APPENDIX D �TAMMAC CORE EXTENSION

�

This page intentionally left blank.�SECTION D.1 �INTRODUCTION

�

The Tactical Aircraft Moving Map Capability (TAMMAC) provides the functionality to select map products and related data for loading to the Advanced Memory Unit (AMU). The data selected is formatted for a Personal Computer (PC)-Card placed in the slot and maintained in TAMMAC-unique databases. (For details on the formatting of the PC-Card, refer to Section 3, paragraph 3.1.5 and Appendix C)

Two (2) kinds of loads, theater and mission, are supported. Theater loads are designed to be applicable to a theater of operations, and are expected to stay in the aircraft for an extended period of time. They will contain only TAMMAC-specific data. Mission loads can supplement and override the theater load for particular mission requirements. Additionally, platform MPMs are expected to place any aircraft-unique initialization data on this card. For more details, refer to the Concept of Operations (Conops) for the TAMMAC.

The TAMMAC Core Extension (CE) is designed to be installed separately from the Core and independently from individual platform MPMs. A platform MPM may choose to be dependent upon the existence of the TAMMAC CE if the platform determines that TAMMAC is critical to their planning capabilities, but TAMMAC cannot force any particular platform MPM to use it.

The following documents are referenced in this appendix:

a.	Concept of Operations (CONOPS) for the Tactical Aircraft Moving Map Capability (TAMMAC); McDonnell Douglas Aerospace; 26 April 1997.

b.	Database Design Document (DBDD) for the TAMMAC Digital Map System (DMS) (Document Number 8002971), Revision B; Harris Corporation; 3 November 1997.

c.	Performance Specification for the Tactical Aircraft Moving Map Capability (TAMMAC) Advanced Memory Unit, Appendix C (Report Number PS 74-870261), Revision A; McDonnell Douglas Aerospace; 22 July 1997.

�

This page intentionally left blank.

��SECTION D.2�INSTALLATION

D.2.1	Overview

Upon installation, the TAMMAC CE will define an environment variable called $TAMMAC_CE_EXISTS. Any platform MPM installed which wishes to use the TAMMAC CE capabilities can check the existence of this environment variable to determine if the TAMMAC CE has been installed.

When the platform MPM is installed, it must create a directory to hold the data that it needs to provide to the TAMMAC CE, as well as a file to describe specific flags and parameters. Additionally, several more optional files and subdirectories may be provided to take advantage of various TAMMAC CE capabilities.

The directory created by the platform MPM must be a subdirectory of the directory pointed to by the $TAMMAC_MPM_DATA environment variable. The name of this subdirectory is up to the platform MPM, but it should be indicative of the platform MPM name (e.g., ìv22î or ìfa18î) to avoid name conflicts. The maximum length of this directory name is five (5) characters. The name of the subdirectory created by the platform MPM is used as the ìMPM IDî when the TAMMAC Mission Planning executable is invoked. The MPM ID passed into that executable must match the name of the subdirectory exactly.

The required file must be named params.dat and be placed in the directory described in the above paragraph. It is described in more detail in paragraph D.2.2, MPM Parameters File.

The optional files which the platform MPM may provide in this same directory are as follows:

A post-processor executable, named postprocess.exe, for performing platform-specific operations on data generated by the TAMMAC CE

A subdirectory named cp to contain configurable parameters files and their embedded colormaps

A subdirectory named symbols to contain alternate symbol sets

A file containing MPM-unique threat characteristics data

The subdirectories listed need only be provided if the platform MPM has default configurable parameters, alternate colormaps, or alternate symbol sets that it wishes to be loaded. Each of these items is described in more detail in the following subsections. Figure D.2.1-1 shows the overall directory structure, if every item listed is provided.

�

�

Figure D.2.1-1. MPM Data Directory Layout

D.2.2	MPM Parameters File

The TAMMAC CE will provide a general set of capabilities independent of any platform MPM. In order for an MPM to tailor the capabilities of the TAMMAC CE to fit the need of the particular platform, an MPM Parameters File must be provided. This file must be named params.dat and must be placed in the MPM Data directory described in paragraph D.2.1. If this file is not present, no other platform MPM-supplied information can be used, and the MPM cannot invoke the TAMMAC Mission Planning executable to perform mission planning. Table D.2.2-I shows the layout of this file.

Valid values must be supplied for all fields in this file, even if the platform MPM does not use a particular capability. For instance, if the platform MPM does not use Data Frames, a zero (0) or one (1) must still be supplied in the Data Frame Size Switch field.

Table D.2.2-I. MPM Parameters File Layout

Field�Type�Start Byte�Length �(bytes)�Description��Map Products Flag�Integer�0�1�See text following table.��Data Frames Flag�Integer�1�1�See text following table.��Threat Sites Flag�Integer�2�1�See text following table.���������Table D.2.2-I. MPM Parameters File Layout (Cont.)

Field�Type�Start Byte�Length �(bytes)�Description��Alt. Colormap Flag�Integer�3�1�See text following table.��Alt. Symbol Set Flag�Integer�4�1�See text following table.��������DF Size Switch�Integer�5�1�1=484x484 BMP, 0=768x768 HDF��Destination Device Switch�Integer�6�1�1=Hard Drive, 0=PC-Card��MPM Name�String�7�16�ASCII String indicating name user can select to choose the MPM��Padding Flag�Integer�23�1�1=Pad data files to 4 byte boundaries, �0=No Padding��RDTED Selection�Integer�24�1�1=150m RDTED only,�0=150m and 750m RDTED��Max. Size of Destination Device�Integer�25�2�Size in Megabytes (MB). Only used if the Destination Device Switch is Hard Drive.��Zone Overlap Rows Required�Integer�27�1�1 = Both zones,�0 = Poleward zone only��

The flags in the MPM Parameters file indicate whether or not that data is allowed to be planned within TAMMAC Mission or Theater Planning when that MPM is selected. A value of one (1) indicates the data may be planned; a zero (0) indicates it will not be available. For instance, if the F/A-18 uses Map Products, but not Data Frames in the cockpit, the F/A-18 MPM will specify a one (1) for the Map Products Flag, and a zero (0) for the Data Frames Flag. In this case, all options relating to Data Frames for TAMMAC Mission or Theater Planning will be unavailable (grayed out) when the user is planning F/A-18 TAMMAC data.

The Data Frame (DF) Size Switch allows the platform MPM to choose which format of Data Frames will be built by the TAMMAC CE. The options are either a 484x484 pixel standard bitmap (BMP) format, or a 768x768 pixel Harris Data Frame (HDF) format.

If the Destination Device Switch is set to use the Hard Drive, the directory used for data built by the TAMMAC CE will be determined during planning and sent to the MPM Post-Processor as a command line argument. See the following section for more information on the MPM Post-Processor.

The MPM ID should be left justified and padded with blanks to fill out the 16 characters.

D.2.3	MPM Post-Processor Executable

The MPM Post Processor executable should be made available to the TAMMAC CE if the MPM wishes to perform processing on the TAMMAC data after it is built and written. This executable is only needed if the Hard Drive was chosen as a destination device. If the file is provided, it must be named postprocess.exe and be placed in the MPM Data directory as described in paragraph D.2.1.

If the PC-Card was specified as a destination device, and a post-processor executable exists, the TAMMAC CE will not invoke it. If the Hard Drive is chosen as the destination device, a post-processor must be made available to TAMMAC. The TAMMAC CE will delete data from the hard drive after processing is complete, so if the MPM wishes to use data written to the hard drive before it is deleted, it will be only via the post-processor. This executable will be invoked from theater or mission planning.

The post-processor executable must accept a single command line argument, which will be the fully qualified Unix pathname where the data generated by the TAMMAC CE will be residing on the hard drive.

D.2.4	Alternate Colormap/Configurable Parameters File

Alternate colormap (ACM) provides the capability for the operator to select a single ACM scheme for TAMMAC displays that will be included as part of a theater or mission load. The user-selected ACM scheme is applied to all frames and will allow TAMMAC data to be displayed in a color scheme compatible with varying light conditions. The selectable schemes, if any, are pregenerated by the platform MPM and are not editable by the planner. There is no limit to the number of ACM schemes a platform MPM may supply, but only one (1) will be loaded within a theater or mission.

ACM schemes are embedded in platform MPM-provided Configurable Parameters (CP) files, one (1) ACM per CP file. Refer to the Harris Data Base Design Document for the details on the content of the Configurable Parameters files.

If a platform MPM intends to provide colormap schemes, the cp subdirectory must be created in the $TAMMAC_MPM_DATA/<mpm_id> directory. Two (2) types of files must be placed in the cp subdirectory: CP file(s) and a colormap directory file. If a default CP is desired, it must be named default.cp. The names of the other colormap files are at the discretion of the MPM, but the colormap directory file must reference all of these (non-default) files.

The criteria used by the TAMMAC CE for deciding which CP file to load is described below in Tables D.2.4-I and D.2.4-II. When loading a mission that is associated with a theater, if the mission planner has selected an ACM, the user-selected ACM will be loaded. If no ACM has been selected by the user for the mission or the associated theater, the default ACM will be loaded; otherwise, no ACM will be loaded.

Table D.2.4-I. Mission with Associated�Theater Plan CP Selection Criteria

Associated Theater�Mission Plan��ACM�User-selected ACM �(non-default)�No user ACM selection��Default ACM or none�User-selected ACM will be loaded for the mission �If available, the Default ACM will be loaded for the mission ��User selected ACM �(non-default)�User-selected ACM will be loaded for the mission�No ACM will be loaded for the mission ��

Table D.2.4-II. CP Selection Criteria �for Theaters or Non-Associated Missions

User Selected ACM?�ACM Loaded��Yes�User selected ACM��No�Default ACM, if provided.��

The colormap directory file, clrm_dir.dat, provides a descriptive name for each optional CP file placed in the cp subdirectory. The descriptive names will be presented to the user for selection of the ACM scheme. For each CP file a platform MPM places in the directory (except the default.cp file), an entry must be made in the colormap directory file. Table D.2.4-III shows the layout of this file.

Table D.2.4-III. Colormap Directory File Layout

Field�Type�Start Byte�Length �(bytes)�Description��CP file name 1�String�0�16�The name of the CP file placed in the $TAMMAC_MPM_DATA/<mpm_id>/cp directory.��Description 1

 .�String�16�16�ASCII String indicating the name presented to the user for selection.�� .������ .������CP file name n�String�(n-1)*32�16�The name of the nth CP file placed in the $TAMMAC_MPM_DATA/<mpm_id>/cp directory.��Description n�String�(n-1)*32 + 16�16�ASCII String indicating the name presented to the user for selection.��

The file names and descriptions should be left justified and padded with blanks to fill out the 16 characters.

D.2.5	Alternate Symbol Sets

Alternate Symbol Sets provides the capability for the operator to select a single alternate symbol set for TAMMAC displays that will be included as part of a theater or mission load. This will allow the user to replace the default symbology. The selectable symbol sets, if any, are pregenerated by the platform MPM and are not editable by the planner. There is no limit to the number of alternate symbol sets a platform MPM may supply, but only one (1) will be loaded within a theater or mission.

If a platform MPM intends to provide symbol sets, the symbols subdirectory must be created in the $TAMMAC_MPM_DATA/<mpm_id> directory. The platform MPM must then place the following items in the symbols subdirectory: symbol set subdirectories, and the Symbol Set Directory file.

Each symbol set subdirectory should contain the complete set of files required to define a symbol set. The symbol set file names must follow the naming conventions specified in the Harris Data Base Design Document. The TAMMAC CE assumes that the files contained in each symbol set subdirectory define a consistent and valid set. No validation of symbol set files is performed by the TAMMAC CE. All files in a subdirectory will be loaded to the destination device.

The symbol set directory file must be named sym_dir.dat. This file provides a descriptive name for each symbol set. The descriptive names will be presented to the user for selection of the Alternate Symbol Set. For each optional symbol set a platform MPM provides, an entry must be made in the alternate symbol set directory file. Table D.2.5-I shows the layout of this file.

Table D.2.5-I. Symbol Set Directory File Layout

Field�Type�Start Byte�Length �(bytes)�Description��Symbol Set Directory Name 1�String�0�16�The name of a subdirectory placed in the $TAMMAC_MPM_DATA/<mpm_id>/symbols directory.��Description 1

 .�String�16�16�ASCII String providing a descriptive name of the symbol set.�� .������ .������Symbol Set Directory Name n�String�(n-1)*32�16�The name of a subdirectory placed in the $TAMMAC_MPM_DATA/<mpm_id>/symbols directory��Description n�String�(n-1)*32 + 16�16�ASCII String providing a descriptive name of the symbol set.��

The file names and descriptions should be left justified and padded with blanks to fill out the 16 characters.

D.2.6	Threat Characteristic File

Threat Characteristics are data fields which describe the general attributes of any instance of a threat type (e.g., the max range of an SA-2 is xxx nautical miles). Much of the threat characterics data needed by TAMMAC is available from the TAMPS Core databases; however, some data required is unique to TAMMAC. The TAMMAC CE will provide a "default" set of this unique data. If an MPM wishes to override this default data in favor of its own values, a file named threatchar.dat must be placed in the $TAMMAC_MPM_DATA/<mpm_id> directory. Table D.2.6-I shows the layout of this file. The table describes one (1) entry in the file, which should be repeated for every threat type the MPM wishes to be considered. Descriptions of these fields are drawn from the Harris Database Design Document, and this document should be referenced for the most up-to-date and complete information on these fields. The Name field is the "key" in the table, and will be used to cross-reference the file to the data being generated by the TAMMAC CE.

Table D.2.6-I. Threat Characteristic File Entry Layout

Field�Type�Start Byte�Length �(bytes)�Description��Name�String�0�8�ASCII characters. The Digital Map System (DMS) software returns this string of characters over the 1553 whenever a threat of this type is selected with the hook cursor.��Pre-Stored Symbol�Integer�8�1�Symbol to be displayed for this threat type when the threat is defined in the Threat Site File. Range is 0..255.��Pre-Stored Symbol Color�Integer�9�1�Color of the symbol when the threat is defined in the Threat Site File. It is the seven (7)-bit color code used by the DMS macro symbology. Range 0..127.��Pre-Stored Symbol Attribute�Integer�10�1�Attribute associated with the symbol when the threat is defined in the Threat Site File (Normal, Occluded, Outlined, etc.)��Pre-Stored Symbol Occlusion Color�Integer�11�1�Color of the occlusion background when the threat is defined in the Threat Site File. It is the seven (7)-bit color code used by the DMS macro symbology. Range 0..127.��Pre-Stored Static Ring Color�Integer�12�1�Color of the static ring to be drawn around the threat symbol when the threat is defined in the Threat Site File. It is the seven (7)-bit color code used by the DMS macro symbology. Range 0..127.��Pop-Up Symbol�Integer�13�1�Symbol to be displayed for this threat type when the threat is defined via the 1553. Range is 0..255.��Table D.2.6-I. Threat Characteristic File Entry Layout (Cont.)

Field�Type�Start Byte�Length �(bytes)�Description��Pop-Up Symbol Color�Integer�14�1�Color of the symbol when the threat is defined via the 1553. It is the seven (7)-bit color code used by the DMS macro symbology. Range 0..127.��Pop-Up Symbol Attribute�Integer�15�1�Attribute associated with the symbol when the threat is defined via the 1553 (Normal, Occluded, Outlined, etc.)��Pop-Up Symbol Occlusion Color�Integer�16�1�Color of the occlusion background when the threat is defined via the 1553. It is the seven (7)-bit color code used by the DMS macro symbology. Range 0..127.��Pop-Up Static Ring Color�Integer�17�1�Color of the static ring to be drawn around the threat symbol when the threat is defined via the 1553. It is the seven (7)-bit color code used by the DMS macro symbology. Range 0..127.��.

.

.������

�SECTION D.3�TAMMAC MISSION �PLANNING INTERFACES

The TAMMAC CE provides several Unix executables to support mission capabilities, as follows:

TAMMAC Mission Planning (tammac_mission_plng)

TAMMAC Mission Data Loading (tammac_load)

TAMMAC Mission Data Erasure/Declassification (tammac_erase)

TAMMAC Default Theater/Version Mismatch Warning (tammac_compare_assoc)

In addition, there are a series of functions to provide route information used by TAMMAC for route corridor planning beginning with the trigraph mtm. Refer to Section D.3.2 for more information on these capabilities.

Both the Mission Planning and Mission Data Loading executables use a data_directory parameter for management of TAMMAC data files. This is a fully qualified Unix path to a directory to which the TAMMAC executable will write TAMMAC data. The TAMMAC executables will manage all of the data in this directory, and the platform MPM must not write any data of its own there. However, the TAMMAC CE will only write data in the directory itself, so this could be a subdirectory of other platform MPM data areas.

The platform MPM may provide any directory it chooses for the directory to send to the TAMMAC executables. The platform MPM is responsible for management of the directory for mission import/export, mission deletion, etc. For instance, if the platform MPM passed a directory to the TAMMAC executables for a mission, and that mission is subsequently deleted, the platform MPM is responsible for deleting the directory of TAMMAC CE data. In other words, the platform MPM manages the existence and location of the directory, while the TAMMAC executables manage the existence and content of the files within it.

When the TAMMAC CE plans mission data, it will write a Mission Data Set Information file to the directory provided by the MPM. This file will be named tammac_mission_data_set.dat. The layout of this file is shown in Table D.3-I. The MPM may read this file and use it as necessary to give the MPM planner information about the TAMMAC data in his mission.

TableD.3-I. Mission Data Set File Layout

Field�Type�Start Byte�Length �(bytes)�Description��Plan Size�Integer�0�4�The size in kilobytes of the planned TAMMAC mission data. When the TAMMAC data is loaded to the mission card, this field will be updated with the actual load size.��Associated Theater Name�String�4�16�ASCII String representing the name of the TAMMAC Theater associated with the mission being planned.��Associated Theater Extension�Character�20�1�Extension of the TAMMAC Theater associated with the mission being planned. Valid values are ë ’ and ëA’ through ëZí.��Associated Theater Version�Integer�21�1�Version of the TAMMAC Theater associated with the mission being planned. Valid values are 0..255.��Associated Theater Planner�String�22�16�ASCII String representing the planner name of the TAMMAC Theater associated with the mission being planned.��Classification�Character�38�1�Classification of the TAMMAC Mission Data. This field will be updated when the TAMMAC data is loaded to a mission card. Valid values are ëUí, ëCí, ëSí, and ëTí.��

�SECTION D.3.1

UNIX EXECUTABLES

EXECUTABLE: � tc " tammac_erase " \l 3 � tammac_erase��Calling Sequence:

$TAMMAC_EXEC/tammac_erase slot

PARAMETERS:

Name	I/O	Type	Description

slot	I	character	Identifier for which PC-Card slot should be loaded. Value will be C or D.

DESCRIPTION:

Purpose: This executable erases/declassifies all TAMMAC data on a PC-Card in the specified slot. If the Hard Drive option was chosen by the platform MPM, this executable should not be used.

This executable will erase unclassified TAMMAC data and declassify classified data on the specified PC-Card. This executable will only process TAMMAC data; any MPM-unique data will not be touched. The MPM is responsible for selecting the PC-Card slot to be erased and/or declassified and ensuring a usable card has been inserted. If an invalid slot is specified, this executable will abort without erasing any data.

EXAMPLE:

$TAMMAC_EXEC/tammac_erase D

�

�EXECUTABLE: � tc " tammac_load " \l 3 � tammac_load��Calling Sequence:

$TAMMAC_EXEC/tammac_load mpm_id data_directory slot

PARAMETERS:

Name	I/O	Type	Description

mpm_id	I	string	Five (5)-character ASCII identifier of the MPM. See the description section for more information.

data_directory	I	string	A fully qualified Unix directory path to the location of the TAMMAC data.

slot	I	character	Identifier for which PC-Card slot should be loaded. Value will be C or D. If the platform MPM has chosen to have data written to the hard drive, this value will not be used by the TAMMAC CE, and therefore, is optional.

DESCRIPTION:

Purpose: This executable formats and loads TAMMAC data to either a flight-worthy PC-Card or the hard drive.

This executable should be tied to a ìLoadî button within the platform MPM. Platform MPM data can be loaded to the PC-Card before or after the TAMMAC data is loaded; however, the amount of platform MPM data that is loaded should not exceed the amount of space reserved by the reserved_space parameter sent to the TAMMAC mission planning executable. If it does, the loading of TAMMAC Data may abort due to space limitations on the PC-Card. The platform MPM is responsible for selecting the PC-Card slot to be loaded and ensuring a usable card has been inserted. If not, the tammac_load executable will exit without loading any data. In this case, the executable will exit with an error status. The data to be loaded by TAMMAC will be retrieved from the data_directory.

The mpm_id field will be used to retrieve platform-specific parameters supplied by the platform MPM during installation. It must be the same name as the platform MPM top-level directory name created by the MPM when it installs TAMMAC data. For more information on data provided by the platform MPM during installation, see Section D.2.

It is expected that the TAMMAC Mission Planning executable has been run previous to invocation of this executable so that planned TAMMAC data will be available for loading. If it has not, the tammac_load executable will simply exit without loading any data.

The PC-Card/Hard Drive option is specified by the MPM during installation. If PC-Card was selected as the destination device and an invalid slot identified, the executable will abort with no data loaded.

EXAMPLE:

$TAMMAC_EXEC/tammac_load v22 /tamps/v22/tammac C

�

EXECUTABLE: � tc " tammac_mission_plng " \l 3 � tammac_mission_plng��Calling Sequence:

$TAMMAC_EXEC/tammac_mission_plng mpm_id reserved_space data_directory

PARAMETERS:

Name	I/O	Type	Description

mpm_id	I	string	Five (5)-character ASCII identifier of the MPM. See the description section for more information.

reserved_space	I	integer	Size of area (in KB) to be reserved on the PC-Card for MPM data. See the description section for more information.

data_directory	I	string	A fully qualified Unix directory path to the location where TAMMAC data can be written.

DESCRIPTION:

Purpose: This executable will display the TAMMAC Mission Planning window which allows the user to plan TAMMAC data.

This executable should be tied to some sort of ìTAMMAC Data Planningî button or option within the platform MPM.

The mpm_id field will be used to retrieve platform-specific parameters supplied by the platform MPM during installation. It must be the same name as the platform MPM top-level directory name created by the MPM when it installs TAMMAC data. For more information on data provided by the platform MPM during installation, see Section D.2.

The reserved_space value will be used by the TAMMAC CE for size computations to give the user an indication of space used. The reserved_space value should be the maximum (worst case) amount of space on the PC-Card that will be used by the platform MPM, including any space needed for in-flight or post-flight data recording.

EXAMPLE:

$TAMMAC_EXEC/tammac_mission_plng v22 1024 /tamps/v22/tammac

�

EXECUTABLE: � tc "tammac_compare_assoc" \l 3 � tammac_compare_assoc��Calling Sequence:

$TAMMAC_EXEC/tammac_compare_assoc mpm_id data_directory

PARAMETERS:

Name	I/O	Type	Description

mpm_id	I	string	Five (5)-character ASCII identifier of the MPM. See the description section for more information.

data_directory	I	string	A fully qualified Unix directory path to the location where TAMMAC data can be written.

DESCRIPTION:

Purpose: This executable will compare the name, planner, extension, and version of the theater associated with the mission to the default theater association for the specified MPM. The invoking MPM can then warn the user of the discrepancy.

If the information being compared is the same, or a default association does not exist for the specified MPM, a zero (0) will be returned by this executable. If the information is different, a one (1) will be returned.

EXAMPLE:

$TAMMAC_EXEC/tammac_mission_plng v22 /tamps/v22/tammac

�

This page intentionally left blank.

�SECTION D.3.2�ROUTE INFORMATION

D.3.2.1	Overview

TAMMAC Mission Planning provides the capability to plan route corridor selection areas of Map Product (e.g., CADRG, CIB, and/or DTED) data. For the user to be able to take advantage of this capability, the platform MPM needs to provide route information data to the TAMMAC CE. This route information consists of routes or sequences.

TAMMAC Mission Planning will accept any sequence of points to use in planning a route corridor. Therefore, the platform MPM can take any area of interest and write a sequence for the user to plan a route corridor. In other words, the platform MPM may send any set of points to the TAMMAC CE that it feels the user may wish to plan corridors of Map Product data against.

The TAMMAC Core Extension then reads the routes or sequences and their respective waypoints. From those waypoints, the user can then plan mission-specific route corridors.

D.3.2.2	Route Information Write Implementation

The route information functions will be necessary for the platform MPM to be able to utilize the full functionality of TAMMAC Map Products. Without writing out route information data, the user will not be able to take advantage of the route corridor coverage option. A platform MPM will be able to write not only routes, but also any other applicable sequences of waypoints to enable the planning of corridors. This means that they will be able to plan multiple corridors, if so desired.

First, the platform MPM must successfully write all route information data that they want to provide to the TAMMAC Core Extension. Then, the platform MPM must invoke TAMMAC Mission Planning in order for the data to be used.

For the platform MPM to write route information data, it must first call the mtm_start_write function. The mtm_start_sequence function is then called, followed by multiple calls to the mtm_write_point routine. After the platform MPM has written the first sequence name and all of its points, then the mtm_start_sequence function is called again to begin writing the information for the second sequence. This is then repeated to write all desired sequences and their respective points. The platform MPM must implement the write functions in the following manner. Note that this is not meant to be executable code, but simply an indication of the ordering of the calls.

mtm_start_write ();�mtm_start_sequence();	/* Writes first sequence. */�mtm_write_point ();	/* Writes first point. */�mtm_write_point ();	/* Writes second point. */�	.�	.�mtm_write_point ();	/* Writes Nth point. */�	.�	.�mtm_start_sequence (); 	/* Writes Nth sequence. */�mtm_write_point ();	/* Writes first point. */�	.�	.�mtm_write_point ();	/* Writes Nth point. */�mtm_end_write ();

A detailed description of each route information write function (i.e., mtm_start_write, mtm_start_sequence, mtm_write_point, mtm_end_write) is provided in IDD, Appendix C. Refer to Appendix G for the Ada bindings.

D.3.2.3	Route Information Read Implementation

To implement the route information read operation, the calling routine must first call mtm_start_read. If a status is returned which indicates route information exists, the caller then needs to loop through the sequences checking for the last sequence. After getting each sequence name, the caller loops through each waypoint checking for the last waypoint. After the caller has looped through all sequences and their respective waypoints, mtm_end_read is called to ensure a successful completion and to delete the data. The calling routine must implement the read functions in the following manner. Note that this is not meant to be executable code, but simply an indication of the ordering and structure necessary for reading the route information.

mtm_start_read ();��while not mtm_end_of sequences() loop		/* Looks ahead to make sure you are not at�							 the last sequence. */�	mtm_get_next_sequence ();��	while not mtm_end_of_waypoints () loop	/* Looks ahead to make sure you are not at� 							 the last waypoint. */�	mtm_get_next_waypoint ();�	end loop;�end loop;��mtm_end_read ();

A detailed description of each route information read function (i.e., mtm_start_read, mtm_end_of_sequences, mtm_get_next_sequence, mtm_end_of_waypoints, mtm_get_next_waypoint, mtm_end_read) is provided in IDD, Appendix C. Refer to Appendix G for the Ada bindings.

�SECTION D.4

Environment Variables

The TAMMAC CE environment variables are summarized in Table D.4-I.

Table D.4-I - Environment Variable Summary

VARIABLE NAME�DESCRIPTION�USAGE��$TAMMAC_CE_EXISTS�If set, indicates the TAMMAC CE has been successfully installed.�$TAMMAC_CE_EXISTS��$TAMMAC_MPM_DATA�Top level directory to which MPMs must write TAMMAC-related data.�$TAMMAC_MPM_DATA/<mpm ID>��$TAMMAC_EXEC�Directory in which TAMMAC executables reside.�$TAMMAC_EXEC/<executable name>��

�

This page intentionally left blank.

SECTION D.5

INCLUDE FILES

D.5.1	mtm.h (IFA41048) C Header File

/*

--*--

--* FILENAME: mtm.h

--*

--* PURPOSE: Provides definitions of functions for route information access.

--*

--* HISTORY:

--* ---

--* | Prepared By | Prep. Date | SDF # | SOR/STR/SAR

--* ---

--* | E.M. Spalding 24 Jul 97 TAMMAC-1 96-52A

--* ---

--* | Revised By | Rev. Date | SDF # | SOR/STR/SAR

--* | Description

--* ---

*/

/* Write functions */

int mtm_start_write();

int mtm_start_sequence(char *);

int mtm_write_point(char *, double, double);

int mtm_end_write();

/* Read functions */

int mtm_start_read();

int mtm_end_of_sequences();

int mtm_get_next_sequence(char *);

int mtm_end_of_waypoints();

int mtm_get_next_waypoint (char *, double *, double *);

int mtm_end_read();

D.5.2	MTM.a (IFA70128) Ada Package

--*--

--* PURPOSE: Manages the route information data provided by the MPM.

--*

--* CSC NAME: Map Products

--*

--* HISTORY:

--* ---

--* | Prepared By | Prep. Date | SDF # | SOR/STR/SAR

--* ---

--* | T.N. McAllister 6 June 97 TAMMAC-1 SOR 96-52A

--* ---

--* | Revised By | Rev. Date | SDF # | SOR/STR/SAR

--* | Description

--* ---

--*

--* Note: For usage information and examples, see the TAMMAC appendix to the

--* TAMPS IDD.

--*

with Base_Types;

package MTM is

 Sequence_Name_Length : constant := 32;

 subtype Sequence_Name_Type is String(1..Sequence_Name_Length);

 Label_Name_Length : constant := 6;

 subtype Label_Name_Type is String(1..Label_Name_Length);

 subtype Latitude_Type is Base_Types.Float_64_Type range -90.0..90.0;

 --* Defines the range for a latitude value.

 subtype Longitude_Type is Base_Types.Float_64_Type range -180.0..180.0;

 --* Defines the range for a longitude value.

 type Coordinate_Type is

 record

 Lat: Latitude_Type;

	 Lon: Longitude_Type;

 end record;

 type Point_Element_Type is

	--* Format for storing a point including its label and coordinate.

 record

 Label : Label_Name_Type;

 Coordinate : Coordinate_Type;

 end record;

 Invalid_List_Operation : exception;

 Device_Error : exception;

 -- *************************************

 -- *** Route Read Routines ***

 -- *************************************

 --* Purpose: Initiates reading of the route data and returns a

 --* status indicating whether or not Route

 --* Information data exists.

 --*

 --* Exceptions: Raises Device_Error if the operation could not

 --* be completed.

 --*

 --* Notes: None.

 --*

 procedure MTM_Start_Read (Data_Found : out Boolean);

 --* Purpose: Returns the next sequence name.

 --*

 --* Exceptions: Raises Invalid_List_Operation if the end of the list has

 --* been exceeded or Start_Read has not been called.

 --*

 --* Raises Device_Error if the operation could not

 --* be completed.

 --*

 --* Notes: None.

 --*

 function MTM_Get_Next_Sequence return Sequence_Name_Type;

 --* Purpose: Returns a status indicating whether it is at the end of � --* sequences.

 --*

 --* Exceptions: Raises Invalid_List_Operation if Start_Read has not

 --* been called first.

 --*

 --* Raises Device_Error if the operation could not

 --* be completed.

 --*

 --* Notes: None.

 --*

 function MTM_End_Of_Sequences return Boolean;

 --* Purpose: Returns the next waypoint.

 --*

 --* Exceptions: Raises Invalid_List_Operation if the end of the list has

 --* been exceeded or Start_Read has not been called.

 --*

 --* Raises Device_Error if the operation could not

 --* be completed.

 --*

 --* Notes: None.

 --*

 function MTM_Get_Next_Waypoint return Point_Element_Type;

 --* Purpose: Returns a status indicating whether it is at the end of � --* waypoints.

 --*

 --* Exceptions: Raises Invalid_List_Operation if Start_Read and � --* Next_Sequence have not been called first.

 --*

 --* Raises Device_Error if the operation could not

 --* be completed.

 --*

 --* Notes: None.

 --*

 function MTM_End_Of_Waypoints return Boolean;

 --* Purpose: Returns a status indicating that the read was successful and � --* deletes the data written out by the MPM.

 --*

 --* Exceptions: Raises an Invalid_List_Operation if Start_Read has not been

 --* called first.

 --*

 --* Raises Device_Error if the operation could not

 --* be completed.

 --*

 --* Notes: None.

 --*

 procedure MTM_End_Read;

 -- *************************************

 -- *** Route Write Routines ***

 -- *************************************

 --* Purpose: Initiates writing of route data.

 --*

 --* Exceptions : Raises Device_Error if the operation could not

 --* be completed.

 --*

 --* Notes: None.

 --*

 procedure MTM_Start_Write;

 --* Purpose: Begins a new sequence of points.

 --*

 --* Exceptions : Raises Device_Error if the operation could not

 --* be completed.

 --*

 --* Notes: None.

 --*

 procedure MTM_Start_Sequence (Name : in Sequence_Name_Type);

 --* Purpose: Writes a single set of waypoint informationto the

 --* data file.

 --*

 --* Exceptions : Raises Device_Error if the operation could not

 --* be completed.

 --*

 --* Notes: None.

 --*

 procedure MTM_Write_Point (Label : in Label_String_Type;

 Latitude : in Latitude_Type;

 Longitude : in Longitude_Type);

 --* Purpose: Completes the writing of route data.

 --*

 --* Exceptions : Raises Device_Error if the operation could not

 --* be completed.

 --*

 --* Notes: None.

 --*

 procedure MTM_End_Write;

end MTM;

�

This page intentionally left blank.

Document No. 160008-IDD-6.2 - February 1998

D-� PAGE �1�

