SECTION C.1.9�AIRCRAFT MISSION PLANNING �GENERIC ROUTE DATA STRUCTURE �(low level) (art) FUNCTIONS
�
�

This page intentionally left blank.�
function: � tc " art_addActPt_to_Route" \l 3 �art_addActPt_to_Route�IFA9146��CALLING SEQUENCE:
status = art_addActPt_to_Route(mission, route_ptr, action_point)
Parameters:
Name	I/O	Type	Description
mission	I	ART_GENERIC_	Pointer to the generic mission.
		MSNPLN_T *	
route_ptr	I	ART_GENERIC_	Pointer to route.
		ROUTE_HDR_T *	
action_point	I	ART_GENERIC_
		ACTION_POINT_T *	Pointer to action point to add.
status	O	ST_STATUS	Return value of function.
DESCRIPTION:
This function will place an allocated action_point structure into the list of action points for the indicated route. Memory must be allocated for both mission, route, and action point before using this function. This function does not draw any portion of the mission or route. The position of the new point is dependent on the action point number and the route planning mode (see art_applyRouteRules). For example, in a forward planning mode to insert between existing points 3 and 4 an action_point->number = 3 would put the new point in between 3 and 4. In the backward planning mode an action_point->2 would place the new point between 2 and 3. The Core will renumber the action point numbers based on the insertion position. This function only affects the data structures of the route; no display changes are made by this function. This function should only be used for low level route development. Normal use of the generic route capabilities (i.e. planner dynamic route development) will automatically add action points as the route is created.
EXAMPLE:
#include "a_msn_plan/art_proto.h"

ST_STATUS 	status;

/* Assume WPN_mission, route_ptr, and action_point have been allocated and
* filled prior to this code segment
*/

status = art_addActPt_to_Route(WPN_mission, route_ptr, action_point);
�
function: � tc " art_addCoreCallback" \l 3 �art_addCoreCallback�IFA9149��CALLING SEQUENCE:
status = art_addCoreCallback(functionPtr, callbackType)
PARAMETERS:
Name	I/O	Type	Description
functionPtr	I	void (*mpmCall)()	Pointer to function to invoke
callbackType	I	ART_CORE_	Type of callback being registered.
		CALLBACK_TYPE_E	
status	O	ST_STATUS	ST_SUCCESS if register was successful.
DESCRIPTION:
This function will register an MPM function based on the callbackType provided. The following table lists the Core callbackTypes, the associated expected return value of the registered function, and the parameters being passed to the registered function. This callback set is unique in that no mission pointer is needed to start registering functions.

Please note that most registered functions will be defined to return type (void *) and handle three (3) parameters.

For EXAMPLE:

	void *wpn_openMsnCb(ART_GENERIC_MSNPLN_T *msn_ptr,
	void *dummy_ptr1,
	void *dummy_ptr2);

would be the registered function for ART_OpenMsnCB.
�
CALLBACK TYPE�DESCRIPTION�RETURN TYPE�PARAMETERS PASSED��ART_DeleteMsnCB�Delete mission callback
from HMI (OK button)�(void *)ST_STATUS�ART_GENERIC_MSNPLN *
void * (NULL PASSED)
void * (NULL PASSED)��ART_ExportPrepCB�MPM exports private
data to Unix flat file.�(void *)ST_STATUS�ART_GENERIC_MSNPLN_T *
void * (NULL PASSED)
void * (NULL PASSED)��ART_GetMsnPtrCB

�Function to provide
Core with Mission�(void *) ART_GENERIC_
MSNPLN_T�no parameters��ART_ImportPrepCB�MPM imports private
data from Unix flat file.�(void *)ST_STATUS�ART_GENERIC_MSNPLN_T *
void * (NULL PASSED)
void * (NULL PASSED)��ART_MoveMoustCB�Track mouse movement�(void *)�int pixel_x_location
int pixel_y_location��ART_OpenMsnCB�Call MPM when msn is
opened via HMI (OK button)�(void *)ST_STATUS�ART_GENERIC_MSNPLN_T *
void * (NULL PASSED)
void * (NULL PASSED)��ART_ProtectMsnCB�Call MPM on protect
callback (OK button)�(void *)ST_STATUS�ART_GENERIC_MSNPLN_T *
void * (NULL PASSED)
void * (NULL PASSED)��ART_SaveCB�Call MPM on Save
HMI (OK button)�(void *)ST_STATUS�ART_GENERIC_MSNPLN_T *
void * (NULL PASSED)
void * (NULL PASSED)��ART_SaveAsCB�Call MPM on Save
As HMI (OK button)�(void *)ST_STATUS�ART_GENERIC_MSNPLN_T *
void * (NULL PASSED)
void * (NULL PASSED)��EXAMPLE:
#include "a_msn_plan/art_proto.h"
#include "a_msn_plan/agt_proto.h"

ST_STATUS status;

/* Assume WPN_mission is a global mission pointer that has been allocated */

status = art_addCoreCallback(wpn_OpenMsnCb, ART_OpenMsnCB);

/* somewhere in your code you have defined wpn_preAddActionCb */
void *wpn_OpenMsnCb(ART_GENERIC_MSNPLN_T *msn_ptr,
			void *dummy_ptr1,
			void *dummy_ptr2)
{
	/* Perform processing appropriate for callback function */	
}
�
function: � tc " art_addMPMcallback" \l 3 �art_addMPMcallback�IFA9150��CALLING SEQUENCE:
status = art_addMPMcallback(mission, functionPtr, callbackType)
PARAMETERS:
Name	I/O	Type	Description
mission	I	ART_GENERIC_	Pointer to generic mission.
		MSNPLN_T *	
functionPtr	I	void (*mpmAmp)()	Pointer to function to invoke.
callbackType	I	ART_CALLBACK_	Type of callback being registered.
		TYPE_E	
status	O	ST_STATUS	ST_SUCCESS if register was successful.
DESCRIPTION:
This function will register an MPM function based on the callbackType provided. The following table lists the callbackType, the associated expected return value of the registered function, and the parameters being passed to the registered function.

Please note that most registered function will be defined as type (void *) and handle three (3) parameters.

For EXAMPLE:

	void *wpn_actionAmpCb(ART_GENERIC_MSNPLN_T *msn_ptr,
	ART_GENERIC_ROUTE_HDR_T *route_ptr,
	ART_GENERIC_ACTION_POINT_T *action_ptr);

would be the registered function for ART_ActAmpCB.
�
CALLBACK TYPE�DESCRIPTION�RETURN TYPE�PARAMETERS PASSED��ART_ActAmpCB�Callback MPM specific
AMP info�(void *)ST_STATUS�ART_GENERIC_MSNPLN_T *
ART_GENERIC_ROUTE_HDR_T *
APT_GENERIC_ACTION_POINT_T *��ART_FreeActCB�Free MPM related Act
Point data�(void *)ST_STATUS�ART_GENERIC_MSNPLN_T *
ART_GENERIC_ROUTE_HDR_T *
ART_GENERIC_ACTION_POINT_T *��ART_FreeMsnCB�Free MPM related
Mission data�(void *)ST_STATUS�ART_GENERIC_MSNPLN_T *
void * (NULL PASSED)
void * (NULL PASSED)��ART_FreeRouteCB�Free MPM related
Route data�(void *)ST_STATUS�ART_GENERIC_MSNPLN_T *
ART_GENERIC_ROUTE_HDR_T *
voi d * (NULL PASSED)��ART_GetMsnCB

�Notify MPM of
changed mission�(void *)ST_STATUS�ART_GENERIC_MSNPLN_T *
ART_GENERIC_ROUTE_HDR_T *
void * (NULL PASSED)��ART_GetRouteCB�Notify MPM of
changed route�(void *)ST_STATUS�ART_GENERIC_MSNPLN_T *
ART_GENERIC_ROUTE_HDR_T *
void * (NULL PASSED)��ART_PostActMvCB

�Call MPM after
moving a point�(void *)ST_STATUS�ART_GENERIC_MSNPLN_T *
ART_GENERIC_ROUTE_HDR_T *
ART_GENERIC_ACTION_POINT_T *��ART_PostAddActCB

�Call MPM before
adding a point�(void *)ST_STATUS�ART_GENERIC_MSNPLN_T *
ART_GENERIC_ROUTE_HDR_T *
ART_GENERIC_ACTION_POINT_T *��ART_PreActMvCB

�Call MPM before
moving a point�(void *)ST_STATUS -
return of ST_FAILURE
then no MOVE�ART_GENERIC_MSNPLN_T *
ART_GENERIC_ROUTE_HDR_T *
ART_GENERIC_ACTION_POINT_T *��ART_PreAddActCB

�Call MPM before
adding a point�(void *)ST_STATUS -
return of ST_FAILURE
then no ADD�ART_GENERIC_MSNPLN_T *
ART_GENERIC_ROUTE_HDR_T *
ART_GENERIC_ACTION_POINT_T *��
EXAMPLE:
#include "a_msn_plan/art_proto.h"
#include "a_msn_plan/agt_proto.h"

ST_STATUS status;

/* Assume WPN_mission is a global mission pointer that has been allocated */

status = art_addMPMcallback(WPN_mission, wpn_preAddActionCb, ART_PreAddActCB);

/* somewhere in your code you have defined wpn_preAddActionCb */
void *wpn_preAddActionCb(ART_GENERIC_MSNPLN_T *msn_ptr,
			ART_GENERIC_ROUTE_HDR_T *route_hdr,
			ART_GENERIC_ACTION_POINT_T *action_point)
{
	printf("Pre-add action callback route %d\n", route_hdr->route_id);
	
	/* do pre add processing...*/

	if (bad add)
		return((void *)ST_FAILURE);

	if (good add)
		return((void *)ST_SUCCESS);
}

�
function: � tc " art_addRoute_to_Msn" \l 3 �art_addRoute_to_Msn�IFA9147��CALLING SEQUENCE:
status = art_addRoute_to_Msn(mission, route_ptr)
PARAMETERS:
Name	I/O	Type	Description
mission	I	ART_GENERIC_	Pointer to the generic mission.
		MSNPLN_T *	
route_ptr	I	ART_GENERIC_	Pointer to route.
		ROUTE_HDR_T *	
status	O	ST_STATUS	Return value of function.
DESCRIPTION:
This function will place an allocated route structure into the list of routes in the indicated mission. Memory must be allocated for both mission and route before using this function. This function does not draw any portion of the mission or route.
EXAMPLE:
#include "a_msn_plan/art_proto.h"

ST_STATUS	status;

/* Assume WPN_mission, route_ptr have been allocated and filled prior to this code segment */

status = art_addRoute_to_Msn(WPN_mission, route_ptr);

�
function: � tc " art_addTarget_to_Msn" \l 3 �art_addTarget_to_Msn�IFA9148��CALLING SEQUENCE:
status = art_addTarget_to_Msn(mission, target)
PARAMETERS:
Name	I/O	Type	Description
mission	I	ART_GENERIC_	Pointer to the generic mission.
		MSNPLN_T *	
target	I	APT_TARGET_T *	Pointer to target to add.
status	O	ST_STATUS	Return value of function.
DESCRIPTION:
This function will place an allocated target structure into the list of targets in the indicated mission. Memory must be allocated for both mission and target before using this function. This function does not draw any portion of the mission or target.
EXAMPLE:
#include "a_msn_plan/art_proto.h"

ST_STATUS	status;

/* Assume WPN_mission, target have been allocated and filled prior to this code segment */

status = art_addTarget_to_Msn(WPN_mission, target);

�
function: � tc " art_allocActionPoint" \l 3 �art_allocActionPoint�IFA9151��CALLING SEQUENCE:
status = art_allocActionPoint(action_point)
PARAMETERS:
Name	I/O	Type	Description
action_point	O	ART_GENERIC_	Pointer to an action point pointer.
		ACTION_POINT_T **	
status	O	ST_STATUS	Function return value.
DESCRIPTION:
This function will allocate memory for an action point and initialize the Core fields to Core defaults. They include: editable = True, deletable = True, displayable = True, terminator = False, connect_next_pt = True, showLabel = True, and in the labelMask sets the point number label ON, point location label OFF, point description label OFF.
EXAMPLE:
#include "a_msn_plan/art_proto.h"

ST_STATUS status;

ART_GENERIC_ACTION_POINT_T *action_point;
. . .
status = art_allocActionPoint(&action_point);
. . .

�
function: � tc " art_allocMission" \l 3 �art_allocMission�IFA9152��CALLING SEQUENCE:
status = art_allocMission(mission)
PARAMETERS:
Name	I/O	Type	Description
mission	O	ART_GENERIC_	Pointer to a mission pointer.
		MSNPLN_T **	
status	O	ST_STATUS	Function return value.
DESCRIPTION:
This function will allocate memory for a mission and set the fields in the structure to Core defaults. The MPM will need to set mission name, planner, etc. This function will also initialize the linked list of routes with a call to ult_lst_create_list. The fields initialized by Core include platform name, classification, op area, planner name, and access.
EXAMPLE:
#include "a_msn_plan/art_proto.h"

ST_STATUS status;

ART_GENERIC_MSNPLN_T *mission;

status = art_allocMission(&mission);

�
function: � tc " art_allocRoute" \l 3 �art_allocRoute�IFA9153��CALLING SEQUENCE:
status = art_allocRoute(route)
PARAMETERS:
Name	I/O	Type	Description
route	O	ART_GENERIC_	Pointer to an action point pointer.
		ROUTE_HDR_T **	
status	O	ST_STATUS	Function return value.
DESCRIPTION:
This function will allocate memory for a route and set the fields in the structure to Core defaults. The function will also initialize the linked list of action points with a call to ult_lst_create_list. The following fields are defaulted by this function: displayable = True, allRouteEdit = True, symbol_deconflict = True, symbol_name = "mp_nav".
EXAMPLE:
#include "a_msn_plan/art_proto.h"

ST_STATUS status;

ART_GENERIC_ROUTE_HDR_T *route;

status = art_allocRoute(&route);

�
function: � tc " art_allocTarget" \l 3 �art_allocTarget�IFA9154��CALLING SEQUENCE:
status = art_allocTarget(target)
PARAMETERS:
Name	I/O	Type	Description
route	O	APT_TARGET_T **	Pointer to a target pointer.
status	O	ST_STATUS	Function return value.
DESCRIPTION:
This function will allocate memory for a target and set the fields in the structure to NULL.
EXAMPLE:
#include "a_msn_plan/art_proto.h"

ST_STATUS status;

APT_TARGET_T *target;

status = art_allocTarget(&target);

�
function: � tc " art_anchoredRBline" \l 3 �art_anchoredRBline�IFA9145��CALLING SEQUENCE:
status = art_anchoredRBline(pMap, start_lat, start_lon, end_lat, end_lon, result_lat, result_lon)
PARAMETERS:
Name	I/O	Type	Description
pMap	I	MPT_MAP *	Pointer to the map on which to perform rubberbanding.
start_lat	I	double	Starting lat of rubberband.
start_lon	I	double	Starting lon of rubberband.
end_lat	I	double 	End anchor lat of rubberband.
end_lon	I	double 	End anchor lon of rubberband.
result_lat	O	double *	Resulting lat when rubberband is stopped.
result_lon	O	double *	Resulting lon when rubberband is stopped.
status	O	ST_STATUS	Return value of function.
DESCRIPTION:
This is a low level rubberbanding function between two (2) anchored positions (lat, lon) and the mouse cursor. After the user depresses the left mouse button, the function will return with the result_lat and result_lon. This function has no effect or interaction with the generic route; it is merely used for low level rubberband capability. It will not draw any graphics at the conclusion of the call. If the user cancels the rubberbanding (right button click), then the function will return ST_FAILURE and the result lat/lon will be set to AT_NOT_SET.
EXAMPLE:
#include "a_msn_plan/art_proto.h"
#include "a_msn_plan/agt_proto.h"
#include "maps/mpt_proto.h"

MPT_MAP	*pMap;
double		start_lat, start_lon,
		end_lat, end_lon,
		result_lat, result_lon;

ST_STATUS	status;

/* Assume at this point that the start and end lat/lon are set */

status = art_anchoredRBline(pMap, start_lat, start_lon, end_lat, end_lon,
				&result_lat, &result_lon);

�
function: � tc " art_applyRouteRules" \l 3 �art_applyRouteRules�IFA9155��CALLING SEQUENCE:
status = art_applyRouteRules(mission, route_ptr, route_rules, updateAllSymbolColors, updateAllSymbolNames, updateAllFlightLegs)
PARAMETERS:
Name	I/O	Type	Description
mission	I	ART_GENERIC_	Pointer to the generic mission.
		MSNPLN_T *	
route_ptr	I	ART_GENERIC_	Pointer to route to apply the
		ROUTE_HDR_T * 	route rules.	
route_rules	I	ART_GENERIC_	Pointer to data structures of
		ROUTE_RULES_T*	rules to currently be used by Core in reference to the route.
updateAllSymbolColors	I	Boolean	If TRUE, then go back and update symbol colors in the existing route.
updateAllSymbolNames	I	Boolean	If TRUE, then go back and update symbol colors in the existing route.
updateAllFlightLegs	I	Boolean	If TRUE, then go back andupdate all flight leg characteristics.
status	O	ST_STATUS	Return value of function.
DESCRIPTION:
This function may be called anytime during the routing process to modify the default values used by Core. If the route_ptr is set to NULL, then the route rules will apply to all routes within the mission. If the MPM changes rules for the display characteristics of the route (i.e. color, linestyle, ...), then a call would need to be made to art_flushRouteDisplayBuffers in order to update the display. Rules that are applied by this function affect all new route development. The display characteristics of existing portions of the route can also be affected by the new rules based on the Boolean flags updateAllSymbolColors, updateAllSymbolNames, updateAllFlightLegs.
EXAMPLE:
#include "a_msn_plan/art_proto.h"

/* Assume WPN_mission is a global pointer to a allocated mission */
/* Assume that route_ptr is assigned to a valid route prior to this code segment */

ST_STATUS	status;

route_ptr->route_rules.symbol_color = 3;
route_ptr->route_rules.symbol_deconflict = False;

status = art_applyRouteRules(WPN_mission, route_ptr, &route_ptr->route_rules, True, False, True);

�
function: � tc " art_clearActionPoint" \l 3 �art_clearActionPoint �IFA9156��CALLING SEQUENCE:
status = art_clearActionPoint(mission, route_ptr, action_ptr)
PARAMETERS:
Name	I/O	Type	Description
mission	I	ART_GENERIC_	Pointer to the generic mission.
		MSNPLN_T *	
route_ptr	I	ART_GENERIC_	Pointer to route that contains the
		ROUTE_HDR_T *	action point to clear.
action_ptr	I	ART_GENERIC_
		ACTION_POINT_T *	Pointer to action point.
status	O	ST_STATUS	Return value of function.
DESCRIPTION:
This function will clear the action point and its associated flight leg from the display. This function does not free the memory associated with the action point or remove the action point from the linked list. The display effects of this function are buffered and will be applied to the display after a call to art_flushRouteDisplayBuffers.
EXAMPLE:
#include "a_msn_plan/art_proto.h"

ART_GENERIC_ACTION_POINT_T 	*action_ptr;

/* Assume WPN_mission is a global pointer to a allocated mission */
/* Assumre that route_ptr is assigned to a valid route prior to this code segment */

ST_STATUS	status;

status = art_getActionPoint(WPN_mission, route_ptr, 2, &action_ptr);

status = art_clearActionPoint(WPN_mission, route_ptr, action_ptr);

status = art_flushRouteDisplayBuffers();

�
function: � tc " art_clearTarget" \l 3 �art_clearTarget�IFA9158��CALLING SEQUENCE:
status = art_clearTarget(mission, target)
PARAMETERS:
Name	I/O	Type	Description
mission	I	ART_GENERIC_	Pointer to the generic mission.
		MSNPLN_T *	
target	I	APT_TARGET_T*	Pointer to target to clear.
status	O	ST_STATUS	Return value of function.
DESCRIPTION:
This function will clear the indicated target from the display. The display effects of this function are buffered and will be applied to the display after a call to art_flushRouteDisplayBuffers.
EXAMPLE:
#include "a_msn_plan/art_proto.h"

/* Assume WPN_mission is a global pointer to a allocated mission */
/* Assume that target is allocated and set prior to this code segment*/

ST_STATUS	status;

status = art_clearTarget(WPN_mission, target);

�
function: � tc " art_createMsnLayerName" \l 3 �art_createMsnLayerName�IFA9144��CALLING SEQUENCE :
layer_name = art_createMsnLayerName(mission)
PARAMETERS:
Name	I/O	Type	Description
mission	I	ART_GENERIC_	Pointer to mission.
		MSNPLN_T *	
layer_name	O	char *	String - name of mission layer.
DESCRIPTION:
This function will create the name of the layer Core uses to place the mission and its components in. MPMs should use this function to create the name needed for layer and bucket access. NULL is returned if error occurs. This function does not "create" the layer, but merely the name of the layer.
EXAMPLE:
#include "a_msn_plan/art_proto.h"

char 	*layer_name;

/* Assume WPN_mission is a global pointer to a allocated mission */
layer_name = art_createMsnLayerName(WPN_mission);

�
function: � tc " art_createRouteBucketName" \l 3 �art_createRouteBucketName�IFA9184��CALLING SEQUENCE:
bucket_name = art_createRouteBucketName(route_ptr)
PARAMETERS:
Name	I/O	Type	Description
bucket_ptr	I	ART_GENERIC_	Pointer to the generic mission.
		ROUTE_HDR_T *	
bucket_name	O	char *	Name of bucket created for the route.
DESCRIPTION:
This function will create the name of the bucket Core uses to place route components. MPMs should use this function to create the name needed for the bucket. NULL is returned if error occurs.
EXAMPLE:
#include "a_msn_plan/art_proto.h"

char 	*bucket_name;

/* Assume bucket_ptr is a global pointer to an allocated route */
bucket_name = art_createRouteBucketName(bucket_ptr);

�
function: � tc " art_delActPt_from_Route" \l 3 �art_delActPt_from_Route�IFA9159��CALLING SEQUENCE:
status = art_delActPt_from_Route(mission, route_ptr, action_point)
PARAMETERS:
Name	I/O	Type	Description
mission	I	ART_GENERIC_	Pointer to the generic mission.
		MSNPLN_T *	
route_ptr	I	ART_GENERIC_	Pointer to route.
		ROUTE_HDR_T *	
action_point	I	ART_GENERIC_	Pointer to action point to delete.
		ACTION_POINT_T *	
status	O	ST_STATUS	Return value of function.
DESCRIPTION:
This function will remove the indicated action point from the linked list of action points for the indicated route and mission. This function does not remove the point from the display. The function will adjust the linked list of action points and free the memory for the deleted action point. This function should only be used for low level route development, normal use of the generic route capabilities (i.e., planner dynamic route development) will automatically remove action points as an action point is deleted from the route.
EXAMPLE:
#include "a_msn_plan/art_proto.h"

ART_GENERIC_ACTION_POINT_T	*action_ptr;
ST_STATUS					status;

/* Assume WPN_mission is a global pointer to an allocated mission */
/* Assume that route_ptr is assigned prior to this code segment */

status = art_delActPt_from_Route(WPN_mission, route_ptr, action_ptr);

�
function: � tc " art_delCoreCallback" \l 3 �art_delCoreCallback�IFA9160��CALLING SEQUENCE:
status = art_delCoreCallback(callbackType)
PARAMETERS:
Name	I/O	Type	Description
callbackType	I	ART_CORE_	Type of callback to remove.
		CALLBACK_TYPE_E	
status	O	ST_STATUS	Return value of function.
DESCRIPTION:
This function allows an MPM to remove registered functions callback from the set of function callback setup using art_addCoreCallback.
EXAMPLE:
#include "a_msn_plan/art_proto.h"

ST_STATUS	status;

status = art_delCoreCallback(ART_OpenMsnCB);

�
function: � tc " art_delMPMcallback" \l 3 �art_delMPMcallback�IFA9161��CALLING SEQUENCE:
status = art_delMPMcallback(mission, callbackType)
PARAMETERS:
Name	I/O	Type	Description
mission	I	ART_GENERIC_	Pointer to a mission.
		MSNPLN_T *	
callbackType	I	ART_MPM_	Type of callback to remove.
		CALLBACK_TYPE_E	
status	O	ST_STATUS	Return value of function.
DESCRIPTION:
This function allows an MPM to remove registered functions callback for a given mission.
EXAMPLE:
#include "a_msn_plan/art_proto.h"

ST_STATUS	status;

/* Assume WPN_mission is a global pointer to a allocated mission */
status = art_delMPMcallback(WPN_mission, ART_PreAddActCB);

�
function: � tc " art_delRoute_from_Msn" \l 3 �art_delRoute_from_Msn�IFA9162��CALLING SEQUENCE:
status = art_delRoute_from_Msn(mission, route_ptr)
PARAMETERS:
Name	I/O	Type	Description
mission	I	ART_GENERIC_	Pointer to the generic mission.
		MSNPLN_T *	
route_ptr	I	ART_GENERIC_	Pointer to route.
		ROUTE_HDR_T *	
status	O	ST_STATUS	Return value of function.
DESCRIPTION:
This function will remove the indicated route from the indicated mission. This function does not remove the graphic of the route, but does free the memory for the action points within the route being deleted.
EXAMPLE:
#include "a_msn_plan/art_proto.h"

ST_STATUS	status;

/* Assume WPN_mission is a global pointer to a allocated mission */
/* route_ptr is previously set and assigned prior to this code segment */

status = art_delRoute_from_Mission(WPN_mission, route_ptr);

�
function: � tc " art_delTarget_from_Msn" \l 3 �art_delTarget_from_Msn�IFA9163��CALLING SEQUENCE:
status = art_delTarget_from_Msn(mission, target)
PARAMETERS:
Name	I/O	Type	Description
mission	I	ART_GENERIC_	Pointer to the generic mission.
		MSNPLN_T *	
target	I	APT_TARGET_T *	Pointer to target.
status	O	ST_STATUS	Return value of function.
DESCRIPTION:
This function will remove the indicated target from the indicated mission. This function does not remove the graphic of the target, but does free the memory.
EXAMPLE:
#include "a_msn_plan/art_proto.h"

ST_STATUS	status;

/* Assume WPN_mission is a global pointer to a allocated mission */
/* target is previously set and assigned prior to this code segment */

status = art_delTarget_from_Mission(WPN_mission, target);

�
function: � tc " art_drawActionPoint" \l 3 �art_drawActionPoint�IFA9164��CALLING SEQUENCE:
status = art_drawActionPoint(mission, route_ptr, action_ptr)
PARAMETERS:
Name	I/O	Type	Description
mission	I	ART_GENERIC_	Pointer to the generic mission.
		MSNPLN_T *	
route_ptr	I	ART_GENERIC_	Pointer to the route header.
		ROUTE_HDR_T *	
action_ptr	I	ART_GENERIC_	Pointer to action point to draw.
		ACTION_POINT_T *	
status	O	ST_STATUS	Return value of function.
DESCRIPTION:
This function will draw the indicated action point to the display. The results of the function will not be seen until a call to art_flushRouteDisplayBuffers.
EXAMPLE:
#include "a_msn_plan/art_proto.h"

ST_STATUS	status;

/* Assume WPN_mission is a global pointer to a allocated mission */
/* Assume route_ptr and action_ptr are set and assigned prior to this code segment */

status = art_drawActionPoint(WPN_mission, route_ptr, action_ptr);

�
function: � tc " art_drawTarget" \l 3 �art_drawTarget�IFA9165��CALLING SEQUENCE:
status = art_drawTarget(mission, target)
PARAMETERS:
Name	I/O	Type	Description
mission	I	ART_GENERIC_	Pointer to the generic mission.
		MSNPLN_T *	
target	I	APT_TARGET_T *	Pointer to target.
status	O	ST_STATUS	Return value of function.
DESCRIPTION:
This function will draw the indicated target from the indicated mission. The results of the function will not be seen until a call to art_flushRouteDisplayBuffers.
EXAMPLE:
#include "a_msn_plan/art_proto.h"

ST_STATUS	status;

/* Assume WPN_mission is a global pointer to a allocated mission */
/* target is previously set and assigned prior to this code segment */

status = art_drawTarget(WPN_mission, target);

�
function: � tc " art_findActionPointLP" \l 3 �art_findActionPointLP�IFA9166��CALLING SEQUENCE:
lp = art_findActionPointLP(route_ptr, actionPt_id)
PARAMETERS:
Name	I/O	Type	Description
route_ptr	I	APT_GENERIC_	Pointer to route header.
		ROUTE_HDR_T *	
actionPt_id	I	int	ID of action point to return list pointer for.
lp	O	LIST *	Pointer to the list element (not node->data) of the requested action point.
DESCRIPTION:
This function returns a pointer to list element containing the action point indicated by the actionPt_id parameter. If action point is not found then NULL is returned.
EXAMPLE:
#include "a_msn_plan/art_proto.h"

LIST	*lp;
APT_GENERIC_ACTION_POINT_T	*actPtr;

/* Assume that route_ptr is allocated and set prior to this code segment*/

lp = art_findActionPointLP(route_ptr, 2);

if (lp == NULL)
	return; /* point no found */

actPtr = (APT_GENERIC_ACTION_POINT_T *)lp->data;

�
function: � tc " art_flushRouteDisplayBuffers" \l 3 �art_flushRouteDisplayBuffers�IFA9167��CALLING SEQUENCE:
status = art_flushRouteDisplayBuffers()
PARAMETERS:
Name	I/O	Type	Description
status	O	ST_STATUS	Return value of function.
DESCRIPTION:
This function will update the display by adding or deleting items based on the contents of the graphic buffer.
EXAMPLE:
#include "a_msn_plan/art_proto.h"

ST_STATUS status;

status = art_flushRouteDisplayBuffers();

�
function: � tc " art_freeActionPoint" \l 3 �art_freeActionPoint�IFA9168��CALLING SEQUENCE:
status = art_freeActionPoint(mission, route_ptr, action_point)
PARAMETERS:
Name	I/O	Type	Description
mission	I	ART_GENERIC_	Pointer to a mission.
		MSNPLN_T *	
route_ptr	I	ART_GENERIC_	Pointer to route within mission.
		ROUTE_HDR_T	
action_point	O	ART_GENERIC_	Pointer to an action point.
		ACTION_POINT_T *	
status	O	ST_STATUS	Function return value.
DESCRIPTION:
This function will free memory for an action point and remove the action point from the linked list of action points for the indicated route.
EXAMPLE:
#include "a_msn_plan/art_proto.h"

ST_STATUS status;
ART_GENERIC_ACTION_POINT *action_point;

/* Assume WPN_mission and route_ptr are allocated and set prior to this code segment */

status = art_getActionPoint(WPN_mission, route_ptr, 2, &action_point);

status = art_freeActionPoint(WPN_mission, route_ptr, action_point);

�
function: � tc " art_freeMission" \l 3 �art_freeMission�IFA9169��CALLING SEQUENCE:
status = art_freeMission(mission)
PARAMETERS:
Name	I/O	Type	Description
mission	O	ART_GENERIC_	Pointer to mission.
		MSNPLN_T *	
status	O	ST_STATUS	Function return value.
DESCRIPTION:
This function will free the memory for a mission, its associated routes, and action points. It will not remove any graphics from the screen. This is a low level memory free function for the generic mission structure. It will not free an MPM data structure pointed to from within the generic data structures.
EXAMPLE:
#include "a_msn_plan/art_proto.h"

ST_STATUS 	status;

/* Assume WPN_mission is allocated and set prior to this code segment */

status = art_freeMission(WPN_mission);

�
function: � tc " art_freeRoute" \l 3 �art_freeRoute�IFA9170��CALLING SEQUENCE:
status = art_freeRoute(mission, route_ptr)
PARAMETERS:
Name	I/O	Type	Description
mission	I	ART_GENERIC_	Pointer to a mission.
		MSNPLN_T *	
route_ptr	I	ART_GENERIC_	Pointer to route.
		ROUTE_HDR_T *	
status	O	ST_STATUS	Function return value.
DESCRIPTION:
This function will free memory for a route and the action points within that route. The route will be removed from the linked list of routes in the mission structure.
EXAMPLE:
#include "a_msn_plan/art_proto.h"

ST_STATUS status;

/* Assume WPN_mission and route_ptr are allocated and set prior to this code segment */

status = art_freeRoute(WPN_mission, route_ptr);

�
function: � tc " art_freeTarget" \l 3 �art_freeTarget�IFA9171��CALLING SEQUENCE:
status = art_freeTarget(mission, target)
PARAMETERS:
Name	I/O	Type	Description
mission	I	ART_GENERIC_	Pointer to a mission.
		MSNPLN_T *	
target	I	APT_TARGET_T *	Pointer to target.
status	O	ST_STATUS	Function return value.
DESCRIPTION:
This function will free memory for a target. The target will be removed from the linked list of targets in the mission structure.
EXAMPLE:
#include "a_msn_plan/art_proto.h"

ST_STATUS status;

/* Assume WPN_mission and target are allocated and set prior to this code segment */

status = art_freeTarget(WPN_mission, target);

�
function: � tc " art_getActionPoint" \l 3 �art_getActionPoint �IFA9172��CALLING SEQUENCE:
status = art_getActionPoint(mission, route_ptr, actionPt_id, action_point)
PARAMETERS:
Name	I/O	Type	Description
mission	I	ART_GENERIC_	Pointer to the generic mission.
		MSNPLN_T *	
route_ptr	I	ART_GENERIC_	Pointer to route.
		ROUTE_HDR_T *	
actionPt_id	I	int	ID of action point to return.
actionPt_point	O	ART_GENERIC_	Returned pointer to the action
		ACTION_POINT_T **	point. Point based upon the actionPoint_id.
status	O	ST_STATUS	Return value of function.
DESCRIPTION:
This function will set the "action point" parameter to point to the action point identified by actionPt_id. If the actionPt_id is not found in the named mission and route, the function will return ST_FAILURE.
EXAMPLE:
#include "a_msn_plan/art_proto.h"

ST_STATUS status;
ART_GENERIC_ACTION_POINT *action_point;

/* Assume WPN_mission and route_ptr are allocated and set prior to this code segment */

status = art_getActionPoint(WPN_mission, route_ptr, 2, &action_point);

�
function: � tc " art_getHookedActionPts" \l 3 �art_getHookedActionPts�IFA9173��CALLING SEQUENCE:
status = art_getHookedActionPts(mission, action_list, numHooked)
PARAMETERS:
Name	I/O	Type	Description
mission	I	ART_GENERIC_	Pointer to the generic mission.
		MSNPLN_T *	
LIST	O	ART_GENERIC_	Pointer to a linked list of
		ACTION_POINT_T**	ART_GENERIC_ACTION_
			POINT_T** which are hooked.
int	O	int	Number of action points hooked.
status	O	ST_STATUS	Return value of function.
DESCRIPTION:
This function checks the hook list within the TAMPS Core to determine if any action points are hooked. If a hooked action point is found, this function will place the hooked action point in the returned linked list. The caller must remember that more than one (1) action point can be hooked and that the hooks could occur across routes within the same mission. Thus, the caller can use the route_id within the action point to determine which route the action point belongs to.
EXAMPLE:
#include "a_msn_plan/art_proto.h"
#include "a_msn_plan/agt_proto.h"

ART_GENERIC_ACTION_POINT_T *action_ptr;
ART_GENERIC_ROUTE_HDR_T *route_hdr;
LIST	*action_list;
int	count;
ST_STATUS	status;

/* Assume WPN_mission is allocated and global */

status = art_getHookedActionPts(WPN_mission, &action_list, &count);

if (!action_list)
	return; /* no action point hooked */

if (count > 1) /* process multi-point delete? */
	return; /* we leave that for you to figure out */

/* dereference the returned list */
action_ptr = (ART_GENERIC_ACTION_POINT_T *)((action_list->next)->data);
�
function: � tc " art_getHookedTarget" \l 3 �art_getHookedTarget�IFA9185��CALLING SEQUENCE:
status = art_getHookedTarget(target_ptr)
PARAMETERS:
Name	I/O	Type	Description
target_ptr	I/O	APT_TARGET_T **	Pointer to target hooked.
status	O	ST_STATUS	Return value of function.
DESCRIPTION:
This function fills the provided target pointer for a hooked target. If no target is hooked, then the function returns ST_FAILURE.
EXAMPLE:
#include "a_msn_plan/art_proto.h"

ST_STATUS	status;

ART_TARGET_T 	*target_ptr;

/* planner hooks target */

status = art_getHookedTarget(&target_ptr);
�
function: � tc " art_getMission" \l 3 �art_getMission�IFA9174��CALLING SEQUENCE:
status = art_getMission(mission)
PARAMETERS:
Name	I/O	Type	Description
mission	O	ART_GENERIC_	Return pointer to the mission
		MSNPLN_T **	within Core memory.
status	O	ST_STATUS	Return value of function.
DESCRIPTION:
Although the MPM should have a pointer to the generic mission data structure with which it is working, this function will set the passed in mission parameter to the mission pointer.
EXAMPLE:
#include "a_msn_plan/art_proto.h"

ST_STATUS	status;

ART_GENERIC_MSNPLN_T 	*WPN_mission;

status = art_getMission(&WPN_mission);

�
function: � tc " art_getRoute" \l 3 �art_getRoute �IFA9175��CALLING SEQUENCE:
status = art_getRoute(mission, route_id, route)
PARAMETERS:
Name	I/O	Type	Description
mission	I	ART_GENERIC_	Pointer to the generic mission.
		MSNPLN_T *	
route_id	I	int	Route identifier.
route	O	ART_GENERIC_	Returned pointer to the route
		ROUTE_HDR_T **	based upon the route_id.
status	O	ST_STATUS	Return value of function.
DESCRIPTION:
This function will set the "route" parameter to the pointer of the route identified by route_id. If the route_id is not found in the named mission, the function will return ST_SUCCESS but the route parameter will be set to NULL.
EXAMPLE:
#include "a_msn_plan/art_proto.h"

ST_STATUS status;
ART_GENERIC_ROUTE_HDR_T *route;

/* Assume WPN_mission is allocated and set prior to this code segment */

status = art_getRoute(WPN_mission, 2, &route);

�
function: � tc " art_hookActionPoint" \l 3 �art_hookActionPoint �IFA9176��CALLING SEQUENCE:
status = art_hookActionPoint(mission, route_ptr, actionPt_id)
PARAMETERS:
Name	I/O	Type	Description
mission	I	ART_GENERIC_	Pointer to the generic mission.
		MSNPLN_T *	
route_ptr	I	APT_GENERIC_	Pointer to route.
		ROUTE_HDR_T *	
actionPt_id	I	int 	Id of action point to hook.
status	O	ST_STATUS	Return value of function.
DESCRIPTION:
This function will hook the indicated action point. The icon will be highlighted and appear to be "logically" hooked to Core.
EXAMPLE:
#include "a_msn_plan/art_proto.h"

ST_STATUS	status;

/* Assume WPN_mission and route_ptr is allocated and set prior to this code segment */

/* Hilite/Hook action point 2 of the indicated route */
status = art_hookActionPoint(WPN_mission, route_ptr, 2);

�
function: � tc " art_initCore_4_GRDS" \l 3 �art_initCore_4_GRDS�IFA9177��CALLING SEQUENCE:
status = art_initCore_4_GRDS();
PARAMETERS:
Name	I/O	Type	Description
status	O	ST_STATUS	Return value of function.
DESCRIPTION:
This function should be called during initialization before using the other art functions. A call to this function informs Core mission planning functions and tools that the generic route construction utilities are going to be used. This does not prepare the display for use. A call to art_initGenericRouteDisplay needs to be made before displaying any route information.
EXAMPLE:
#include "a_msn_plan/art_proto.h"

ST_STATUS	status;

status = art_initCore_4_GRDS();

�
function: � tc " art_initGenericRouteDisplay" \l 3 �art_initGenericRouteDisplay�IFA9178��CALLING SEQUENCE:
status = art_initGenericRouteDisplay(mission)
PARAMETERS:
Name	I/O	Type	Description
mission	I	ART_GENERIC_	Pointer to the generic mission.
		MSNPLN_T *	
status	O	ST_STATUS	Return value of function.
DESCRIPTION:
This function initializes the display, and the associated layer and buckets to support the indicated mission. This function should be called each time a new mission is started. The name of the mission within the mission structure will be used to set up the window title and mission layer, so that interactive route development is ready. If the generic route data structure is being used, but no display of the mission is intended, then this function does not need to be used.
EXAMPLE:
#include "a_msn_plan/art_proto.h"

ST_STATUS 	status;

/* Assume that the WPN_mission is allocated and set global mission pointer */

status = art_initGenericRouteDisplay(WPN_mission);

�
function: � tc " art_replaceActPt" \l 3 �art_replaceActPt�IFA9186��CALLING SEQUENCE:
status = art_replaceActPt(mission, route_ptr, oldActPt, newActPt)
PARAMETERS:
Name	I/O	Type	Description
mission	I	ART_GENERIC_	Pointer to the generic mission.
		MSNPLN_T *	
route_ptr	I	ART_GENERIC_	Pointer to route.
		ROUTE_HDR_T *	
oldActPt	I	ART_GENERIC_	Pointer to action point to replace.
		ACTION_POINT_T *	
newActPt	I	ART_GENERIC_	Pointer to action point to add.
		ACTION_POINT_T *	
status	O	ST_STATUS	Return value of function.
DESCRIPTION:
This function will locate the old action point in the given route and mission. Once located, the old action point is removed from the linked list of action points and the new point is inserted. If the action point number is not found an error status of ST_FAILURE will be returned. The memory for the old action point is freed. This function does not affect the display of the route and its action points.
EXAMPLE:
#include "a_msn_plan/art_proto.h"

ST_STATUS 	status;

APT_GENERIC_ACTION_POINT_T	*action_point,
							*old_point;

/* Assume WPN_mission, route_ptr, and action_point, old_point have been
 * allocated and filled prior to this code segment. We are replacing point 2.
*/

status = art_replaceActPt(WPN_mission, route_ptr, old_point, action_point);

�
function: � tc " art_setCurrentRoute" \l 3 �art_setCurrentRoute�IFA9179��CALLING SEQUENCE:
status = art_setCurrentRoute(mission, route_ptr)
PARAMETERS:
Name	I/O	Type	Description
mission	I	ART_GENERIC_	Pointer to generic mission.
		MSNPLN_T *	
route_ptr	I	ART_GENERIC_	Pointer to route to make current.
		ROUTE_HDR_T *	
status	O	ST_STATUS	Return value of function.
DESCRIPTION:
This function can be called to inform the Core software which route is currently active. The current route will be used for routing capabilities and Core tools invocation. If this function is not called, the first route in the list of routes will be considered the current route.
EXAMPLE:
#include "a_msn_plan/art_proto.h"

ST_STATUS 	status;

/* Assume that the WPN_mission and route_ptr aresallocated and set global mission pointer */

status = art_setCurrentRoute(WPN_mission, route_ptr);

�
function: � tc " art_startDynamicRouting" \l 3 �art_startDynamicRouting�IFA9181��CALLING SEQUENCE:
status = art_startDynamicRouting()
PARAMETERS:
Name	I/O	Type	Description
status	O	ST_STATUS	Return value of function.
DESCRIPTION:
This function will notify Core to enable routing creation and manipulation capabilities. It will always return ST_SUCCESS and change the cursor to the default TAMPS routing cursor.
EXAMPLE:
#include "a_msn_plan/art_proto.h"

ST_STATUS status;

status = art_startDynamicRouting();

�
function: � tc " art_startRBline" \l 3 �art_startRBline�IFA9180��CALLING SEQUENCE:
status = art_startRBline(pMap, start_lat, start_lon, end_lat, end_lon)
PARAMETERS:
Name	I/O	Type	Description
pMap	I	MPT_MAP *	Pointer to the map on which to perform rubberbanding.
start_lat	I	double	Starting lat of rubberband.
start_lon	I	double	Starting lon of rubberband.
end_lat	O	double *	Resulting lat when rubberband is stopped.
end_lon	O	double *	Resulting lon when rubberband is stopped.
status	O	ST_STATUS	Return value of function.
DESCRIPTION:
This function is a low level rubberbanding function between an anchored position (lat,lon) and the mouse cursor. Once the user passes the left mouse button, the function will return with the end_lat and end_lon. This function has no effect or interaction with the generic route; it is merely made available for low level rubberband capability. It will not draw any graphics at the conclusion of the call. If the user cancels the rubberbanding (right button click), then the function will return ST_FAILURE and the result lat/lon will be set to AT_NOT_SET.
EXAMPLE:
#include "a_msn_plan/art_proto.h"
#include "maps/mpt_proto.h"

extern		MPT_MAP *MT_mapList[]; /* only needed if mpt_getMainMap NOT used */

MPT_MAP 	*pMap;
ST_STATUS	status;
double		start_lat, start_lon,
		end_lat, end_lon;

pMap = mpt_getMainMap();
/* alternative to mpt_getMainMap() */ pMap = MT_mapList[MT_HORIZONTAL_MAIN_MAP];

/* assign lat/lon degree values to start_lat, start_lon */

status = art_startRBline(pMap, start_lat, start_lon, &end_lat, &end_lon);
�
function: � tc " art_stopDynamicRouting" \l 3 �art_stopDynamicRouting�IFA9182��CALLING SEQUENCE:
status = art_stopDynamicRouting()
PARAMETERS:
Name	I/O	Type	Description
status	O	ST_STATUS	Return value of function.
DESCRIPTION:
This function will notify Core to disable routing creation or manipulation. The function will return ST_FAILURE if routing is already disabled. Routing is disabled by default until a call to art_startDynamicRouting has been made. The cursor will return to the standard TAMPS cursor.
EXAMPLE:
#include "a_msn_plan/art_proto.h"

ST_STATUS 	status;

status = art_stopDynamicRouting();

�
function: � tc " art_unHookActionPoint" \l 3 �art_unHookActionPoint�IFA9183��CALLING SEQUENCE:
status = art_unHookActionPoint(mission, route_ptr, point_id)
PARAMETERS:
Name	I/O	Type	Description
mission	I	ART_GENERIC_	Pointer to mission.
		MSNPLN_T *	
route_ptr	I	ART_GENERIC_	Pointer to route.
		ROUTE_HDR_T *	
point_id	I	int	ID of action point to unhook.
status	O	ST_STATUS	Return value of function.
DESCRIPTION:
This function will unhook the indicated action point.
EXAMPLE:
#include "a_msn_plan/art_proto.h"
ST_STATUS 	status;

/* Assumre WPN_mission and route_ptr and allocated and set prior to this code segment */

status = art_unHookActionPoint(WPN_mission, route_ptr, 2);

Document No. 160008-IDD-6.2 - February 1998

I-�

C.1.9-� PAGE �4�

