTE�EQP_ELINT_MODE�Exceptions are that some “identifying” fields for the facility and equipment map to fields in FAC and EQP, respectively. These fields are not repeated in EQP_ELINT_MODE. A tie table can be used to join “EQP_ELINT_MODE and FAC” and “EQP_ELINT_MODE and EQP.”��IDBQ�EQP_IDX�This is a clean map for all critical fields. Additional “names” map to EQP_IDX_AKA.��IDBR�RMK�Exceptions are that some “identifying” fields for the facility/unit/equipment map to fields in FAC/UNIT/EQP and are not repeated in RMK. A tie table can be used to join “RMK and FAC,” “RMK and UNIT,” and “RMK and EQP.”��IDBR_TEXT�RMK_LINE�Exceptions are that some “identifying” fields for the facility/unit/equipment map to fields in FAC/UNIT/EQP and are not repeated in RMK_LINE. There is also one field which maps to RMK and is not repeated in RMK_LINE.��IDBU�UNIT�This is a clean map for all critical fields. IDBU and IDBUL were combined into a single table.��IDBUL�UNIT�This is a clean map for all critical fields. IDBU and IDBUL were combined into a single table.��IDBUQL�EQP�Exceptions are that some “identifying” fields for the facility/unit map to fields in FAC/UNIT and are not repeated in EQP. A tie table can be used to join “EQP and FAC” and “EQP and UNIT.” There are also some non-critical fields which map to EQP_IDX and EQP_AKA.��IDBUFS�FAC_TIE, UNIT_TIE�IDBUFS relationship is handled via the ties in FAC_TIE and UNIT_TIE. No mapping is provided in this document. ���The following table shows the overall relationship between the MIIDS/IDB-related TAMPS “extension” tables and the MIDB 2.0 General Military Intelligence (GMI) tables.

TAMPS Extension Table �MIDB 2.0 Table�Comments��IDBWS��No mapping��IDBFQL_EXT�FAC

EQL_ELINT_MODE

TRACK_ELINT_MODE

TRACK_LOC

OBS

OBS_ELNOT

OBS_REPORT�The mapping provided is based on analysis by the Core developers/analysts, based on data provided by TERPES.��IDBFQL_PRM�FAC

EQL_ELINT_MODE

TRACK_ELINT_MODE

OBS

OBS_ELNOT

OBS_PAR

OBS_REPORT�The mapping provided is based on analysis by the Core developers/analysts, based on data provided by TERPES.��

The following table shows the overall relationship between the TAMPS target table and the MIDB 2.0 General Military Intelligence (GMI) target table.

TAMPS Target Table �MIDB 2.0 Table�Comments��TAMPS_TARGET�TGT_DETAIL�Exceptions are that some “identifying” fields for the facility (BE_NUMBER and CATEGORY) map to fields in FAC and are not repeated in TGT_DETAIL. A tie table can be used to join “TGT_DETAIL and FAC.”��

�B.2 IDBF Column Mapping

Column Name�MIDB 2.0 Table�Column Name�Comments��BE_NUMBER�FAC�BE_NUMBER���CATEGORY�FAC�CATEGORY���CLASS_LEVEL�FAC�CLASS_LVL���COLLECTION_SOURCE���No mapping��COORD_DERIVATION���Not filled very often in IDB.

Sort of mapped to COORD_BASIS. However, so is COORD_TYPE_ACC.��COORD_TYPE_ACC�FAC�COORD_DERIV

COORD_BASIS�Field is always filled in IDB.

Field was split into two parts. See previous comment.��COUNTRY_CODE�FAC�CC���CREATE_DATE�FAC�DATETIME_CREATED���DATE_FIRST_INFO�FAC�DATETIME_FIRST_INFO���DATE_LAST_CHG�FAC�DATETIME_LAST_CHG���DEGREE_INTEREST�FAC�DEGREE_INTEREST���DECLASS_DATE�FAC�DECLASS_ON_DATE���DECLASS_SCHED�FAC�DECLASS_ON���DOMAIN�FAC�DOMAIN_LVL���EOB���No mapping��FAC_COND�FAC�CONDITION���FAC_NAME�FAC�FAC_NAME���FAC_OPER_STAT�FAC�OPER_STATUS���GEODETIC_ELEV�FAC_GEODETIC�ELEVATION

GEOIDAL_MSL_SEPARATION

GEODETIC_PROD�Field was split into three parts.��HEIGHT�FAC_FORM�HEIGHT���HARDNESS���No mapping��HITLIST���No mapping��INSTALL_NUMBER���No mapping��LAST_OBSERVATION���No mapping��LATITUDE�FAC�COORD���LAT_HEMIS���Combined in COORD��LAT_RADIANS�FAC�ILAT���LOGICAL_CHG_DATE���No mapping��LONGITUDE�FAC�COORD���LONG_HEMIS���Combined in COORD��LONG_RADIANS�FAC�ILON���MAX_DEMO_USE�FAC�MAX_DEMO_USE���MSL_SYS_ID�EQP_IDX�EQP_CODE�FAC-->EQP_IDX via FAC_TIE value of “S B” (supported by).

EQP_IDX-->FAC via EQP_IDX_TIE value of “S “ (supports).��NR_MSL_LAUNCHERS�EQP�QTY_OH�The MIDB documentation trace is inconsistent with the MIDB test data. Mapping shown is based on the test data.��OSUFFIX�FAC�OSUFFIX���PENDING_ACTION���No mapping��PIN�FAC�PIN���RDESIG���No mapping��RECORD_STATUS�FAC�RECORD_STATUS���RES_PROD�FAC�RES_PROD���REVIEW_DATE�FAC�REVIEW_DATE���RMK_FLAG���No mapping��ROA�FAC�COORD_ROA���SITE_FUNC�FAC�FUNCT_PRIMARY���SUBJECT���No mapping��SUFFIX���No mapping��TGT_WIDTH�FAC_FORM�WIDTH���TGT_MIL_GRID�FAC�MIL_GRID���TGT_GRAPHIC_REF���No mapping. Split into many fields.��VALIDITY�FAC�EVAL���VALID_SITE_FUNC���No mapping��WAC�FAC�WAC��� �B.3 IDBFQL Column Mapping

Column Name�MIDB 2.0 Table�Column Name�Comments��ANT_HEIGHT�EQP_FORM�HEIGHT�There is an inconsistency between the MIDB documentation and the MIDB test data. The mapping reflects the test data.��BE_NUMBER�FAC�BE_NUMBER���CATEGORY�FAC�CATEGORY���CLASS_LEVEL�EQP�CLASS_LVL���COLLECTION_SOURCE���No mapping��COUNTRY_CODE�EQP�CC���CREATE_DATE�EQP�DATETIME_CREATED���DATE_FIRST_INFO�EQP�DATETIME_FIRST_INFO���DATE_LAST_CHG�EQP�DATETIME_LAST_CHG���DECLASS_DATE�EQP�DECLASS_ON_DATE���DECLASS_SCHED�EQP�DECLASS_ON���DEGREE_INTEREST�EQP�DEGREE_INTEREST���DOMAIN�EQP�DOMAIN_LVL���EQUIP_CODE�EQP�EQP_CODE���EQUIP_CODE_ASSOC���No mapping��EQUIP_FAMILY���No mapping��EQUIP_SUBFAMILY���No mapping��EQUIP_ID_NUMBER�EQP�EQP_ID_NUM���EQUIP_NOMEN�EQP�NOMEN���EQUIP_OPER_STAT�EQP�OPER_STATUS���EQUIP_QUANTITY�EQP�QTY_OH�There are now many QTY fields, but the one TAMPS has always cared about is the On Hand (OH) equipment.��EQUIP_QUANTITY_EVAL���No mapping. Functionality was incorporated into the definition of the fields. e.g., the value in EQUIP_QUANTITY where EQUIP_QUANTITY_EVAL = “OH” is mapped to the field QTY_OH.��FAC_NAME�FAC�FAC_NAME���HITLIST���No mapping��LAST_OBSERVATION�EQP�DATETIME_LAST_OBS���LATITUDE�EQP�COORD���LAT_HEMIS���Combined in COORD��LAT_RADIANS�EQP�ILAT���LOCATION_DATE�EQP�COORD_DATETIME���LOCATION_TYPE�EQP�LOC_REASON���LOGICAL_CHG_DATE���No mapping��LONGITUDE�EQP�COORD���LONG_HEMIS���Combined in COORD��LONG_RADIANS�EQP�ILON���MODE���No mapping��OSUFFIX�FAC�OSUFFIX���PENDING_ACTION���No mapping��PEQUIP_FUNC�EQP�FUNCT_PRIMARY���PEQUIP_FUNC_VALID���No mapping��PIN�FAC�PIN���RDESIG���No mapping��RECORD_STATUS�EQP�RECORD_STATUS���RES_PROD�EQP�RES_PROD���REVIEW_DATE�EQP�REVIEW_DATE���ROA�EQP�COORD_ROA���SEQUIP_FUNC�EQP�FUNCT_SECONDARY���SUBJECT���No mapping��SUFFIX���No mapping��VALIDITY�EQP�EVAL���WAC�EQP�WAC���

�B.4 IDBFQL_ELINT_NOTE Column Mapping

Column Name�MIDB 2.0 Table�Column Name�Comments��BE_NUMBER�FAC�BE_NUMBER���CATEGORY�FAC�CATEGORY���DOMAIN�EQP_ELINT_MODE�DOMAIN_LVL���ELINT_NOTE�EQP_ELINT_MODE�ELNOT���EQUIP_CODE�EQP�EQP_CODE���EQUIP_ID_NUMBER�EQP_ELINT_MODE�EQP_ID_NUM���LATITUDE�EQP�COORD���LAT_HEMIS���Combined in COORD��LOCATION_TYPE�EQP�LOC_REASON���LONGITUDE�EQP�COORD���LONG_HEMIS���Combined in COORD��MODE���No mapping��OSUFFIX�FAC�OSUFFIX���RDESIG���No mapping��SEQUENCE���No mapping��

B.5 IDBQ Column Mapping

Column Name�MIDB 2.0 Table�Column Name�Comments��CLASS_LEVEL�EQP_IDX�CLASS_LVL���DATE_FIRST_INFO�EQP_IDX�DATETIME_FIRST_INFO���DATE_LAST_CHG�EQP_IDX�DATETIME_LAST_CHG���DOMAIN�EQP_IDX�DOMAIN���EQUIP_CODE�EQP_IDX�EQP_CODE���EQUIP_COMMON_NAME�EQP_IDX_AKA�AKA�Where AKA_TYPE = “CMN”��EQUIP_NOMEN�EQP_IDX�NOMEN���HITLIST���No mapping��NATIVE_DESIGNATOR�EQP_IDX_AKA�AKA�Where AKA_TYPE = “ND”��NICKNAME�EQP_IDX_AKA�AKA�Where AKA_TYPE = “NICQ”��RDESIG���No mapping��SUBJECT���No mapping��

�B.6 IDBR Column Mapping

Column Name�MIDB 2.0 Table�Column Name�Comments��BE_NUMBER�FAC�BE_NUMBER���CATEGORY�FAC�CATEGORY���CLASS_LEVEL�RMK�CLASS_LVL���DATE_LAST_CHG�RMK�DATETIME_LAST_CHG���DOMAIN�RMK�DOMAIN_LVL���EQUIP_CODE�EQP�EQP_CODE���HITLIST���No mapping��OSUFFIX�FAC�OSUFFIX���RDESIG���No mapping��RMK_TYPE�RMK�RMK_TYPE���SITE_ID���No mapping��SUBJECT���No mapping��UNIT_ID�UNIT�UNIT_ID���VALIDITY�RMK�EVAL���

B.7 IDBR_TEXT Column Mapping

Column Name�MIDB 2.0 Table�Column Name�Comments��BE_NUMBER�FAC�BE_NUMBER���CATEGORY�FAC�CATEGORY���DOMAIN�RMK_LINE�DOMAIN_LVL���EQUIP_CODE�EQP�EQP_CODE���OSUFFIX�FAC�OSUFFIX���RDESIG���No mapping��RMK_TYPE�RMK�RMK_TYPE���SITE_ID���No mapping��SEQUENCE���No mapping (a new field SEQ_NUM is coming in Ferdinand)��TEXT�RMK_LINE�RMK_TIE���UNIT_ID�UNIT�UNIT_ID����B.8 IDBU Column Mapping

Column Name�MIDB 2.0 Table�Column Name�Comments��ALLEGIANCE�UNIT�ALLEGIANCE�Field is now 3 characters��CLASS_LEVEL�UNIT�CLASS_LVL���CREATE_DATE�UNIT�DATETIME_CREATED���DATE_FIRST_INFO�UNIT�DATETIME_FIRST_INFO���DATE_LAST_CHG�UNIT�DATETIME_LAST_CHG���DOMAIN�UNIT�DOMAIN_LVL���DUTY_STATUS�UNIT�DUTY_STATUS���ECHELON�UNIT�ECHELON���FUNCTIONAL_ROLE�UNIT�FUNCT_ROLE���HITLIST���No mapping��LOGICAL_CHG_DATE���No mapping��MISSION_SPECIALTY�UNIT�MSN_PRIMARY_SPECIALTY���NUCLEAR_CAPABILITY�UNIT�NUCLEAR_CAP���OB_TYPE�UNIT�OB_TYPE���PMISSION_TYPE�UNIT�MSN_PRIMARY���RDESIG���No mapping��RECORD_STATUS�UNIT�RECORD_STATUS���RES_PROD�UNIT�RES_PROD���REVIEW_DATE�UNIT�REVIEW_DATE���RMK_FLAG���No mapping��SUBJECT���No mapping��UNIT_ID�UNIT�UNIT_ID���UNIT_NAME�UNIT�UNIT_NAME���UNIT_READINESS�UNIT�OPER_STATUS���VALIDITY�UNIT�EVAL���

�B.9 IDBUL Column Mapping

Column Name�MIDB 2.0 Table�Column Name�Comments��CLASS_LEVEL�UNIT�CLASS_LVL���COUNTRY_CODE�UNIT�CC���CREATE_DATE�UNIT�DATETIME_CREATED���DATE_FIRST_INFO�UNIT�DATETIME_FIRST_INFO���DATE_LAST_CHG�UNIT�DATETIME_LAST_CHG���DOMAIN�UNIT�DOMAIN_LVL���HITLIST���No mapping��LATITUDE�UNIT�COORD���LAT_HEMIS���Combined in COORD��LAT_RADIANS�UNIT�ILAT���LOCATION_DATE�UNIT�COORD_DATETIME���LOGICAL_CHG_DATE���No mapping��LONGITUDE�UNIT�COORD���LONG_HEMIS���Combined in COORD��LONG_RADIANS�UNIT�ILON���LOCATION_TYPE�UNIT�LOC_REASON���MODE���No mapping��OB_TYPE�UNIT�OB_TYPE���RDESIG���No mapping��RECORD_STATUS�UNIT�RECORD_STATUS���REVIEW_DATE�UNIT�REVIEW_DATE���SUBJECT���No mapping��UNIT_ID�UNIT�UNIT_ID���UNIT_NAME�UNIT�UNIT_NAME���

�B.10 IDBUQL Column Mapping

Column Name�MIDB 2.0 Table�Column Name�Comments��BE_NUMBER�FAC�BE_NUMBER���CATEGORY�FAC�CATEGORY���CLASS_LEVEL�EQP�CLASS_LVL���COUNTRY_CODE�EQP�CC���DATE_FIRST_INFO�EQP�DATETIME_FIRST_INFO���DATE_LAST_CHG�EQP�DATETIME_LAST_CHG���DOMAIN�EQP�DOMAIN_LVL���EQUIP_CODE�EQP�EQP_CODE���EQUIP_CONDITION�EQP�CONDITION���EQUIP_ID_NUMBER�EQP�EQP_ID_NUM���EQUIP_NOMEN�EQP�NOMEN���EQUIP_QUANTITY�EQP�QTY_OH�There are now many QTY fields, but the one TAMPS has always cared about is the On Hand (OH) equipment.��EQUIP_QUANTITY_EVAL�EQP�QTY_OH_EVAL�No mapping. Functionality was incorporated into the definition of the fields. e.g., the value in EQUIP_QUANTITY where EQUIP_QUANTITY_EVAL = “OH” is mapped to the field QTY_OH.��HITLIST���No mapping��HOME_PORT_AREA�EQP�OPER_AREA_PRIMARY

OPER_AREA_SECONDARY�Appropriate field is filled with appropriate value.��LATITUDE�EQP�COORD���LAT_HEMIS���Combined in COORD��LAT_RADIANS�EQP�ILAT���LOCATION_TYPE�EQP�LOC_REASON���LONGITUDE�EQP�COORD���LONG_HEMIS���Combined in COORD��LONG_RADIANS�EQP�ILON���MOBILITY_STATUS���No mapping��MODE���No mapping��OSUFFIX�FAC�OSUFFIX���OB_TYPE�EQP�OB_TYPE���PEQUIP_FUNC�EQP�FUNCT_PRIMARY���PORT_NAME�FAC�FAC_NAME���PRIMARY_OPS_AREA�EQP�OPER_AREA_PRIMARY�Also see HOME_PORT_AREA mapping.��RDESIG���No mapping��RECORD_STATUS�EQP�RECORD_STATUS���REVIEW_DATE�EQP�REVIEW_DATE���SCONUM�EQP_AKA�AKA�Via EQP(ship)-->FAC(port) association; where AKA_TYPE = “SNUM”��SECONDARY_OPS_AREA�EQP�OPER_AREA_SECONDARY�Also see HOME_PORT_AREA mapping.��SHIP_CLASS_NAME�EQP_IDX�SHIP_CLASS_NAME�Via EQP-->EQP_IDX association.��SHIP_TYPE�EQP_IDX�SHIP_TYPE���SUBJECT���No mapping��UNIT_ID�UNIT�UNIT_ID���UNIT_NAME�UNIT�UNIT_NAME���VALIDITY�EQP�EVAL���VESSEL_READINESS�EQP�OPER_STATUS���

�B.11 IDBFQL_EXT Column Mapping

Column Name�MIDB 2.0 Table�Column Name�Comments��BE_NUMBER�FAC

OBS_REPORT�BE_NUMBER

BE_NUMBER_REF���CATEGORY�FAC

OBS_REPORT�CATEGORY

CATEGORY_REF���DATE_LAST_CHG�TRACK_LOC

TRACK_ELINT_MODE

OBS

OBS_ELNOT

OBS_REPORT�DATETIME_LAST_CHG���DOMAIN�TRACK_LOC

TRACK_ELINT_MODE

OBS

OBS_ELNOT

OBS_REPORT�DOMAIN_LVL���ELINT_NOTE�TRACK_ELINT_MODE

OBS_ELNOT�ELNOT���EQUIP_CODE�OBS_REPORT�EQP_CODE�(Changing to EQP_CODE_REF in Ferdinand)��EQUIP_ID_NUMBER�EQP_ELINT_MODE�EQP_ID_NUM���HITLIST���No mapping��LATITUDE�TRACK_LOC

OBS�COORD���LAT_HEMIS���Combined in COORD��LAT_RADIANS�TRACK_LOC

OBS�ILAT���LOCATION_TYPE�TRACK_LOC�LOC_REASON���LONGITUDE�TRACK_LOC

OBS�COORD���LONG_HEMIS���Combined in COORD��LONG_RADIANS�TRACK_LOC

OBS�ILON���MODE���No mapping��ORIENT�TRACK_LOC

OBS�AZIMUTH���RADAR_FUNC�OBS_REPORT�FUNCT_PRIMARY���RDESIG���No mapping��SEQUENCE���No mapping��SMAJOR�TRACK_LOC

OBS�SEMI_MAJOR���SMINOR�TRACK_LOC

OBS�SEMI_MINOR���SY_ID���No mapping��

�B.12 IDBFQL_PRM Column Mapping

Column Name�MIDB 2.0 Table�Column Name�Comments��BE_NUMBER�FAC

OBS_REPORT�BE_NUMBER

BE_NUMBER_REF���CATEGORY�FAC

OBS_REPORT�CATEGORY

CATEGORY_REF���DATE_LAST_CHG�TRACK_ELINT_MODE

OBS

OBS_ELNOT

OBS_PAR

OBS_REPORT�DATETIME_LAST_CHG���ELINT_NOTE�TRACK_ELINT_MODE

OBS_ELNOT�ELNOT���EQUIP_CODE�OBS_REPORT�EQP_CODE���EQUIP_ID_NUMBER�EQP_ELINT_MODE�EQP_ID_NUM���FREQ�OBS_PAR�RF���GRI�OBS�PGRI���MTTT_MODE���No mapping��NR_STAGGER_LEGS�OBS�PRI_LEG_QTY���PW�OBS�PULSE_DURATION���SCAN_RATE�OBS�SCAN���

�B.13 TAMPS_TARGET Column Mapping

Column Name�MIDB 2.0 Table�Column Name�Comments��BE_NUMBER�FAC�BE_NUMBER���CATEGORY�FAC�CATEGORY���ADN_CODE���No mapping��ISLE_DGZ���No mapping��TARGET_ID �TGT_DETAIL�TGT_DETAIL_SK���ACECAT���No mapping��TDD���No mapping��TARGET_NAME�TGT_DETAIL�TGT_DETAIL_NAME���DESCRIPTION���No mapping, but could be mapped to LOC_NAME.��PHOTO_CHIP_NUMBER���No mapping��SYMBOL_COLOR ���No mapping��SYMBOL_NAME���No mapping��WITHHOLD_FLAG���No mapping��LATITUDE�TGT_DETAIL�COORD���LAT_HEMIS���Combined in COORD��LAT_RADIANS�TGT_DETAIL�ILAT���LONGITUDE�TGT_DETAIL�COORD���LONG_HEMIS���Combined in COORD��LONG_RADIANS�TGT_DETAIL�ILON���WAC�TGT_DETAIL�WAC���COUNTRY_CODE�TGT_DETAIL�CC���LOCATION_ERROR

(in feet)�TGT_DETAIL�COORD_ROA

COORD_ROA_UM���GRID_COORDINATES�TGT_DETAIL�MIL_GRID

MIL_GRID_SYS���GRID_DATUM�TGT_DETAIL�COORD_DATUM���ELEVATION

(in feet above sea level)�TGT_DETAIL�ELEVATION_MSL

ELEVATION_MSL_UM���HIGH_PRECISION���No direct mapping. Can be determined by examining the COORD_% fields in TGT_DETAIL.��HORIZ_ACCURACY

(in feet)�TGT_DETAIL�COORD_ROA COORD_ROA_UM���VERT_ACCURACY

(in feet)�TGT_DETAIL�ELEVATION_MSL_ACC���CONFIDENCE (%)�TGT_DETAIL�COORD_ROA_CONF_LVL

(horizontal),

ELEVATION_MSL_CONF_LVL

(vertical)���WIDTH (in feet)�TGT_DETAIL�WIDTH

WIDTH_UM���HEIGHT (in feet)�TGT_DETAIL�HEIGHT

HEIGHT_UM���LENGTH (in feet)�TGT_DETAIL�LENGTH

LENGTH_UM���LONG_AXIS�TGT_DETAIL�AZIMUTH

AZIMUTH_REF���HARDNESS �TGT_DETAIL�HARDNESS���ASSIGNED_AC_TYPE���No mapping��ATTACK_AXIS���No mapping��CONV_WPN_NAME���No mapping��CONV_WPN_NUMBER���No mapping��CONV_WPN_ALT_NAME���No mapping��CONV_WPN_ALT_NUMBER���No mapping��DEST_PROBABLITY���No mapping��SPEC_WPN_CODE���No mapping��SPEC_WPN_DELIVERY���No mapping��SPEC_WPN_MAX_YIELD���No mapping��SPEC_WPN_MIN_YIELD���No mapping��SPEC_WPN_BURST_HEIGHT���No mapping��CREATE_DATE�TGT_DETAIL�DATETIME_CREATED���DATE_LAST_CHG�TGT_DETAIL�DATETIME_LAST_CHG���OWNER (user ID or DBA)�TGT_DETAIL�LAST_CHG_USERID���HITLIST���No mapping��TYPE (DBA, planner, RAAP)�TGT_DETAIL�RECORD_STATUS���

�

Appendix C. Core Object Hierarchy Modifications

C.1 Introduction

This appendix is provided to document the changes expected in the Core Object Hierarchy .

The planned changes include:

Remove object data related to RAAP

Remove object data related to the JMCIS tactical tables

Replace IDB object data with MIDB object data

Merge facility equipment objects and unit equipment objects into a single set of equipment objects??

Consolidate Fixed SAM facility objects and Tactical SAM facility objects into a single set of SAM facility objects, in preparation for the CATEGORY field data fill change

It is important to realize that object definitions are highly dependent on data fill. The MIDB data will be reviewed constantly to ensure that the objects are defined properly. We currently have a small set of MIDB test data. Unfortunately, we do not anticipate having a complete worldwide data base in the lab until mid-late Dec 97.

There are no known dependencies of MPMs on the object hierarchy definitions, except for the MPM Symbol Set import/export. This only affects MPMs who have chosen to install an MPM symbol set and have mapped Core objects to MPM symbols. Every effort will be made to keep the OBJECT_IDs the same from 6.1 to 6.2 (which will eliminate any impact to MPMs), but this will not be possible in all cases for the MIDB objects. However, any problems resulting from an OBJECT_ID change can be taken care of during integration testing by editing the text file containing the MPM OH_GRAPHIC.BCP file.

Figure C-1 is provided to show the changes as they will appear in the object browser viewed through the TAMPS Core Object Editor or Query functions. Root objects are shown in the leftmost column, their children are shown in the next column, and so on until there are no more ancestors. Root object names are in alphabetical order from the top of the figure to the bottom of the figure, just as in the object browser display. An object’s children are also in the same order as they appear in the object browser. The difference between the object browser display and Figure C-1 is that a parent object name is shown many times if the object has more than one child. This is a bit confusing, but it was the only way to easily capture the essence of the object hierarchy in a spreadsheet.

Modified objects are shown in Bold. Objects which will be deleted are shown as Strikethrough. Rearranged objects are shown as Underline. Objects which need a name change are shown in Italic. Objects which need to be changed due to changes in data fill for the CATEGORY field are shown in Shadow. MIDB-related objects which are being added in support of 96-60h (TERPES Objects) and are shown in Outline.

�

DAFIF_AIRBASES�BELOW_MIN_STDS������DAFIF_AIRBASES�CIVIL������DAFIF_AIRBASES�JOINT������DAFIF_AIRBASES�MILITARY������DAFIF_NAVAIDS�DME_NOT_ILS_DME������DAFIF_NAVAIDS�NDB������DAFIF_NAVAIDS�NDB_DME������DAFIF_NAVAIDS�TACAN������DAFIF_NAVAIDS�VOR������DAFIF_NAVAIDS�VORTAC������DAFIF_NAVAIDS�VOR_DME������DAFIF_WAYPOINTS�HIGH_AND_LOW_LEVEL������DAFIF_WAYPOINTS�HIGH_LEVEL������DAFIF_WAYPOINTS�HI_ALT_RNAV������DAFIF_WAYPOINTS�LOW_LEVEL������DAFIF_WAYPOINTS�TERMINAL������ECAC_EMITTERS�ECAC_TEXT������EWIR_RADARS�AIRBORNE_RADARS������EWIR_RADARS�LAND_BASED_RADARS������EWIR_RADARS�SEA_BASED_RADARS������IMAGERY_TEXT�������RADAR_AIMPOINTS�������RADAR_CHECK_POINTS�������RTM_COV_RADARS�������TACELINT_MSG_BLDR_WITH_PARAMS�TACELINT_MSG_BLDR_NO_PARAMS������TARGET�RAAP_TARGET�RAAP_TGT_MSN_HIST�����TARGET_DBA�������TARGET_PLANNER������� THREAT_CP_ACFT�������THREAT_CP_ASHIP�������THREAT_CP_GUNS�������THREAT_CP_HELOS�������THREAT_CP_RADARS�������THREAT_CP_RAPADS�������THREAT_CP_SAMS�������THREAT_CP_SHIP_CLASS�������THREAT_EQUIPMENT_CODES�������THREAT_FACILITIES�AIRFIELDS�PRIMARY�ARCTIC_STAGING_BASES����THREAT_FACILITIES�AIRFIELDS�PRIMARY�BOMBER_BASES����THREAT_FACILITIES�AIRFIELDS�PRIMARY�BOMBER_CAPABLE_BASES����THREAT_FACILITIES�AIRFIELDS�PRIMARY�FIGHTER_BASES����THREAT_FACILITIES�AIRFIELDS�RESERVE�����THREAT_FACILITIES�DEFENSE_SYSTEMS�AAA�AAA_HEAVY����THREAT_FACILITIES�DEFENSE_SYSTEMS�AAA�AAA_LIGHT����THREAT_FACILITIES�DEFENSE_SYSTEMS�AAA�AAA_MEDIUM����THREAT_FACILITIES�DEFENSE_SYSTEMS�AAA�AAA_UNDEFINED����THREAT_FACILITIES�MISSILE�SAM�BLOODHOUND�BLOODHOUND_NOP���THREAT_FACILITIES�MISSILE�SAM�CSA_1�CSA_1_NOP���THREAT_FACILITIES�MISSILE�SAM�NIKE_HERCULES_FIXED�NIKE_HERCULES_FIXED_NOP���THREAT_FACILITIES�MISSILE�SAM�SA_02B_GUIDELINE_MOD_1�SA_02B_NOP���THREAT_FACILITIES�MISSILE�SAM�SA_02C_GUIDELINE_MOD_2�SA_02C_NOP���THREAT_FACILITIES�MISSILE�SAM�SA_02D_GUIDELINE_MOD_3�SA_02D_NOP���THREAT_FACILITIES�MISSILE�SAM�SA_02E_GUIDELINE_MOD_4�SA_02E_NOP���THREAT_FACILITIES�MISSILE�SAM�SA_02F_GUIDELINE_MOD_5�SA_02F_NOP���THREAT_FACILITIES�MISSILE�SAM�SA_02_GUIDELINE�SA_02_NOP���THREAT_FACILITIES�MISSILE�SAM�SA_03B_GOA_MOD_1�SA_03B_NOP���THREAT_FACILITIES�MISSILE�SAM�SA_03C_GOA�SA_03C_NOP���THREAT_FACILITIES�MISSILE�SAM�SA_03_GOA�SA_03_NOP���THREAT_FACILITIES�MISSILE�SAM�SA_05_GAMMON�SA_05_NOP���THREAT_FACILITIES�MISSILE�SAM�SA_10A_GRUMBLE�SA_10A_NOP���THREAT_FACILITIES�MISSILE�SAM�SA_10B_GRUMBLE�SA_10B_NOP���THREAT_FACILITIES�MISSILE�SAM�SA_10C_GRUMBLE�SA_10C_NOP���THREAT_FACILITIES�MISSILE�SAM�SA_10_GRUMBLE�SA_10_NOP���THREAT_FACILITIES�MISSILE�SAM�CHAPARRAL�CHAPARRAL_NOP���THREAT_FACILITIES�MISSILE�SAM�CROTALE�CROTALE_NOP���THREAT_FACILITIES�MISSILE�SAM�HAWK�HAWK_NOP���THREAT_FACILITIES�MISSILE�SAM�I_HAWK�I_HAWK_NOP���THREAT_FACILITIES�MISSILE�SAM�NIKE_HERCULES�NIKE_HERCULES_NOP���THREAT_FACILITIES�MISSILE�SAM�PATRIOT�PATRIOT_NOP���THREAT_FACILITIES�MISSILE�SAM�RAPIER�RAPIER_NOP���THREAT_FACILITIES�MISSILE�SAM�ROLAND�ROLAND_NOP���THREAT_FACILITIES�MISSILE�SAM�SA_04A_GANEF�SA_04A_NOP���THREAT_FACILITIES�MISSILE�SAM�SA_04B_GANEF_MOD_1�SA_04B_NOP���THREAT_FACILITIES�MISSILE�SAM�SA_04_GANEF�SA_04_NOP���THREAT_FACILITIES�MISSILE�SAM�SA_06A_GAINFUL�SA_06A_NOP���THREAT_FACILITIES�MISSILE�SAM�SA_06B_GAINFUL�SA_06B_NOP���THREAT_FACILITIES�MISSILE�SAM�SA_06_GAINFUL�SA_06_NOP���THREAT_FACILITIES�MISSILE�SAM�SA_08A_GECKO�SA_08A_NOP���THREAT_FACILITIES�MISSILE�SAM�SA_08B_GECKO�SA_08B_NOP���THREAT_FACILITIES�MISSILE�SAM�SA_08_GECKO�SA_08_NOP���THREAT_FACILITIES�MISSILE�SAM�SA_09_GASKIN�SA_09_NOP���THREAT_FACILITIES�MISSILE�SAM�SA_11_GADFLY�SA_11_NOP���THREAT_FACILITIES�MISSILE�SAM�SA_12A_GLADIATOR�SA_12A_NOP���THREAT_FACILITIES�MISSILE�SAM�SA_12B_GIANT�SA_12B_NOP���THREAT_FACILITIES�MISSILE�SAM�SA_12_GLADIATOR_AND_GIANT�SA_12_NOP���THREAT_FACILITIES�MISSILE�SAM�SA_13_GOPHER�SA_13_NOP���THREAT_FACILITIES�MISSILE�SAM�SA_15_GAUNTLET�SA_15_NOP���THREAT_FACILITIES�MISSILE�SAM�SKYGUARD_ASPIDE�SKYGUARD_NOP���THREAT_FACILITIES�MISSILE�SAM�SPADA_ASPIDE�SPADA_NOP���THREAT_FACILITIES�MISSILE�SSM�����THREAT_FACILITIES�NONCOMM_ELEC�EW�����THREAT_FACILITIES�NONCOMM_ELEC�GCI�����THREAT_EQUIPMENT�FAC_EQUIPMENT�AIR_DEF_WPNS�����THREAT_EQUIPMENT�FAC_EQUIPMENT�RADAR_EQUIPMENT�EW_ACQ�EW_ACQ_NOP���THREAT_EQUIPMENT�FAC_EQUIPMENT�RADAR_EQUIPMENT�FIRE_CONTROL�FIRE_CONTROL_NOP���THREAT_EQUIPMENT�FAC_EQUIPMENT�RADAR_EQUIPMENT�HEIGHT_FINDER�HEIGHT_FINDER_NOP���THREAT_EQUIPMENT�FAC_EQUIPMENT�RADAR_EQUIPMENT�MISSILE_CONTROL�MISSILE_CONTROL_NOP���THREAT_EQUIPMENT�UNIT_EQUIPMENT�AIRCRAFT_TEXT�����THREAT_EQUIPMENT�UNIT_EQUIPMENT�AIR_DEF_WPNS_UNIT�����THREAT_EQUIPMENT�UNIT_EQUIPMENT�ALL_EQUIPMENT_TEXT�����THREAT_EQUIPMENT�UNIT_EQUIPMENT�FIELD_ARTILLERY�����THREAT_EQUIPMENT�UNIT_EQUIPMENT�FIXED_WING_AC�����THREAT_EQUIPMENT�UNIT_EQUIPMENT�ROTARY_WING_AC�����THREAT_EQUIPMENT�UNIT_EQUIPMENT�SAM_UNIT�RAPIER_UNIT����THREAT_EQUIPMENT�UNIT_EQUIPMENT�SAM_UNIT�RBS_70����THREAT_EQUIPMENT�UNIT_EQUIPMENT�SAM_UNIT�SA_07_GRAIL����THREAT_EQUIPMENT�UNIT_EQUIPMENT�SAM_UNIT�STINGER����THREAT_EQUIPMENT�UNIT_EQUIPMENT�SAM_UNIT�TIGERCAT����THREAT_EQUIPMENT�UNIT_EQUIPMENT�SHIPS_NOB�COMBATANT_SHIPS�AIRCRAFT_CARRIERS���THREAT_EQUIPMENT�UNIT_EQUIPMENT�SHIPS_NOB�COMBATANT_SHIPS�BATTLESHIPS���THREAT_EQUIPMENT�UNIT_EQUIPMENT�SHIPS_NOB�COMBATANT_SHIPS�CRUISERS���THREAT_EQUIPMENT�UNIT_EQUIPMENT�SHIPS_NOB�COMBATANT_SHIPS�DESTROYERS���THREAT_EQUIPMENT�UNIT_EQUIPMENT�SHIPS_NOB�COMBATANT_SHIPS�FRIGATES���THREAT_EQUIPMENT�UNIT_EQUIPMENT�SHIPS_NOB_ASHIP_RDRS�����THREAT_EQUIPMENT�UNIT_EQUIPMENT�SHIPS_NOB_ASHIP_SAMS�����THREAT_EQUIPMENT�UNIT_EQUIPMENT�SHIPS_NOB_CLASS_RDRS�����THREAT_EQUIPMENT�UNIT_EQUIPMENT�SHIPS_NOB_CLASS_SAMS�����THREAT_IDB_ELNOTS�������THREAT_PARAMS_EPL�������THREAT_PARAMS_NERF�������THREAT_REMARKS�FACILITY_REMARKS������THREAT_REMARKS�INSTALLATION_REMARKS������THREAT_REMARKS�POPULATION_REMARKS������THREAT_REMARKS�UNIT_REMARKS������THREAT_UNITS�UNITS_TEXT�ARMOR�BN___ARMOR����THREAT_UNITS�UNITS_TEXT�ARMOR�CO___ARMOR����THREAT_UNITS�UNITS_TEXT�ARMOR�CPS__ARMOR����THREAT_UNITS�UNITS_TEXT�ARMOR�DIV__ARMOR����THREAT_UNITS�UNITS_TEXT�ARMOR�HQ___ARMOR����THREAT_UNITS�UNITS_TEXT�ARMOR�RGT__ARMOR����THREAT_UNITS�UNITS_TEXT�CHEM_BIO_RAD�ARMY_CHEM_BIO_RAD����THREAT_UNITS�UNITS_TEXT�CHEM_BIO_RAD�BDE__CHEM_BIO_RAD����THREAT_UNITS�UNITS_TEXT�CHEM_BIO_RAD�BN___CHEM_BIO_RAD����THREAT_UNITS�UNITS_TEXT�CHEM_BIO_RAD�CO___CHEM_BIO_RAD����THREAT_UNITS�UNITS_TEXT�CHEM_BIO_RAD�CPS__CHEM_BIO_RAD����THREAT_UNITS�UNITS_TEXT�CHEM_BIO_RAD�DIV__CHEM_BIO_RAD����THREAT_UNITS�UNITS_TEXT�CHEM_BIO_RAD�HQ___CHEM_BIO_RAD����THREAT_UNITS�UNITS_TEXT�CHEM_BIO_RAD�RGT__CHEM_BIO_RAD����THREAT_UNITS�UNITS_TEXT�COMBINED_ARMS�����THREAT_UNITS�UNITS_TEXT�ELECTRONIC_WARFARE�ARMY_EW����THREAT_UNITS�UNITS_TEXT�ELECTRONIC_WARFARE�BDE__EW����THREAT_UNITS�UNITS_TEXT�ELECTRONIC_WARFARE�BN___EW����THREAT_UNITS�UNITS_TEXT�ELECTRONIC_WARFARE�CO___EW����THREAT_UNITS�UNITS_TEXT�ELECTRONIC_WARFARE�CPS__EW����THREAT_UNITS�UNITS_TEXT�ELECTRONIC_WARFARE�DIV__EW����THREAT_UNITS�UNITS_TEXT�ELECTRONIC_WARFARE�HQ___EW����THREAT_UNITS�UNITS_TEXT�ELECTRONIC_WARFARE�RGT__EW����THREAT_UNITS�UNITS_TEXT�ENGINEERS_COMBAT�ARMY_ENG_COMBAT����THREAT_UNITS�UNITS_TEXT�ENGINEERS_COMBAT�BDE__ENG_COMBAT����THREAT_UNITS�UNITS_TEXT�ENGINEERS_COMBAT�BN___ENG_COMBAT����THREAT_UNITS�UNITS_TEXT�ENGINEERS_COMBAT�CO___ENG_COMBAT����THREAT_UNITS�UNITS_TEXT�ENGINEERS_COMBAT�CPS__ENG_COMBAT����THREAT_UNITS�UNITS_TEXT�ENGINEERS_COMBAT�DIV__ENG_COMBAT����THREAT_UNITS�UNITS_TEXT�ENGINEERS_COMBAT�HQ___ENG_COMBAT����THREAT_UNITS�UNITS_TEXT�ENGINEERS_COMBAT�RGT__ENG_COMBAT����THREAT_UNITS�UNITS_TEXT�F_ARTILLERY_UNIT�ARMY_F_ARTILLERY����THREAT_UNITS�UNITS_TEXT�F_ARTILLERY_UNIT�BDE__F_ARTILLERY����THREAT_UNITS�UNITS_TEXT�F_ARTILLERY_UNIT�BN___F_ARTILLERY����THREAT_UNITS�UNITS_TEXT�F_ARTILLERY_UNIT�CO___F_ARTILLERY����THREAT_UNITS�UNITS_TEXT�F_ARTILLERY_UNIT�CPS__F_ARTILLERY����THREAT_UNITS�UNITS_TEXT�F_ARTILLERY_UNIT�DIV__F_ARTILLERY����THREAT_UNITS�UNITS_TEXT�F_ARTILLERY_UNIT�HQ___F_ARTILLERY����THREAT_UNITS�UNITS_TEXT�F_ARTILLERY_UNIT�RGT__F_ARTILLERY����THREAT_UNITS�UNITS_TEXT�INFANTRY�ARMY_INFANTRY����THREAT_UNITS�UNITS_TEXT�INFANTRY�BDE__INFANTRY����THREAT_UNITS�UNITS_TEXT�INFANTRY�BN___INFANTRY����THREAT_UNITS�UNITS_TEXT�INFANTRY�CO___INFANTRY����THREAT_UNITS�UNITS_TEXT�INFANTRY�CPS__INFANTRY����THREAT_UNITS�UNITS_TEXT�INFANTRY�DIV__INFANTRY����THREAT_UNITS�UNITS_TEXT�INFANTRY�HQ___INFANTRY����THREAT_UNITS�UNITS_TEXT�INFANTRY�RGT__INFANTRY����THREAT_UNITS�UNITS_TEXT�INTELLIGENCE�����THREAT_UNITS�UNITS_TEXT�MISSILE_UNIT�ARMY_MISSILE����THREAT_UNITS�UNITS_TEXT�MISSILE_UNIT�BDE__MISSILE����THREAT_UNITS�UNITS_TEXT�MISSILE_UNIT�BN___MISSILE����THREAT_UNITS�UNITS_TEXT�MISSILE_UNIT�CO___MISSILE����THREAT_UNITS�UNITS_TEXT�MISSILE_UNIT�CPS__MISSILE����THREAT_UNITS�UNITS_TEXT�MISSILE_UNIT�DIV__MISSILE����THREAT_UNITS�UNITS_TEXT�MISSILE_UNIT�HQ___MISSILE����THREAT_UNITS�UNITS_TEXT�MISSILE_UNIT�RGT__MISSILE����THREAT_UNITS�UNITS_TEXT�NAVAL_OPERATIONS�����THREAT_UNITS�UNITS_TEXT�ORDNANCE�����THREAT_UNITS�UNITS_TEXT�OTHER�����THREAT_UNITS�UNITS_TEXT�REAR_SERVICES�����THREAT_UNITS�UNITS_TEXT�SIGNAL_ELECTRONICS�����THREAT_UNITS�UNITS_TEXT�SPECIAL_FORCES�����THREAT_UNITS�UNITS_TEXT�SUPPLY�����THREAT_UNITS�UNITS_TEXT�TRANSPORTATION�����THREAT_UNITS�UNITS_TEXT�UNK_MISSION_TYPE�����VALID_VALUES�CATEGORY_CODES������VISUAL_POINT_FEATURES�BRIDGES������VISUAL_POINT_FEATURES�DAMS������VISUAL_POINT_FEATURES�MINES������VISUAL_POINT_FEATURES�POL_STORAGE������VISUAL_POINT_FEATURES�SHIP_WRECKS������VISUAL_POINT_FEATURES�VERTICAL_OBSTACLES������VISUAL_POINT_FEATURES�VISUAL_POINT_FEATURE������

�Appendix D Database Allocation Table

Database

 Name�Database Size (MB)��Log Device Size� NOTEREF _Ref388670052 �2�,��

Database

Description�TAMPS:

create

schema?�TAMPS:

load

data?��replicate

from

JMCIS?��Alerts�20�5�used by MIDB editors to process alerts.�Y�N�N��ASUP_DB�50�20������CONSTRAINTS�10��used in valid values checking within MIDB.�Y�Y�N��DB_SUPPORT�10�������GAZ�800��GazetteerGazeteer data�N�N�N��MDUIQU�10�������MS�20�5������OBSCON�10�5������SA�175�������SIR�20�5������SR_DB�15�10�Support Rule database used to validate MIDB data.�Y�Y�N��SUPPORT�50�25��Y�Y�N��TAPE_TOC�5�������UEW�10�������WORK_DB�500���holds temporary results from the DIA Query Tool�Y�N�N��tempdb�546� NOTEREF _Ref388670488 �5��������GMI�1800� NOTEREF _Ref388670488 �5��500�holds General Military Intelligence data -- the data used by TAMPS�Y�Y�Y��

�

�

� As recommended by the MIDB Software Installation Plan

� If no log size is entered, then the default log segment should be used.

� Data is loaded at MIDB Installation, except for GMI data

� If additional space is available, these databases should be increased in size

SOR 96-01a: MIDB 2.0 Integration

Software Design Notebook, v1

DOC # SOR9601a-001

25 April 1997

�PAGE �

�PAGE �14�

SOR 96-01a: MIDB 2.0 Integration

Software Design Notebook, v1

DOC # SOR9601a-001

19 April 1997

� PAGE �i�

�PAGE �19�

�PAGE �138�

� PAGE �707�

�PAGE \# "'Page: '#'�'" ��We need to update this to reflect the new idea that the option to install a full or subset MIDB will only be offered at System Generation, with the assumption that all TAMPS sites will install one of these two options. (The only possible exception would be a system being set up as an MPLAN client that is never expected to be disconnected from the network). Also, patch DIA deliveries will not be supported.

�PAGE \# "'Page: '#'�'" ��The Object Hierarchy objects will be installed at System Generation along with all other OH objects. An error message will be displayed if any MIDB-based objects are referenced at runtime.

�PAGE \# "'Page: '#'�'" ��Change this to indicate MIDB must be installed at System Generation or not at all.

�PAGE \# "'Page: '#'�'" ��The only required coordination should be regarding accounts with the same name on both systems.

�PAGE \# "'Page: '#'�'" ��Country code filtration will NOT be available for TAMPS 6.2.

�PAGE \# "'Page: '#'�'" ��Change this to be DIA-provided software, since we may not use DEX for baseloads.

�PAGE \# "'Page: '#'�'" ��Data Archival for the MIDB will only be supported via Dump/Restore.

�PAGE \# "'Page: '#'�'" ��The TAMPS target tables do not match the MIDB schema.

�PAGE \# "'Page: '#'�'" ��The MIDB baseloads will be copied from JMCIS to TAMPS by BCP out from JMCIS and BCP in on TAMPS

�PAGE \# "'Page: '#'�'" ��ODBC has been removed from the design.

�PAGE \# "'Page: '#'�'" ��MIDB installation only supported at SysGen.

dmt_qfq_delete_callback()

dmt_qfq_add_callback()

dmt_qfq_execute_callback()

9.1

8.1

9.4

9.2

9.1

10

8.2, 11

12

9.3

8, 8.3

7

dmt_query_browse_callback()

dmt_query_list_callback()

dmt_query_new_callback()

dmt_query_edit_callback()

dmt_query_delete_callback()

dmt_query_save_callback()

dmt_query_sub_convert_callback()

dmt_query_sub_delete_callback()

dmt_query_execute_callback()

1

6

8

obt_getBrowserForm()

oet_invokeSymbolMapping()

oet_editObject()

oet_deleteObject()

oet_createObjectCallback()

9

11, 12

11,12,13

3.2.5.3, 3.2.5.4

3.2.7.2

oet_tab*.c

oet_col*.c

oet_det*.c

oet_ll*.c

oet_sym*.c

oet_pick*.c

2

oet_actAttrs.c

oet_actMMI.c

oet_addAction.c

oet_attrMMI.c

2,3

2

9

3.2.5.1

dmt_qne_execute_callback()

dmt_qne_save_callback()

dmt_qne_delete_callback()

dmt_qne_edit_callback()

dmt_qne_cancel_callback()

1

1.1

1.2

1.3

1.4

1.5

1.6

3

4

5

5.1

5.2, 6

dmt_qnecond.c

dmt_qnepar.c

dmt_qnebtw*.c

dmt_qnein*.c

dmt_qneopcb.c

dmt_qnev*.c

dmt_qneres.c

DBA -> Update -> Threats

3

1

4

5,9

10, 11

dil_DisplayInterimThreats.c

dil_AddInterimThreat.c

dil_EditThreat.c

dil_DeleteThreat.c

dil_DbaAddInterimThreatToIdb.c

 MPM

 PDR

 PDR

