SECTION G.16.9�UTILITY X-WINDOW �(UXT) ADA BINDINGS
�
�

This page intentionally left blank.
�
FUNCTION: � tc " UXT_ADDPICKHANDLER" \l 3 �UXT_ADDPICKHANDLER�IFA15098��CALLING SEQUENCE:
PICKID := UXT_ADDPICKHANDLER (WIN)
PARAMETERS:
Name	I/O	Type	Description
WIN	I	WIDGET	Widget that requires event handling.
PICKID	O	UXT_PICKID	Unique ID for the registered event handler.
DESCRIPTION:
This function adds a pick handler to the specified window and returns a unique ID for the installed pick handler. This ID is required for subsequent calls to the pick handling functions.
EXAMPLE:
with ULT;
use ULT;

WIN 	: WIDGET;
PICKID 	: UXT_PICKID;

PICKID := UXT_ADDPICKHANDLER (WIN);

�
FUNCTION: � tc " uxt_buildXmString" \l 3 �uxt_buildXmString�IFA15070��CALLING SEQUENCE:
OUTPUT := UXT_BUILDXMSTRING (TEXT, WRAPWIDTH)
PARAMETERS:
Name	I/O	Type	Description
TEXT	I	ADDRESS	A string of text to be put in an XMSTRING and wrapped at the specified column.
WRAPWIDTH	I	INT_16_TYPE	The column number at which to wrap the specified text.
OUTPUT	O	XM_STRING	The resulting XMSTRING with string separators embedded so that the text appears wrapped at the desired column.
DESCRIPTION:
This function creates an XMSTRING that has separators embedded in the string so that when the XMSTRING is displayed, it will be displayed on multiple lines instead of a single line. The calling function can specify the "wrap width" for the resulting XMSTRING.
EXAMPLE:
with ULT;
use ULT;
with BASE_TYPES;

TEXT 	: constant STRING := "LINE OF TEXT" & ASCII.NUL;
WRAPWIDTH 	: BASE_TYPES.INT_16_TYPE:= 20;
OUTPUT	: XM_STRING;

OUTPUT := UXT_BUILDXMSTRING (TEXT'ADDRESS, WRAPWIDTH);

�
FUNCTION: � tc " UXT_CHECKSTRING" \l 3 �UXT_CHECKSTRING�IFA15071��CALLING SEQUENCE:
OUTPUT := UXT_CHECKSTRING (PARSETEXT, TEXTTEXT)
PARAMETERS:
Name	I/O	Type	Description
PARSETEXT	I	ADDRESS	The parse string.
TEXTTEXT	I	ADDRESS	The string to check against the parse string.
OUTPUT	O	BOOLEAN	Returns TRUE or FALSE.
DESCRIPTION:
This function, given the ParseString and the string to check against it, returns TRUE if they match, FALSE otherwise.
EXAMPLE:
with ULT;
use ULT;
with ST_SYSDEFS;
use ST_SYSDEFS;

PARSETEXT 	: constant STRING := "TEST STRING" & ASCII.NULL;
TEXTTEXT 	: constant STRING := "TEST STRING" & ASCII.NULL;
OUTPUT 	: BOOLEAN;

OUTPUT := UXT_CHECKSTRING (PARSETEXT'ADDRESS, TEXTTEXT'ADDRESS);

�
FUNCTION: � tc " UXT_CREATEHOURCURSOR" \l 3 �UXT_CREATEHOURCURSOR�IFA15074��CALLING SEQUENCE:
CURSOR := UXT_CREATEHOURCURSOR (W)
PARAMETERS:
Name	I/O	Type	Description
W	I	WIDGET	Parent widget.
CURSOR	O	ADDRESS	Handle of cursor.
DESCRIPTION:
This function creates an hourglass-shaped cursor.
EXAMPLE:
with ULT;
use ULT;

W 	: Widget;
CURSOR 	: ADDRESS;

CURSOR := UXT_CREATEHOURCURSOR (W);

�
FUNCTION: � tc " UXT_CREATEMENUBUTTON" \l 3 �UXT_CREATEMENUBUTTON�IFA15081��CALLING SEQUENCE:
W := UXT_CREATEMENUBUTTON (PARENT, BUTTONNAME)
PARAMETERS:
Name	I/O	Type	Description
PARENT	I	WIDGET	Pointer to the widget which will be the parent of the created PUSHBUTTON.
BUTTONNAME	I	ADDRESS	String used to label the button.
W	O	WIDGET	Pointer to widget created.
DESCRIPTION:
This function creates a MOTIF PUSHBUTTON that can be used in a dynamic menu.
EXAMPLE:
with ULT;
use ULT;

PARENT 	: WIDGET;
BUTTONNAME 	: constant STRING := "Save" & ASCII.NUL;
W 	: WIDGET;

W := UXT_CREATEMENUBUTTON (PARENT, BUTTONNAME'ADDRESS);

�
FUNCTION: � tc " UXT_CREATETOOLBARENTRY" \l 3 �UXT_CREATETOOLBARENTRY �IFA15104��CALLING SEQUENCE:
MYWIDGET:= UXT_CREATETOOLBARENTRY(TOOLBAR_C, FILENAME)
PARAMETERS:
Name	I/O	Type	Description
TOOLBAR_C	I	TOOLBAR	Create toolbar.
FILENAME	I	ADDRESS	Relative path and filename of bitmap.
MYWIDGET	O	WIDGET	Widget .
DESCRIPTION:
This function will create an entry in the toolbar for the requested icon and function callback. The string contained in the “filename” argument is concatenated with the environment variable $SYSTEM_BITMAPS to form the location and name of the bitmap to attach to the requested toolbar button. The MPM path should be prepended to the filename. Recommended sizes of toolbar bitmaps should be 16 x 16 pixels for 8-bit machines.

Core automatically generates a toolbar with 12 tools in the call to sit_init. The following table shows the order of the tools created on the toolbar, the type of button, and the associated bitmap found in $SYSTEM_BITMAPS.

Button�File name��Zoom In�zoomin.xbm��Zoom Out�zoomout.xbm��Box Zoom�boxzoom.xbm��Re-center�recenter.xbm��Magnifier�boxmag.xbm��Legend�legend.xbm��Background�background.xbm��Range/Bearing�range_bearing.xbm��Annotation Editor�annotate.xbm��Geo Editor�geo.xbm��Clutter/Declutter�clutter.xbm��Quick Query�quick.xbm��
EXAMPLE:

with XT;
with SYSTEM;

MYWIDGET	: XT.WIDGET;
FILENAME	: STRING(1..X);
TOOLBAR_C	: TOOLBAR;

MYWIDGET := UXT_CREATETOOLBARENTRY(TOOLBAR_C, FILENAME'ADDRESS);

�
FUNCTION: � tc " UXT_DISPLAYMESSAGE" \l 3 �UXT_DISPLAYMESSAGE�IFA15077��CALLING SEQUENCE:
MSGBOX := UXT_DISPLAYMESSAGE (PARENT, TITLE, MESSAGE)
PARAMETERS:
Name	I/O	Type	Description
PARENT	I	WIDGET	Parent widget of the message dialog box.
TITLE	I	ADDRESS	Character string containing the title for the message dialog.
MESSAGE	I	ADDRESS	Character string to be displayed in the message box.
MSGBOX	O	WIDGETS	Widget pointer to the message box. This is the ID used with the uxt_removeMessage() function.
DESCRIPTION:
This function displays the specified message in a message box and returns the widget pointer of the message box.
EXAMPLE:
with ULT;
use ULT;

PARENT 	: WIDGET;
TITLE 	: constant STRING := "Executing Query" & ASCII.NUL;
MESSAGE 	: constant STRING := "Query: Please wait" & ASCII.NUL;
MSGBOX	: WIDGET;

MSGBOX := UXT_DISPLAYMESSAGE (PARENT'ADDRESS, TITLE, MESSAGE'ADDRESS);

�
FUNCTION: � tc " UXT_DISPLAYWORKINGMESSAGE " \l 3 �UXT_DISPLAYWORKINGMESSAGE�IFA15173��CALLING SEQUENCE:
MSGBOX := UXT_DISPLAYWORKINGMESSAGE (PARENT, TITLE’ADDRESS, MESSAGE’ADDRESS)
PARAMETERS:
Name	I/O	Type	Description
PARENT	I	WIDGET	Parent widget of the message dialog box.
TITLE	I	ADDRESS	Character string containing the title for the message dialog.
MESSAGE	I	ADDRESS	Character string to be displayed in the message dialog.
MSGBOX	O	WIDGET	Widget pointer to the new Working Dialog.
DESCRIPTION:
This function returns the widget id of a Working Message Box, and displays the message box on the screen. The message box contains the title and message text provided as inputs and displays the message box in the parent widget given by the parent input parameter. The message box requires the user to acknowledge.
EXAMPLE:
with ULT;
use ULT;

PARENT 	: WIDGET;
TITLE 	: constant STRING := "Loading Data" & ASCC.NUL;
MESSAGE 	: constant STRING := "Loading DATA - this process may take several hours”
MSGBOX 	: WIDGET;

MSGBOX := UXT_DISPLAYWORKINGMESSAGE (PARENT, TITLE'ADDRESS, MESSAGE'ADDRESS);
�
FUNCTION: � tc " UXT_FLUSH" \l 3 �UXT_FLUSH�IFA15080��CALLING SEQUENCE:
UXT_FLUSH (W)
PARAMETERS:
Name	I/O	Type	Description
W	I	WIDGET	Pointer to the widget to be displayed on the screen.
DESCRIPTION:
This function flushes all of the display events in the event queue to the server. This function performs the same function as XmUpdateDisplay(), but it seems to do a better job.
EXAMPLE:
with ULT;
use ULT;

W 	: WIDGET;

UXT_FLUSH (W);

�
function: � TC " uxt_free " \l 3 �uxt_free�IFA15178��CALLING SEQUENCE:
uxt_free (item_addr)
PARAMETERS:
Name	I/O	Type	Description
item_addr	I	ADDRESS_PTR	Address of pointer to resources that are to be released.
DESCRIPTION:
This function will release the resources referenced by the input pointer.

If the address to the pointer is NULL, no processing will occur and a warning will be written to the error logger.

If the address to the pointer is valid, the resources that the pointer references will be released and the pointer will be set to NULL.

Note: If the address to a structure is passed in, any resources that have been allocated to fields within the structure should be released (i.e., if a LIST is one (1) of the fields in the structure, then the resources used by the LIST should be released before releasing the resources used by the structure).
EXAMPLE:
with UNSIGNED;

ITEM_ADDR	: UNSIGNED.ADDRESS_PTR;

UXT_FREE (ITEM_ADDR);�
FUNCTION: � tc " UXT_GETLISTSELECTION" \l 3 �UXT_GETLISTSELECTION�IFA15153��CALLING SEQUENCE:
BUFFER := UXT_GETLISTSELECTION (W, POSITION)
PARAMETERS:
Name	I/O	Type	Description
W	I	WIDGET	Widget ID of the list box.
POSITION	O	INT_32_PTR	Pointer to be filled in with the selected item position on the list.
BUFFER	O	ADDRESS	Selected item.
DESCRIPTION:
This function gets the position of a selected item in a selection list box.
EXAMPLE:
with XT;
with SYSTEM;
with BASE_TYPES;

W			: XT.WIDGET;
POSITION	: BASE_TYPES.INT_32_PTR;
BUFFER		: SYSTEM.ADDRESS;

BUFFER := UXT_GETLISTSELECTION(W,POSITION);

�
FUNCTION: � tc " UXT_GETPICKACTION" \l 3 �UXT_GETPICKACTION�IFA15102��CALLING SEQUENCE:
STATUS := UXT_GETPICKACTION (PICK_ID, BUTTON, TYPE_C, FUNCTION_C, DATA)
PARAMETERS:
Name	I/O	Type	Description
PICK_ID	I	UXT_PICKID	Unique ID for the pick event handler.
BUTTON	I	INT_32_TYPE	Specifies the mouse/trackball button to which the function is being attached (UXT_BUTTON).
TYPE_C	I	INT_32_TYPE	Type of user action (UXT_PICKTYPE) that the specified function is associated with.
FUNCTION_C	O	XT_EVENT_	Return the function attached to the
		HANDLER_PTR	specified pick event and mouse/trackball button.
DATA	O	ADDRESS	Return the client data to be passed to the specified function.
STATUS	O	ST_STATUS	Return SUCCESS or FAILURE.
DESCRIPTION:
This function allows the developer to retrieve the function to be called whenever a desired "pick event" occurs.
EXAMPLE:
with ULT;
use ULT;
with BASE_TYPES;

PICK_ID 	: UXT_PICKID;
BUTTON 	: BASE_TYPES.INT_32_TYPE; --UXT_BUTTON;
TYPE_C 	: BASE_TYPES.INT_32_TYPE; --UXT_PICKTYPE;
FUNCTION_C	: XT_EVENT_HANDLER_PTR ;
DATA 	: ADDRESS;
STATUS 	: ST_STATUS;

STATUS := UXT_GETPICKACTION (PICK_ID, BUTTON, TYPE_C, FUNCTION_C, DATA);
�
FUNCTION: � tc " UXT_GETPICKHANDLER" \l 3 �UXT_GETPICKHANDLER�IFA15100��CALLING SEQUENCE:
PICK_ID := UXT_GETPICKHANDLER (WIN)
PARAMETERS:
Name	I/O	Type	Description
WIN	I	WIDGET	Widget that requires pick event handling to be returned.
PICK_ID	O	UXT_PICKID	Returns the located UXT_PICKID or NULL if not located.
DESCRIPTION:
This function retrieves the specified pick handler from the X window.
EXAMPLE:
with ULT;
use ULT;

WIN 	: WIDGET;
PICK_ID 	: UXT_PICKID;

PICK_ID := UXT_GETPICKHANDLER (WIN);

�
FUNCTION: � tc " UXT_GETXCOLORINDEX" \l 3 �UXT_GETXCOLORINDEX�IFA15087��CALLING SEQUENCE:
COLOR := UXT_GETXCOLORINDEX (DELORMEINDEX)
PARAMETERS:
Name	I/O	Type	Description
DELORMEINDEX	I	INT_32_TYPE	The DeLorme color index for which the X colormap index is required.
COLOR	O	UNSIGNED_INT_	The X colormap index for the
		32_TYPE	specified DeLorme color.
DESCRIPTION:
This function translates a DeLorme color index value to the proper X colormap index value. The function returns the correct colormap index for the specified DeLorme color, or FAILURE (-1) if the specified DeLorme index is outside the allowed range (i.e., 0-15).

TAMPS Default Colors, Line Styles, and Fill Styles:

Colors:
0	=	Black
1	=	deepskyblue3
2	=	green3
3	=	turquoise
4	=	red
5 	=	yellow
6	=	antiquewhite
7	=	peachpuff3
8	=	Steelblue3
9	=	greenyellow
10 	=	mediumblue
11 	=	grey75
12 	=	magenta
13 	=	seagreen4
14 	=	cyangl
15 	=	white

Line Styles:
1 	=	Solid = mpt_lsSolid.btm
2 	=	LongDashed = mpt_lsLongDash.btm
3	=	Dotted = mpt_lsDotted.btm
4 	=	Dashdot = mpt_Dashdot.btm
5 	=	MedDashed = mpt_lsMedDash.btm
6 	=	Dash2Dot = mpt_lsDash2Dot.btm
7 	=	ShortDash = mpt_lsShortDash.btm

Fill Styles:
1	=	Clear
2	=	///////////////////////
3	=	/ / / / / / / / / / / /
4	=	/ / / / / / / / /
5	=	XXXXXXXXXX
6	=	X X X X X X X X
7	=	X X X X X X X
8	=	trees1
9	=	trees2
10	=	trees3
11	=	grass
EXAMPLE:
with ULT;
use ULT;
with BASE_TYPES;

DELORMEINDEX 	: BASE_TYPES.INT_32_TYPE:= 15;
COLOR 	: BASE_TYPES.UNSIGNED_INT_32_TYPE;

COLOR := UXT_GETXCOLORINDEX (DELORMEINDEX);

�
function: � TC " uxt_get_FmtStr " \l 3 �uxt_get_FmtStr�IFA15179��CALLING SEQUENCE:
format := uxt_get_FmtStr(LatORLon, fmt)
PARAMETERS:
Name	I/O	Type	Description
LatORLon	I	BASE_TYPES.INT_	Type of format string being
		32_TYPE	requested.
fmt	I	BASE_TYPES.INT_	Units for the Latitude or
		32_TYPE	Longitude.
FORMAT	O	ADDRESS	Format string for the type and units.
DESCRIPTION:
This function will return the desired format string for the specified type and specified units.

If the type of format string is UXT_LAT, then the format string returned will be for Latitude. If the type of format string is UXT_LON, then the format string returned will be for Longitude.

Given the type of format string that is requested and the units that the type should be formatted in, a character string representing the correct format for Latitude or Longitude will be returned.
EXAMPLE:
with BASE_TYPES;
with SYSTEM;
with MT_DEFS;

LATORLON	: BASE_TYPES.INT_32_TYPE;
FMT		: BASE_TYPES.INT_32_TYPE;
FORMAT		: SYSTEM.ADDRESS;

FORMAT := UXT_GET_FMTSTR (LATORLON, FMT);
�
FUNCTION: � tc " UXT_LOSINGFOCUSCALLBACK" \l 3 �UXT_LOSINGFOCUSCALLBACK�IFA15154��CALLING SEQUENCE:
UXT_LOSINGFOCUSCALLBACK (W, FMT_STR, CALL_DATA)
PARAMETERS:
Name	I/O	Type	Description
W	I	WIDGET	Pointer to the widget.
FMT_STR	I	XTPOINTER	Character string describing the format of the string expected to be input into the field.
CALL_DATA	I	XTPOINTER	Not used.
DESCRIPTION:
This function verifies that the string entered by the user matches the specified format. It will fill in data that can be filled in, but will not fill in data for which there is not an obvious default. For example, if the user types just "30:5" into a field expecting a latitude, this routine will transform that string into "30:05:00", but will not attempt to fill in a hemisphere. If the transformed string does not completely match the format string, then the text cursor will be positioned at the point where the input needs to be corrected. The format string is the same as that used by uxt_ModifyVerifyCallback.
EXAMPLE:
with XT;

W	: XT.WIDGET;
FMT_STR	: XT.XTPOINTER;
CALL_DATA	: XT.XTPOINTER;

UXT_LOSINGFOCUSCALLBACK(W,FMT_STR,CALL_DATA);

�
FUNCTION: � tc " UXT_MODIFYVERIFYCALLBACK" \l 3 �UXT_MODIFYVERIFYCALLBACK�IFA15091��CALLING SEQUENCE:
UXT_MODIFYVERIFYCALLBACK (TEXTWIDGET, PARSETEXT’ADDRESS, CBDATA)
PARAMETERS:
Name	I/O	Type	Description
TEXTWIDGET	I	WIDGET	The text widget.
PARSETEXT	I	ADDRESS	The parse string.
CBDATA	I	ADDRESS	Address of the callback data.
DESCRIPTION:
This function is the main interface to the text verification software. This function allows the applications developer to specify a text verification string that will be used as a template for data entry by the user. If the user enters a character that is not allowed by the text verification string, the application will beep and the character will not be entered in the XmText or XmTextField value string. The text verification string allows for regular expressions, as well as some predefined data entry templates. This function should be registered as a XmNmodifyVerifyCallback on the appropriate XmText or XmTextField widget with the text verification string specified as the client data to the callback. Refer to the example below, as well as the regular expression grammar for more information.

Below is a description of the regular grammer which can be used for parseString. �
Basic Operations with Default Parameters

%d	An integer with a minimum of one (1) character and a maximum of eight (8) characters.
%|	An integer with a minimum of one (1) character and a maximum of 12 characters.
%s	A string with a minimum of one (1) characer and a maximum of 500 characters
%c	A single character.

Note: Each of the above may be modified further by adding a single number which specifies the number of characters that must be entered. The number of characters must be matched exactly.

For example:
%2d	A two (2)-digit number must be entered. The positive and negative signs are of no consequence.

A range may also be specified with a dash separating the two (2) modifiers.

%2-10s	At least two (2) characters, but no more than ten, may be entered.

If no positive or negative signs can be entered, a “+” should be placed after the %.

%+2-4d	A four (4)-digit integer with no sign

Operations involving Square Brackets []

A set of square brackets, “[]”, in the parseString allows the specification of anything inside of the square brackets to be matched, following the rules established by the regular expression compiler (re_comp).

[A-Za-z0-9]	Any letter, upper or lower, and any number.

If a dash, “-”, is wanted it must be the last character before the close bracket. If a close square bracket is wanted, it must be the first character after the open square bracket. If an open square bracket is wanted, it must NOT be the last character before the close square bracket.

If more than one (1) of the characters in the brackets are wanted, then an asterisk, “*”, can be placed after the close bracket.

[a-z]*	Will allow the user to type as many lower case letters as wanted, but at least one (1).

Operations involving Curly Brackets {}

A set of curly brackets, “{}”, in the parseString allows the specification of anything inside of the brackets to be matched, following the rules established by the regular expression compiler (re_comp). The difference between these and the square brackets is that with the square brackets at least one (1) character must match the set. With the curly brackets there is no minimum.

{A-Za-z0-9}	Any letter, upper or lower, any number, or a blank string.

If multiple characters in the bracket are wanted then an asterisk, “*”, can be placed after the close bracket.

{a-z}*	Will allow the user to type as many lower case letters as wanted, including NONE.

Other Special Parse Symbology

%M	A valid month must be entered 1-12.
%D		A valid day must be entered 1-31.
%H	A valid hour must be entered 0-23.
%N	A valid minute must be entered 0-59.
%S		A valid second must be entered 0-59.

%2s/%M/%D %H:%N:%S	Allow entry of “YY/MM/DD HH:MM:SS” format.

Ranges

%min-maxR	A number must be entered between min and max with the number of characters used for minimum being the number of characters that must be entered.
%0-100R	Numbers from zero (0) to 100 are valid.
%00-100R	Again, numbers from zero (0) to 100 are valid, but the number must contain at least two (2) digits and at most three (3) digits.

The Slash

	All other characters in the string must be typed, unless backslashed, in which case the character following the backslash must be entered, unless pop mode is turned on. Case DOES matter.

“Slash = \\”	The user must enter “Slash = \”

Pop Mode

If you want the field separators to automatically pop up as the user enters the data, then the first character of the ParseString should be set to “\1” (the character with octal value 1). In order for this function to work, the XmValueChangedCallback MUST be set to uxt_ValueChangedCallback.

(WARNING: Some versions of MOTIF are missing the XmValueChangedCallback with the XmTextField Widget).

For example, in the Slash example above, once the user typed the ‘S,’ the rest of the string would just “Pop” right into the Widget. Pop mode will not work with uxt_CheckString.

Common Mode

Common Mode allows common field separators to be interchanged, thus allowing faster data entry. The interchangeable separators are the slash, colon, period, semicolon, space, and dash. To engage Common Mode, the first character of the parseString must be set to “\2” (the character with octal value 2). If common mode and Pop Mode are both required, then the first character should be set to”\3” (the character with octal value 3). In order for this function to work, the XmValueChangedCallback MUST be set to uxt_ValueChangedCallback.

Upcase Mode

Upcase mode, automatically upcases letters as they are typed. To engage Upcase Mode, the first character of the parseString must be “\4” (character with octal value 4). In order for this function to work, the XmValueChangedCallback MUST be set to uxt_ValueChangedCallback.

Additional Parse Examples

%+000-360R[nNsSeEwW]	Force a three (3) digit value to be entered between zero (0) and 360, followed by an N, S, E, or W either upper or lower case.
-%+4d %s END	Force a negative number to be entered followed by a string, and another space, and finally the word END must be entered.
\1-%+4d %s END	Force a negative number to be entered followed by a string, and another space. As soon as the space is entered the word “END” will pop up.
%d.%+d	Force the entry of a floating point number.
[]0-9A-Z]*[a-z]*[][]*	Allow multiple numbers, uppercase and left brackets followed by multiple lower case numbers, followed by multiple left and right brackets.
%0-180R%0-59R%0-59R[EW]	Sample parseString for longitude checking.
EXAMPLE:
with SYSTEM;
with XT;

TEXTWIDGET 	: XT.WIDGET;
PARSETEXT 	: constant STRING := "TEST STRING" & ASCII.NUL;
CBDATA 	: SYSTEM.ADDRESS;

UXT_MODIFYVERIFYCALLBACK(W, PARSETEXT'ADDRESS, CALL);

�
function: � TC " uxt_PIXMAP " \l 3 �uxt_PIXMAP�IFA15180��CALLING SEQUENCE:
pxmap := uxt_PIXMAP(w, filename)
PARAMETERS:
Name	I/O	Type	Description
w	I	Widget	Widget to get foreground and background color values from.
filename	I	ADDRESS	Filename of PIXMAP.
PXMAP	O	Pixmap	X-Window Pixmap representing the specified Pixmap filename.
DESCRIPTION:
This function will create a X-Window Pixmap from the data contained in the specified filename.

If either the widget is NULL, or the filename is NULL, an error will be written to the error logger and XmUNSPECIFIED_PIXMAP will be returned.

If the filename does not start with a “/”, then the string “$MT_SYMBOL_PATH/symbols/tamps/” will be appended before the filename and that file will be accessed.

If the filename cannot be accessed, then the “default” Pixmap file will be used.
EXAMPLE:
with XT;
with SYSTEM;
with X_LIB;

W	: XT.WIDGET;
FILENAME	: SYSTEM.ADDRESS;
PXMAP	: X_LIB.PIXMAP;

PXMAP := UXT_PIXMAP (W, FILENAME);
�
FUNCTION: � tc " UXT_REMOVEMESSAGE" \l 3 �UXT_REMOVEMESSAGE�IFA15078��CALLING SEQUENCE:
UXT_REMOVEMESSAGE (MSGBOX)
PARAMETERS:
Name	I/O	Type	Description
MSGBOX	I	WIDGET	Widget pointer to the message box to be removed from the screen.
DESCRIPTION:
This function removes the associated message box from the screen and destroys the widgets.
EXAMPLE:
with ULT;
use ULT;

MSGBOX 		: WIDGET;

UXT_REMOVEMESSAGE (MSGBOX);

�
FUNCTION: � tc " UXT_REMOVEPICKHANDLER" \l 3 �UXT_REMOVEPICKHANDLER�IFA15099��CALLING SEQUENCE:
STATUS := UXT_REMOVEPICKHANDLER (WIN)
PARAMETERS:
Name	I/O	Type	Description
WIN	I	WIDGET	Widget that requires pick event handling to be removed.
STATUS	O	ST_STATUS	Returns SUCCESS or FAILURE.
DESCRIPTION:
This function removes the specified pick handler from the X window.
EXAMPLE:
with ULT;
use ULT;

WIN 	: WIDGET;
STATUS 	: ST_STATUS;

STATUS := UXT_REMOVEPICKHANDLER (WIN);

�
FUNCTION: � tc " UXT_SETHOURCURSOR" \l 3 �UXT_SETHOURCURSOR�IFA15076��CALLING SEQUENCE:
UXT_SETHOURCURSOR (W, SET)
PARAMETERS:
Name	I/O	Type	Description
W	I	WIDGET	Widget ID of the menu button.
SET	I	Boolean	Flag to determine whether to turn ON the hour glass or turn it OFF.
DESCRIPTION:
This function sets the cursor for the widget ID (window) passed in to an hourglass symbol, if the set parameter is set to TRUE, and sets it back to the default cursor (or the original) if it is set to FALSE.

MPMs should call this function to place the hourglass on the main map and on the top-most (visible) dialog.
EXAMPLE:
with XT;

W 	: XT.WIDGET;
SET 	: Boolean := TRUE;

UXT_SETHOURCURSOR (W, SET);

�
function: � TC " UXT_SETOPTIONHISTORY" \L 3 � UXT_SETOPTIONHISTORY�IFA15163��CALLING SEQUENCE:
STATUS := UXT_SETOPTIONHISTORY(OPTIONMENU, LABEL’ADDRESS, CASE_SENSITIVE)
PARAMETERS:
Name	I/O	Type	Description
OPTIONMENU	I	WIDGET	Option Menu Widget ID.
LABEL	I	STRING	Label.
CASE_SENSITIVE	I	Boolean	Case sensitivity indicator.
STATUS	O	ST_STATUS	Return Pass or Failure.
DESCRIPTION:
Given a text label of a child widget, this function sets the menuhistory for an option menu. The menuhistory determines which item of a pulldown menu pane is displayed as the current choice within the selection area where the default is usually the first item.
EXAMPLE:
with SYSTEM;
with ST_SYSDEFS;
with XT;

OPTIONMENU	: XT.WIDGET;
LABEL	: STRING(1..X);
CASE_SENSITIVE	: BOOLEAN;
STATUS	: ST_SYSDEFS.ST_STATUS;

	STATUS := UXT_SETOPTIONHISTORY(OPTIONMENU, LABEL'ADDRESS, CASE_SENSITIVE);

�
FUNCTION: � tc " UXT_SETPICKACTION" \l 3 �UXT_SETPICKACTION�IFA15101��CALLING SEQUENCE:
STATUS := UXT_SETPICKACTION (PICK_ID, BUTTON, TYPE_C, FUNCTION_C, DATA)
PARAMETERS:
Name	I/O	Type	Description
PICK_ID	I	UXT_PICKID	Unique ID for the pick event handler.
BUTTON	I	INT_32_TYPE	Specifies the mouse/trackball button to which the function is being attached of type UXT_BUTTON.
TYPE_C	I	INT_32_TYPE	Type of user action (UXT_PICKTYPE) that the specified function is associated with.
FUNCTION_C	I	XT_EVENT_HANDLER_ 	The function to be attached to
		PTR	the specified pick event and mouse/trackball button.
DATA	I	ADDRESS	Client data to be passed to the specified function.
STATUS	O	ST_STATUS	Return SUCCESS or FAILURE.
DESCRIPTION:
This function allows the developer to specify the function to be called whenever a desired "pick event" occurs.
EXAMPLE:
with ULT;
use ULT;
with BASE_TYPES;

PICK_ID 	: UXT_PICKID;
BUTTON 	: BASE_TYPES.INT_32_TYPE; --UXT_BUTTON
TYPE_C 	: BASE_TYPES.INT_32_TYPE; --UXT_PICKTYPE
FUNCTION_C 	: XT_EVENT_HANDLER_PTR ;
DATA 	: ADDRESS;
STATUS 	: ST_STATUS;

STATUS := UXT_SETPICKACTION (PICK_ID, BUTTON, TYPE_C, FUNCTION_C, DATA);
�
FUNCTION: � tc " UXT_SETSTATUSTEXT" \l 3 �UXT_SETSTATUSTEXT�IFA15155��CALLING SEQUENCE:
UXT_SETSTATUSTEXT (CLEARWINDOW, TEXT)
PARAMETERS:
Name	I/O	Type	Description
CLEARWINDOW	I	BOOLEAN	Clear the Status window flag.
TEXT	I	ADDRESS	Pointer to text for update.
DESCRIPTION:
This function sets the string resource of the status window widget.
EXAMPLE:
with SYSTEM;

CLEARWINDOW	: BOOLEAN;
TEXT			: STRING(1..X);

UXT_SETSTATUSTEXT(CLEARWINDOW, TEXT’ADDRESS);

�
FUNCTION: � tc " uxt_set_gridfmtstr" \l 3 �uxt_set_gridfmtstr�IFA15147��CALLING SEQUENCE:
UXT_SET_GRIDFMTSTR(TXT_WIDGET, GRID_FMT)
Parameters:
Name	I/O	Type	Description
TXT_WIDGET	I	WIDGET	Widget to have format.
GRID_FMT	I	MT_GRIDS	Grid format value.
Description:
This function imposes a grid format on a text widget.
EXAMPLE:
with SYSTEM;
with ST_SYSDEFS;
with XT;

TXT_WIDGET	: XT.WIDGET;
GRID_FMT	: MT_DEFS.MT_GRIDS;

UXT_SET_GRIDFMTSTR(TXT_WIDGET, GRID_FMT);

�
FUNCTION: � tc " UXT_SET_LATFMTSTR" \l 3 �UXT_SET_LATFMTSTR�IFA15156��CALLING SEQUENCE:
UXT_SET_LATFMTSTR (TXT_WIDGET, LAT_FMT)
PARAMETERS:
Name	I/O	Type	Description
TXT_WIDGET	I	WIDGET	Widget to have latitude format.
LAT_FMT	I	INT_32_TYPE	Latitude format string.
DESCRIPTION:
This function imposes a latitude format on a text widget.
EXAMPLE:
with XT;
with BASE_TYPES;

TXT_WIDGET	: XT.WIDGET;
LAT_FMT	: BASE_TYPES.INT_32_TYPE;

UXT_SET_LATFMTSTR(TXT_WIDGET, LAT_FMT);

�
FUNCTION: � tc " UXT_SET_LONFMTSTR" \l 3 �UXT_SET_LONFMTSTR�IFA15157��CALLING SEQUENCE:
UXT_SET_LONFMTSTR (TXT_WIDGET, LON_FMT)
PARAMETERS:
Name	I/O	Type	Description
TXT_WIDGET	I	WIDGET	Widget to have format.
LON_FMT	I	INT_32_TYPE	Longitude format string.
DESCRIPTION:
This function imposes a longitude format on a text widget.
EXAMPLE:
with XT;
with BASE_TYPES;

TXT_WIDGET	: XT.WIDGET;
LON_FMT	: BASE_TYPES.INT_32_TYPE;

UXT_SET_LONFMTSTR(TXT_WIDGET, LON_FMT);

�
FUNCTION: � tc " UXT_TOOLBARDOWN" \l 3 �UXT_TOOLBARDOWN�IFA15158��CALLING SEQUENCE:
UXT_TOOLBARDOWN (W, CLIENT, CALL)
PARAMETERS:
Name	I/O	Type	Description
W	I	WIDGET	Widget this callback is attached to.
CLIENT	I	XTPOINTER	Client data.
CALL	I	XTPOINTER	Callback struct pointer.
DESCRIPTION:
This function is a callback for the down arrow toolbar movement button.
EXAMPLE:
W		: XT.WIDGET;
CLIENT	: XT.XT_POINTER;
CALL	: XT.XT_POINTER;

UXT_TOOLBARDOWN(W, CLIENT, CALL);

�
FUNCTION: � tc " UXT_TOOLBARLEFT" \l 3 �UXT_TOOLBARLEFT�IFA15159��CALLING SEQUENCE:
UXT_TOOLBARLEFT (W, CLIENT,CALL)
PARAMETERS:
Name	I/O	Type	Description
W	I	WIDGET	Widget this callback is attached to.
CLIENT	I	XTPOINTER	Client data.
CALL	I	XTPOINTER	Callback struct pointer.
DESCRIPTION:
This function is a callback for the left arrow toolbar movement button.
EXAMPLE:
with XT;

W		: XT.WIDGET;
CLIENT	: XT.XT_POINTER;
CALL	: XT.XT_POINTER;

UXT_TOOLBAR_LEFT(W, CLIENT, CALL);

�
FUNCTION: � tc " UXT_TOOLBARRIGHT" \l 3 �UXT_TOOLBARRIGHT�IFA15160��CALLING SEQUENCE:
UXT_TOOLBARRIGHT (W, CLIENT, CALL)
PARAMETERS:
Name	I/O	Type	Description
W	I	WIDGET	Widget this callback is attached to.
CLIENT	I	XTPOINTER	Client data.
CALL	I	XTPOINTER	Callback struct pointer.
DESCRIPTION:
This function is a callback for the right arrow toolbar movement button.
EXAMPLE:
with XT;

W		: XT.WIDGET;
CLIENT	: XT.XT_POINTER;
CALL	: XT.XT_POINTER;

UXT_TOOLBARRIGHT(W, CLIENT, CALL);

�
FUNCTION: � tc " UXT_TOOLBARUP" \l 3 �UXT_TOOLBARUP�IFA15161��CALLING SEQUENCE:
UXT_TOOLBARUP (W, CLIENT, CALL)
PARAMETERS:
Name	I/O	Type	Description
W	I	WIDGET	Widget this callback is attached to.
CLIENT	I	XTPOINTER	Client data.
CALL	I	XTPOINTER	Callback struct pointer.
DESCRIPTION:
This function is a callback for the up arrow toolbar movement button.
EXAMPLE:
with XT;

W		: XT.WIDGET;
CLIENT	: XT.XT_POINTER;
CALL	: XT.XT_POINTER;

UXT_TOOLBARUP(W, CLIENT, CALL);

�
FUNCTION: � tc " UXT_UPDATEMESSAGE" \l 3 �UXT_UPDATEMESSAGE�IFA15162��CALLING SEQUENCE:
UXT_UPDATEMESSAGE (MESSAGE, MSGBOX)
PARAMETERS:
Name	I/O	Type	Description
MESSAGE	I	ADDRESS	Character string to be displayed in the message box.
MSGBOX	I	WIDGET	Widget pointer to the message box. This is the ID used with the uxt_removeMessage function.
DESCRIPTION:
This function updates the displayed message in the specified message box.
EXAMPLE:
with XT;
with SYSTEM;

MESSAGE	: STRING(1..X);
MSGBOX		: XT.WIDGET;

UXT_UPDATEMESSAGE(MESSAGE’ADDRESS, MSGBOX);

�
FUNCTION: � tc " UXT_VALUECHANGECALLBACK" \l 3 �UXT_VALUECHANGEDCALLBACK�IFA15097��CALLING SEQUENCE:
UXT_VALUECHANGEDCALLBACK(W, CLIENT, CALL)
PARAMETERS:
Name	I/O	Type	Description
W	I	WIDGET	The text widget.
CLIENT	N	ADDRESS	Not used.
CALL	N	ADDRESS	Not used.
DESCRIPTION:
This function allows the applications developer to specify a text-verification string (see UXT_MODIFYVERIFYCALLBACK) where the literal text will automatically be placed into the XmText widget's value string. The function is only useful for the "pop-up" mode of the text-verification software. The "pop-up" mode is activated by making the first character of the text-verification string a CTRL-A (ASCII value of one). If the "pop-up" mode of text-verification is not being used, then this function is not necessary. For this function to work properly, the UXT_VALUECHANGEDCALLBACK() must be registered as a XmNvalueChangedCallback of the appropriate XmText widget. The XmText widget must also have an UXT_MODIFYVERIFYCALLBACK() function registered with the text verification string specifying the "pop-up" mode is to be used. Refer to the example for more detail.
EXAMPLE:
with ULT;
use ULT;

W 	: WIDGET;
CLIENT 	: ADDRESS;
CALL 	: ADDRESS;

UXT_VALUECHANGEDCALLBACK(W, CLIENT, CALL);

Document No. 160008-IDD-6.2 - February 1998

G.16.9-� PAGE �22�

