SECTION G.1.5 �AIRCRAFT MISSION PLANNING �FLIGHT EVENT (AFT) ADA BINDINGS

�

�

This page intentionally left blank.

�

function: � TC " aft_CheckFlightEventConflict " \l 3 �aft_CheckFlightEventConflict�
IFA16247�
�
CALLING SEQUENCE:

status := aft_CheckFlightEventConflict(hWaypt, hEvent)

PARAMETERS:

Name	I/O	Type	Description

hWaypt	I	UZT_STRUCTS.UZT_	Handle of waypoint whose flight

		HNDL_PTR	events should be checked.

hEvent	I	UZT_STRUCTS.UZT_	Handle of event interface that

		HNDL_PTR	specifies the event type to check.

status	O	ST_STATUS	ST_FAILURE if the flight event is incompatible with the current flight events, otherwise, ST_SUCCESS.

DESCRIPTION:

This function will check if the flight event referenced by the input event interface handle is compatible with the current flight events associated with the waypoint referenced by the input waypoint handle.

If an invalid parameter is passed in for the event interface handle (i.e., a NULL value or an incorrect type of handle), then ST_FAILURE will be returned.

If the input waypoint handle is NULL, or is an invalid waypoint handle, then the current waypoint will be used.

Each flight event has a compatibility type associated with it. Compatibility for flight events is summarized in the table below. An “X” indicates compatibility with flight events of the given compatibility type. As can be seen, flight events that have a compatibility type of AFT_SINGLE_EVENT are not compatible with other flight events.

New Flight Event �Compatibility Type�
Current Flight Event Compatibility Type

�
�
�
AFT_COMPATABLE_ANY_EVENT�
AFT_EXCLUSIVE_EVENT�
AFT_SINGLE_EVENT�
�
AFT_COMPATABLE_ANY_EVENT�
X�
X�
�
�
AFT_EXCLUSIVE_EVENT�
X�
�
�
�
AFT_SINGLE_EVENT�
�
�
�
�

Depending on the compatibility type associated with the event interface and the compatibility type of the flight events for the waypoint, ST_FAILURE will be returned if any of the current flight events are incompatible with the flight event specified by the input event interface, or ST_SUCCESS will be returned if the current flight events are compatible with the flight event specified by the input event interface.

Pertinent constants for flight event types and compatibility types are shown below. The constants are located in src/bindings/aft_event_defs.a.

-- Event compatability defines.

AFT_EVENT_COMPATABILITY_AFT_COMPATABLE_ANY_EVENT	: constant := 0;

AFT_EVENT_COMPATABILITY_AFT_EXCLUSIVE_EVENT	: constant := 1;

AFT_EVENT_COMPATABILITY_AFT_SINGLE_EVENT	: constant := 2;

-- Ada constants for the "canned" flight event types

AFT_ATTACK_EVENT			: constant := 1;

AFT_WEAPON_EVENT			: constant := 2;

AFT_REFUEL_EVENT			: constant := 3;

AFT_HOLD_EVENT 			: constant := 4;

AFT_HACK_EVENT 			: constant := 5;

AFL_GRND_EVENT			: constant := 6;

AFT_NASP_EVENT 			: constant := 7;

AFL_LZ_EVENT			: constant := 8;

AFL_FARP_EVENT			: constant := 9;

AFL_HOVR_EVENT			: constant := 10;

AFL_EAF_EVENT			: constant := 11;

AFT_LAUNCH_WEAPON_EVENT		: constant := 21;

AFT_ACTION_PT_COORD_EVENT		: constant := 22;

--AFT_RESERVED_EVENTS, 12-20

EXAMPLE:

with ST_SYSDEFS;

with UZT_STRUCTS;

HWAYPT	: UZT_STRUCTS.UZT_HNDL_PTR;

HEVENT	: UZT_STRUCTS.UZT_HNDL_PTR;

STATUS	: ST_SYSDEFS.ST_STATUS;

STATUS := AFT_CHECKFLIGHTEVENTCONFLICT (HWAYPT, HEVENT);�

function: � TC " aft_DeleteAnyFlightEvent " \l 3 �aft_DeleteAnyFlightEvent�
IFA16248�
�
CALLING SEQUENCE:

status := aft_DeleteAnyFlightEvent(hWaypt, eventType)

PARAMETERS:

Name	I/O	Type	Description

hWaypt	I	UZT_STRUCTS.UZT_	Handle of waypoint to delete

		HNDL_PTR	flight event from.

eventType	I	BASE_TYPES.INT_	Type of flight event to delete.

		16_TYPE	

status	O	ST_STATUS	ST_FAILURE for invalid waypoint handle values, otherwise, ST_SUCCESS.

DESCRIPTION:

This function will delete the flight event specified by the input event type from the waypoint referenced by the input waypoint handle.

If an invalid parameter is passed in for the waypoint handle (i.e., a NULL value or an incorrect type of handle), then ST_FAILURE will be returned.

This function will return ST_SUCCESS if the flight event of the given type does or does not exist for the given waypoint.

Pertinent constants for flight event types are shown below. These constants are located in src/bindings/aft_event_defs.a.

AFT_ATTACK_EVENT			: constant := 1;

AFT_WEAPON_EVENT			: constant := 2;

AFT_REFUEL_EVENT			: constant := 3;

AFT_HOLD_EVENT 			: constant := 4;

AFT_HACK_EVENT 			: constant := 5;

AFL_GRND_EVENT				: constant := 6;

AFT_NASP_EVENT 			: constant := 7;

AFL_LZ_EVENT				: constant := 8;

AFL_FARP_EVENT				: constant := 9;

AFL_HOVR_EVENT				: constant := 10;

AFL_EAF_EVENT				: constant := 11;

AFT_LAUNCH_WEAPON_EVENT		: constant := 21;

AFT_ACTION_PT_COORD_EVENT		: constant := 22;

--AFT_RESERVED_EVENTS, 12-20

EXAMPLE:

with SYSTEM;

with ST_SYSDEFS;

with UZT_STRUCTS;

with BASE_TYPES;

HWAYPT	: UZT_STRUCTS.UZT_HNDL_PTR;

EVENTTYPE	: BASE_TYPES.INT_16_TYPE;

STATUS	: ST_SYSDEFS.ST_STATUS;

STATUS := AFT_DELETEANYFLIGHTEVENT (HWAYPT, EVENTTYPE);

�

FUNCTION: � tc " AFT_GETFLIGHTEVENT" \l 3 �AFT_GETFLIGHTEVENT�
IFA16030�
�
CALLING SEQUENCE:

AFT_FLTEVENT_T *AFT_GETFLIGHTEVENT (NAV_POINT, EVENT_TYPE)

PARAMETERS:

Name	I/O	Type	Description

NAV_POINT	I	POINTER_PTR	Pointer to the nav point.

EVENT_TYPE	I	INT_16_TYPE	Event type.

"RETURN"	O	POINTER_PTR	Pointer to matching event type.

DESCRIPTION:

This function is used to retrieve a flight event from a given nav point.

EXAMPLE:

with AFT;

use AFT;

with BASE_TYPES;

NAV_POINT 	: POINTER_PTR;

EVENT_TYPE 	: BASE_TYPES.INT_16_TYPE;

"RETURN" 	: POINTER_PTR;

AFT_FLTEVENT_T *AFT_GETFLIGHTEVENT (NAV_POINT, EVENT_TYPE);

�

FUNCTION: � tc " AFT_REGISTERATTACKMANEUVERS" \l 3 �AFT_REGISTERATTACKMANEUVERS�
IFA16033�
�
CALLING SEQUENCE:

AFT_REGISTERATTACKMANEUVERS (MANEUVER_LIST, MANEUVER_COUNT, MANEUVER_FUNC’ADDRESS)

PARAMETERS:

Name	I/O	Type	Description

MANEUVER_LIST	I	AFT_ATTACK_	Pointer to list of attack

		MANEUVER_PTR	maneuvers.

MANEUVER_COUNT	I	INT_32_TYPE	Number of maneuvers in list.

MANEUVER_FUNC	I	ADDRESS	Function pointer to MPM function to validate maneuver. (See Description below for parameters.)

DESCRIPTION:

This function is used by the MPM to register MPM-specific flight maneuvers used during the "Attack Target" flight event. This routine is only necessary when the MPM supports an "Attack Target" flight event.

The MANEUVER_FUNC parameter is a pointer to an MPM function with the following parameters. (Note: parameter names will be assigned by the MPM.)

Name	I/O	Type	Description

PCURRACTION 	I 	APT_ACTION_POINT_	Current action point.

		T_PTR	

PEVENT 	I 	AFT_FLTEVENT_T_PTR	Flight event pointer.

MPM_ERRNUM 	O 	INT_32_PTR	Error number (> 0).

"RETURN" 	O 	INT_32_TYPE	Return status.

EXAMPLE:

with AFT;

use AFT;

with AET_ATTMANVR;

use AET_ATTMANVR;

with BASE_TYPES;

MANEUVER_LIST	: AFT_ATTACK_MANEUVER_PTR;

MANEUVER_COUNT 	: BASE_TYPES.INT_32_TYPE;

AFT_REGISTERATTACKMANEUVERS (MANEUVER_LIST, MANEUVER_COUNT, MANEUVER_FUNC’ADDRESS);

(where MANEUVER_FUNC is the MPM function name)

�

FUNCTION: � tc " AFT_REGISTERFLIGHTEVENTS" \l 3 �AFT_REGISTERFLIGHTEVENTS�
IFA16027�
�
CALLING SEQUENCE:

AFT_REGISTERFLIGHTEVENTS (FLIGHT_EVENTS, FLIGHT_COUNT, VALIDATION’ADDRESS)

PARAMETERS:

Name	I/O	Type	Description

FLIGHT_EVENTS	I	AFT_EVENT_	Array of pointers to flight

		INTERFACE_	events.

		T_PTR

FLIGHT_COUNT	I	INT_32_TYPE	Number of flight events.

VALIDATION	I	ADDRESS	Array of pointers to function for validation of flight events. (See Description below for parameters.)

DESCRIPTION:

This function stores the MPM-passed flight events in a global structure for later retrieval.

The VALIDATION parameter is a pointer to an MPM function with the following parameters. (Note: parameter names will be assigned by the MPM.)

Name	I/O	Type	Description

PCURRACTION	I	APT_ACTION_POINT_	Current action point.

		T_PTR	

PEVENT	I	AFT_FLTEVENT_T_PTR	Flight event pointer.

MPM_ERRNUM	O	INT_32_PTR	Error number (> 0).

"RETURN"	O	INT_32_TYPE	Return status.

EXAMPLE:

with AFT;

use AFT;

with BASE_TYPES;

FLIGHT_EVENTS 	: AFT_EVENT_INTERFACE_T_PTR;

FLIGHT_COUNT 	: BASE_TYPES.INT_32_TYPE;

VOID AFT_REGISTERFLIGHTEVENTS (FLIGHT_EVENTS, FLIGHT_COUNT, VALIDATION’ADDRESS);

(where VALIDATION is the MPM function name)

�

FUNCTION: � tc " AFT_RETRIEVEFLIGHTEVENTS" \l 3 �AFT_RETRIEVEFLIGHTEVENTS�
IFA16032�
�
CALLING SEQUENCE:

VOID AFT_RETRIEVEFLIGHTEVENTS (FLIGHT_EVENTS, MSN_ID, NAV_NUM)

PARAMETERS:

Name	I/O	Type	Description

FLIGHT_EVENTS	I	LIST_PTR	Linked list of flight events.

MSN_ID	I	INT_16_TYPE	Unique mission ID.

NAV_NUM	I	INT_16_TYPE	Nav number these flight events are associated with.

DESCRIPTION:

This function is used to retrieve the flight events for a given mission. Note that the LIST* variable needs to be a non-NULL list pointer.

EXAMPLE:

with AFT;

use AFT;

with BASE_TYPES;

FLIGHT_EVENTS 	: LIST_PTR;

MSN_ID 	: BASE_TYPES.INT_16_TYPE;

NAV_NUM 	: BASE_TYPES.INT_16_TYPE;

VOID AFT_RETRIEVEFLIGHTEVENTS (FLIGHT_EVENTS, MSN_ID, NAV_NUM);

�

FUNCTION: � tc " AFT_UPDATEATTACKMANEUVERPTS" \l 3 �AFT_UPDATEATTACKMANEUVERPTS�
IFA16025�
�
CALLING SEQUENCE:

status := aft_updateAttackManeuverPts (curr_pt, maneuverPts)

PARAMETERS:

Name	I/O	Type	Description

CURR_PT	I	APT_ACTION_	Current action point.

		POINT_T_PTR

MANEUVERPTS	I	LIST_PTR	Maneuver point list.

"RETURN"	O	ST_STATUS	Function return status.

DESCRIPTION:

This function updates the current route being processed with the specified Attack Maneuver points.

EXAMPLE:

with AFT;

use AFT;

with aft_proto;

use aft_proto;

CURR_PT 	: APT_ACTION_POINT_T_PTR;

MANEUVERPTS 	: LIST_PTR;

STATUS 	: ST_STATUS;

Document No. 160008-IDD-6.2 - February 1998

G.1.5-� PAGE �1�

