SECTION 4.4
AVIONICS CSC
�
�

This page intentionally left blank.
�4.4	Avionics CSC
Section 4.4 identifies and describes the functional areas of the Avionics CSC. The trigraphs associated with the Avionics CSC are listed below.

AVIONICS CSC TRIGRAPHS��bct�bjv��bdt�dlt��bgt�tsl��
�

This page intentionally left blank.
4.4.1	GPS Navigation Files (bgt)
4.4.1.1	Statement of Functionality
4.4.1.1.1	GPS Navigation File Record Validation
All records in the GPS navigation files will be validated by checking for their existence in the current database. The unique identifier stored in the GPS navigation file will be used to form the query’s where clauses in the dnt retrieve functions. These functions query the database for each individual record. If the return code from this query is not success, an obsolete data flag is set. The obsolete record is not displayed and a popup window informs the User that obsolete data has been encountered and selecting OK will cause the GPS Navfile to be overwritten with the obsolete data removed. Selecting Cancel will not overwrite the GPS Navfile.
4.4.1.1.2	Desensitize cc Filter Option if Selected Area is Worldwide
When the worldwide geographic area option is selected the cc (country code) filter will be desensitized and accept no inputs. An X-windows callback will be added to the worldwide toggle button to provide this functionality.
4.4.1.1.3	Include “Edit” Option for Geographic Area Filter
The User will be able to modify a previously created geographic area filter for the duration of the current session. Since geographic regions exist as system level entities, not user level, the user does not have permission to modify them permanently.
An “Edit” option will be added to the Geo pull down menu that will open the text values for the geographic area filter currently selected from the geographic area list into the appropriate HMI that corresponds to the present Create Geo HMIs. Attempting to activate the Edit button while having more than one (1) geo currently selected will result in an error message.
The Edit HMI will allow textual manipulation of any field via the text toggle button on the HMI. Selecting the map toggle will actuate geo creation as presently performed under the current New Geo option, except that the present value in the Geo Name text field will remain and be editable. The modified geo parameters will be saved in memory, but not written permanently to the database.
4.4.1.1.4	Include Name Field in Duplicate Record Resolution Tool
The duplicate record list provided by TAMPS for the purpose of duplicate resolution will provide the NAME data field.
The NAME field will be added to the manual duplicate processing HMI between the ICAO/FAA_NAME/IDENT and SITE_TYPE columns.
The name field is already contained in the DBM_Data_t structure used in the function; thus, it only needs to be added to the display.
4.4.1.1.5	Duplicate Resolution List Reorder
TAMPS will provide to the User the capability to reorder the duplicate resolution list such that repositioned items can be inserted at any point in the list.
Configuration item(s) selected in the left (manual selection) list will be inserted above the selected item on the right (automatic selection list) upon activation of the right arrow button. Having more than one (1) item selected on the right while attempting to move an item from the left to the right list will result in an error message. If no item is selected on the right, the selected item(s) from the left will be appended to the end of the list on the right.
4.4.1.1.6	Alphabetical Listing of GPS Navigation Files
The list provided by TAMPS of User generated GPS Navigation Files under the File options Open, Protect, Delete, and Report will be sorted alphabetically in ascending order by Owner Name and Identifier.
The list strings will be stored in a sorted list in the current location of the add to scrolled list statement. Then, after all of the strings are in the sorted list, TAMPS will add them to the scrolled list.
4.4.1.1.7	Save File Warning Message
TAMPS will always provide to the User, a warning when opening a new GPS Navigation File to save the currently selected User defined GPS Navigation File. The warning will consist of a pop-up window that includes two (2) buttons: OK, to open a new User defined GPS Navigation File; and Cancel, to abort the open and provide the opportunity for the User to Save the currently selected User defined GPS Navigation File.
4.4.1.1.8	Reformat Mag Var/Mag Var Hemis Display
TAMPS will display the Mag Var Hemis field at the end of the Mag Var field on the same line in the Amplification Information window.
The Amplification Information software will not be changed; only the specific low level function calls within the GPS code section will be altered. The Mag Var display will be removed and Mag Var Hemis will be replaced with the combined fields. The column name will read Mag Var in the Amp Info display.
4.4.1.1.9	Flight Plan Obsolete Data Check
TAMPS will provide obsolete data checking on Action Points from Mission Plans selected from the GPS Flight Plan HMI that have corresponding GPS Attributes. If any Action Point(s) fail the obsolete data check, a warning message will be displayed and the User will not be permitted to use that Mission Plan.
The obsolete data checking will be performed by calling the TAMPS Open Mission software with additional GPS flags set. Open Mission will then automatically perform the checks as usual, but the GPS flag will signal to the function not to attempt to correct the obsolete mission data.
4.4.1.1.10	Help Files
The existing Help files for GPS Navigation File Creation, GPS Multi Site Filter, Geo Tool, and GPS Duplicate Record Resolution will be reviewed and updated as needed.
4.4.1.2	Design Description
4.4.1.2.1	Overview
The GPS Navigation files are American Standard Code for Information Interchange (ASCII), fixed length records, one (1) record to a line. The records are separated by a newline (\n) character. Each record consists of a latitude in decimal degrees, a longitude in decimal degrees, a unique identifier up to 12 characters in length, and a one (1) character record type (refer to Table 4.4.1.2.1-I). Each field will be buffered by spaces out to its required length. The total length of the record will be 46 characters, plus the newline character, for a total of 47 characters per record.
Table 4.4.1.2.1-I. GPS Navigation File Record
Field�Length�Example��RecordType�1�B��UniqueID�12�UR23DD23AB23��Latitude�16�[-]45.123456789012��Longitude�17�[-]123.123456789012��
Navigation files can contain an unlimited number of records. A field associated with the active MPM will hold the maximum number of records that can be uploaded into the appropriate data transfer device. If this limit is exceeded, a warning will notify the planner, but will not prevent him from continuing to add records.
4.4.1.2.2	Field Definitions
Record Type
The possible record types are defined by a one (1) character identifier, A through G. The record types are as follows:
A	Airbase
B	Radio NAVAID
C	Waypoint
D	Visual Checkpoint
E	Radar Fixpoint
F	Enroute
G	Latitude/Longitude Point
Unique ID
Airbase (Eight (8) characters total)
Sub-Field Name�Length��Country Code�2��DMA Airbase ID�5��DAFIF Type�1 (U=User, D=DAFIF)��
Radio NAVAID (Ten (10) characters total)
Sub-Field Name�Length��NAVAID ID�4��NAVAID Type�1 (A=TACAN, B=VORTAC, C=VOR, D=VOR/DME, E=NDB, F= NDB/DME, G=DME)��Country Code�2��NAVAID Key Code�2��DAFIF Type�1 (U=User, D=DAFIF)��
Waypoints (12 characters total)
Sub-Field Name�Length��Identifier�5��DME Mileage�4��Country Code�2��DAFIF Type�1 (U=User, D=DAFIF)��
Visual Checkpoints (Ten (10) characters total)
Sub-Field Name�Length��Checkpoint ID�7��Type Code�3 (BRG = Bridge, DAM = Dam, WRK = Ship Wreck, MIN = Mine, OBS = Vertical Obstruction, POL = Petroleum-Oil-Lubricant Storage Tank, PNT = Miscellaneous Point Feature��
Radar Fixpoints (Ten (10) characters total)
Sub Field ID�Length��Fixpoint ID�10��
Enroute Points (Ten (10) characters total)
Sub Field ID�Length��Checkpoint ID�7��Type Code�3 (Blank Filled)��
Latitude/Longitude Points (Five (5) characters total)
Sub Field ID�Length��Identifier�5��
Latitude/Longitude
Both the latitude and longitude fields have up to 12 digits of accuracy to the right of the decimal point.
4.4.2	GPS MDL Processing (bdt)
4.4.2.1	Statement of Functionality
The user can load the MDL with DAFIF/GPS data by selecting the MDL option under the Output menu of the MPM main menu bar. GPS download procedures will provide the capability to download to the GPS MDL in the order and format specified in the Global Positioning System Common Mission Data Loader Cartridge Format Specification, Revision E, of 11 April 1994. The user will have the option of loading the following files to the MDL:
Mission flight plan files
Reversionary files
GPS almanac data
Mag Var Coefficients
Mag Var Table
Primary ID file
A warning will be provided to the planner if the DAFIF database, the GPS Almanac database, or the Magnetic Variation model has exceeded its expiration date, but the planner will not be prevented from accessing the data.
The GPS MDL software allows the planner to select all of the required data files prior to retrieval and processing of the data for download. This means that the selection of a file for download does nothing more than store the name of that file (or database record) for later processing. When the planner has completed the selection of data and presses the “Ok” or “Apply” button on the main GPS MDL Download HMI, then the retrieval, formatting and download of data occurs.
To download a flight plan to the MDL, the planner will select MDL=>Download from the Output menu on the MPM main menu bar. The MDL main HMI will be displayed and the user will select the Flight Plan Files toggle. When the planner selects Flight Plan Files, an additional HMI will be displayed for the planner to either enter the name of the flight plan to be downloaded, or query/browse a list of missions available in the database. The planner may select up to 12 flight plans for downloading. The planner will select flight plans to be downloaded and select OK.
During retrieval of the selected flight plan(s), each nav point in the flight plan will be checked to ensure that its reference point still exists in the DAFIF database and will be validated to ensure that no DAFIF point used in the flight plan has been modified since the flight plan was created. If any point fails the obsolete data check, or has been deleted, or if a flight plan is found to have more than 50 nav points, a warning will be displayed with the appropriate message and the flight plan will not be loaded.
To download a reversionary database file to the MDL, the planner will select MDL=>Download from the Output menu on the MPM main menu bar. The MDL main HMI will be displayed and the planner will select the Reversionary Data toggle. When the planner selects Reversionary Data, an additional HMI will be displayed for the user to either enter the name of the GPS navfile to be downloaded, or query/browse a list of navfiles available in the database. The planner may select a GPS navfile with one (1) to 200 records for downloading. The planner will be able to concatenate additional GPS navigation files, but an error message will be provided if the reversionary database file contains more than 200 records. An error message will be provided to the planner if the defined reversionary database contains more than 200 records, and the planner will not be allowed to download the file. The planner will select the required navfile to be downloaded and select OK. The planner is then provided an option of which type of reversionary database to create. Download in any of three (3) formats will be supported: Control Display Navigation Unit (CDNU) format, I-5A-3A format, and I-5A Miniaturized Airborne GPS Receiver (MAGR) format.
The reversionary database file will consist of one (1) reversionary database index file, with labels and with begin/end dates. The reversionary database will be created from the selected GPS navfile(s). During retrieval of the selected GPS navfiles, the required data will be formatted in the selected format (i.e., CDNU, I-5A-3A, or I-5A MAGR). The magnetic variation in each record will be validated and corrected, if necessary, prior to download. Duplicate, airbase, NAVAID, and waypoint records will be sorted.
The user will be able to select the following files for download by toggling the selection buttons for each file type to ON. The toggles will default to OFF.
GPS Almanac File
Magnetic Variation Table File
Magnetic Variation Coefficients File
If there is a Primary ID database on the currently inserted MDL cartridge, the “Keep Data” toggle will be selected. The planner will be able to use this Primary ID database or select a new one to download. To download a Primary Identifier database to the MDL, the planner will select MDL=>Download from the Output menu on the MPM main menu bar. The MDL main HMI will be displayed and the user will select the Primary ID Data toggle. When the planner selects Primary ID Data, an additional HMI will be displayed for the planner to either enter the name of the GPS navfile to be downloaded, or query/browse a list of navfiles available in the database. A warning message will be provided if the planner-selected GPS navigation file contains more than 20,004 records, but the planner will not be prevented from downloading the file.
During the retrieval process, the primary identifier database will be created from the previously identified GPS navfile and will contain the following four (4) files: identifier indices, identifier directories, identifier data records, and identifier database status. The magnetic variation in each record will be validated and corrected, if necessary, prior to download. Duplicate, airbase, NAVAID, and waypoint records will be sorted.
The planner will be able to assign the cartridge a user-supplied label and provide the status file with update date. The cartridge initial date will be the expiration date of the current version of the DAFIF database. The cartridge label and status file will be downloaded to the cartridge.
Once all desired files are configured and selected, the user will be able to start the load by selecting the “Ok” or “Apply” button from the GPS MDL Download HMI. An info widget will be displayed advising the user that the data is being retrieved/formatted/loaded, and at the completion of the load, an info widget will be displayed to inform the user that the load is complete. The load complete window will remain up until the user acknowledges it.
The user will have the capability to erase/declassify the GPS MDL, and modify starting and ending addresses by selecting the “Erase” or “Declassify” option from the MPM “Output=>MDL” menu.
4.4.2.2	Detailed Design
4.4.2.2.1	Functional Overview
The GPS MDL download capability will support selecting, formatting and downloading data from the TAMPS to the GPS MDL DTM for the Common GPS MDL, F-14A/B MDL, F-14A/B-upgrade MDL, and the F-14D MDL formats.
The operator will be able to:
Erase or declassify the DTM
Select the data that is to be downloaded to the DTM
Store and retrieve defined data sets for download
Display the data selected for download
Change the data selections prior to download
Download the data to the DTM
The GPS MDL functions will also allow an MPM developer to register their own class of data for download to an MDL. This is how the unique capabilities of the F-14 MPM will be addressed.
The initialization of Core for the Common GPS MDL format will be automatic and will occur within the current Core initialization functions. If an MPM developer has unique data or data formats, as is the case of the F-14 MPM, then the MPM developer will be required to modify their software to update the Core GPS MDL download software with their unique data retrieval, format and download functions.
4.4.2.2.2	Common MDL Data Interfaces and External Interfaces
The MDL software will access the following TAMPS Core data tables:
TAMPS_MISSION_PLAN (and subordinate tables) (Flight Plan Files)
GPS_ALMANAC_CONFIG (GPS Almanac data)
DAFIF tables (AIRPORT, WAYPOINTS, NAVAIDS, etc.) (Primary ID and Reversionary Data)
GPS Navfiles (created by the TAMPS GPS Planning subfunction) (Primary ID and Reversionary Data)
�The MDL software will have the following external interfaces:
MDL device driver (cml_mu for 1553B and smdl for SCSI)
MDLR (either SCSI or 1553) (through device driver)
MDL DTM (through MDLR)
The common MDL data flow diagram is provided in Figure 4.4.2.2.2-1.

�
Figure 4.4.2.2.2-1. Common MDL Data Flow Diagram
4.4.2.2.3	Core Software Design
4.4.2.2.3.1	Core MDL Software Initialization
4.4.2.2.3.1.1	Algorithm Overview
During MPM initialization, the MDL software initialization function (bdt_init) will be called by the MPM system initialization function (sit_init). This will initialize the MDL software with the default data structures and callback functions for the GPS Common MDL format data.
If an MPM needs to override the default operations installed by the Core MDL init function, then the MPM would do so after the sit_init call is completed. This is to ensure that the default set of data is correctly initialized, since all references to get/set data for the MDL Download data formatting and downloading operations are based upon the Core MDL data interface table.
The Core MDL Software Initialization control flow diagram is provided in Figure 4.4.2.2.3.1.1-1.
4.4.2.2.3.1.2	PDL for Core MDL Software Initialization
// PDL for CORE MDL initialization
// mpm main()
main(...) {

	...
	...
	...

	sit_init(...);

	...
	...
	...

	mpm_initMDL();

	...
	...
	...

	XtAppMainLoop();

}

// Initialization of MPM framework, menu bar, callbacks, etc.
sit_init(...) {

	...
	...
	...

�
Figure 4.4.2.2.3.1.1-1. Core MDL Initialization �Control Flow Diagram (1 of 2)

�
Figure 4.4.2.2.3.1.1-1. Core MDL Initialization �Control Flow Diagram (2 of 2)
	bdt_init();

	...
	...
	...

	sit_initDefaultMenu(...);
	...
	...
	...

	return;
}

// Initialization of MPM Menu bar with MDL options
sit_initDefaultMenu(...) {

 Widget W;

 // inits all menu bars and callbacks
	...
	...
	...

W = umt_add_pulldown(*table, MPM_OUTPUT_MDL_MENU,
		 MPM_OUTPUT, "MDL", 'M', NO);

W = umt_add_button(*table, MPM_OUTPUT_MDL_LOAD_BUTTON,
 		 MPM_OUTPUT_MDL_MENU, "Download ...",
 		 NULL,
 		 'D', NO);
W = umt_add_callback(*table, MPM_OUTPUT_MDL_LOAD_BUTTON_CALLBACK,
 		 MPM_OUTPUT_MDL_LOAD_BUTTON,
 		 (XtCallbackProc)bdt_MDL_DownloadMMICreate,
		 (XtPointer) *toplevel);

W = umt_add_button(*table, MPM_OUTPUT_MDL_ERASE_BUTTON,
		 MPM_OUTPUT_MDL_MENU, "Erase ...",
		 NULL,
		 'E', NO);
W = umt_add_callback(*table, MPM_OUTPUT_MDL_ERASE_BUTTON_CALLBACK,
		 MPM_OUTPUT_MDL_ERASE_BUTTON,
		 (XtCallbackProc)bdt_MDL_EraseMMICreate,
		 (XtPointer) *toplevel);

W = umt_add_button(*table, MPM_OUTPUT_MDL_DECLASS_BUTTON,
		 MPM_OUTPUT_MDL_MENU, "Declassify ...",
		 NULL,
		 'c', NO);
W = umt_add_callback(*table, MPM_OUTPUT_MDL_DECLASS_BUTTON_CALLBACK,
		 MPM_OUTPUT_MDL_DECLASS_BUTTON,
		 (XtCallbackProc)bdt_MDL_DeclassMMICreate,
		 (XtPointer) *toplevel);

	...
	...
	...

 return;

}

// PDL for MPM Initialization of MDL for
// MPM-specific data type support
//
//	The data can be retrieved as if it were in a list,
//	so an MPM can loop through the returned data,
// 	modify the elements needed and send the modified
//	data back to CORE for use when that type of data is
//	selected for MDL download.
//	
mpm_initMDL() {

BDT_MDL_INTERFACE_T *mdl_data = NULL;

 mdl_data =
	bdt_getFirstMDLEntry();

 while (mdl_data) {

	switch (mdl_data->dataType) {

	 case BDT_TOC_DATA:
	// Only override data function with MPM function
	// NOTE: the data processing function will be called to
	// handle all operations dealing with the specified data type,
	// including format, output, update, etc.
	// Since we are overriding the Table of Contents,
	// the MPM will be responsible for all operations involving
	// the TOC data.
	 mdl_data->DataFormatFunc = mpm_toc_func;
	 bdt_registerMdlEntry(mdl_data);
	 break;

	case BDT_CARTRIDGE_DATA:
	case BDT_MAGVAR_TABLE_DATA:
	case BDT_MAGVAR_COEFF_DATA:
	case BDT_PRIM_ID_DATA:
	// This MPM does not support this type; therefore, disable it
	 bdt_removeMDLEntry(mdl_data);
	 break;

	case BDT_FLIGHT_PLAN_DATA:
	// MPM has own format and HMI, but uses same data
	mdl_data->maxFileCount = 7;	// only seven flight plans
	mdl_data->DataRetrieveFunc = mpm_fp_retrieve_func;
	mdl_data->DataFunc = mpm_fp_format_func;
	mdl_data->LoadsetRetrieveFunc = mpm_fp_loadset_openCb;
	mdl_data->LoadsetSaveFunc = mpm_ fp_loadset_saveCb;
	
	mdl_data->selectTbCb = mpm_fp_toggleCb;
	mdl_data->editPbCb = mpm_fp_editCb;
	bdt_registerMDLEntry(mdl_data);
	break;

	case default:
	 break;
	}
	mdl_data = bdt_getNextMDLEntry(mdl_data);
 }

	// Now deal with MPM-unique data types
	mdl_data = bdt_getNewMDLEntry();

	// Initialize all values to MPM-specific requirements
	//	DataType will be initialized to BDT_MPM_DEFINED by CORE
	//	UserDataType can have an MPM-specific value
	mdl_data->mpmDataType = MPM_DATA_TYPE_1;
	mdl_data->hasTocEntry = True; 	// has entry in the MPM-defined TOC
	mdl_data->maxFileCount = 1;	 	// only one of this type allowed in TOC
	mdl_data->maxEntries = 100;		// 100 entries allowed in this file

	mdl_data->LoadsetRetrieveFunc = mpm_loadset_openCb;
	mdl_data->LoadsetSaveFunc = mpm_loadset_saveCb;

	strcpy(mdl_data->dataName, “MPM Unique Data File”);
	mdl_data->selectTbCb = mpm_data_toggleCb;
	mdl_data->editPbCb = mpm_data_editCb;

	bdt_registerMDLEntry(mdl_data);

return;

}
4.4.2.2.3.2	MPM-Core MDL Interface Overview
An overview of the MPM-Core MDL interface is provided in Figure 4.4.2.2.3.2-1.
�
Figure 4.4.2.2.3.2-1. MPM-Core MDL Interface Overview
4.4.2.2.4	Core MDL HMI Control Flow and Scenarios
4.4.2.2.4.1	Core MDL Declassify HMI
4.4.2.2.4.1.1	Algorithm Overview
The MDL Declassify HMI State diagram is provided in Figure 4.4.2.2.4.1.1-1.

�
Figure 4.4.2.2.4.1.1-1. MDL Declassify HMI State Diagram
4.4.2.2.4.1.2	PDL
From MPM Menubar:

Select Output->MDL->Declassify

Call bdt_DeclasifyMMICreate() 			// MDL Declassify window
	// displays
	instantiate bdt_DeclassDlg_c object

bdt_DeclassDlg_c::create()
	instantiate a bdt_Cartridge_c object

bdt_Cartridge_c::Allocate()				// attempt to allocate a DTM

If SUCCESS

 - Manage the Declassify screen widget

 - Enter Start address - Enter start address of Declassify operation
	Call bdt_DeclassDlg_c::TxtFldCb()		// process text entries and
							// validate addresses

 - Enter Stop address - Enter stop address of Declassify operation
	Call bdt_DeclassDlg_c::TxtFldCb()		// process text entries and
							// validate addresses

 - Press “OK” =>
	- Display progress status

	Call bdt_DeclassDlg_c::ButtonCb()		// process button selections
	Call bdt_Cartridge_c::Declassify() 		// to declassify MDL with
							// specified addresses
	bdt_Cartridge_c::Deallocate()		// deallocate the MDL DTLM
	release bdt_Cartridge_c object
	Call bdt_DeclassDlg_c::xd_hide()		// close Declassify Dialog

 - Press “Apply” =>
	- Display progress status

	Call bdt_DeclassDlg_c::ButtonCb()		// process button selections
	Call bdt_Cartridge_c::Declassify() 		// to declassify MDL with
							// specified addresses

 - Press “Cancel” =>
	Call bdt_DeclassDlg_c::ButtonCb()		// process button selections
	if no previous Apply
		any values entered are removed and Declassify operation is cancelled
	else
		Declassify operation has already occurred
	endif

	bdt_Cartridge_c::Deallocate()		// deallocate the MDL DTLM
	release bdt_Cartridge_c object
	Call bdt_DeclassDlg_c::xd_hide()		// close Declassify Dialog

 - Press “Help” =>
	Call bdt_DeclassDlg_c::ButtonCb()		// process button selections
		display help window

else

 Call bdt_Cartridge_c::Error(AllocationFailure)	// warn operator that
							// allocation of DTM
							// failed

endif
XtAppMainLoop() re-entered after every “event”
4.4.2.2.4.2	Core MDL Erase HMI
4.4.2.2.4.2.1	Algorithm Overview
The MDL Erase HMI State diagram is provided in Figure 4.4.2.2.4.2.1-1.
�
Figure 4.4.2.2.4.2.1-1. MDL Erase HMI State Diagram
4.4.2.2.4.2.2	PDL
From MPM Menubar:

Select Output->MDL->Erase

Call bdt_EraseMMICreate() 				// MDL Erase window
	// displays
	instantiate bdt_EraseDlg_c object

bdt_EraseDlg_c::create()
	instantiate a bdt_Cartridge_c object

bdt_Cartridge_c::Allocate()				// attempt to allocate a DTM

If SUCCESS

 - Manage the Erase screen widget

 - Enter Start address - Enter start address of Erase operation
	Call bdt_EraseDlg_c::TxtFldCb()		// process text entries and
							// validate addresses

 - Enter Stop address - Enter stop address of Erase operation
	Call bdt_EraseDlg_c::TxtFldCb()		// process text entries and
							// validate addresses

 - Press “OK” =>
	- Display progress status

	Call bdt_EraseDlg_c::ButtonCb()		// process button selections
	Call bdt_Cartridge_c::Erase() 		// to erase MDL with specified
							// addresses
	bdt_Cartridge_c::Deallocate()		// deallocate the MDL DTLM
	release bdt_Cartridge_c object
	Call bdt_EraseDlg_c::xd_hide()		// close Erase Dialog
	

 - Press “Apply” =>
	- Display progress status

	Call bdt_EraseDlg_c::ButtonCb()		// process button selections
	Call bdt_Cartridge_c::Erase() 		// to erase MDL with specified
							// addresses

 - Press “Cancel” =>
	Call bdt_EraseDlg_c::ButtonCb()		// process button selections
	if no previous Apply
		any values entered are removed and Erase operation is cancelled
	else
		Erase operation has already occurred
	endif

	bdt_Cartridge_c::Deallocate()		// deallocate the MDL DTLM
	release bdt_Cartridge_c object
	Call bdt_EraseDlg_c::xd_hide()		// close Erase Dialog

 - Press “Help” =>
	Call bdt_EraseDlg_c::ButtonCb()		// process button selections
		display help window

else

 Call bdt_Cartridge_c::Error(AllocationFailure)	// warn operator that
							// allocation of DTM 											// failed

endif
	XtAppMainLoop() re-entered after every “event”
4.4.2.2.4.3	Core MDL Download HMI
This HMI will display either the default Common MDL data types or the registered data types of the MPM that is currently executing (see below). The toggle buttons will set the sensitivity of the edit buttons (if there is an edit button for that data type) and pop-up the corresponding dialog (if there is a dialog for that type). Some data types, notably the Magnetic Variation and GPS Almanac data will not have an “Edit” button, as there is no user input for data definition once the planner has selected that type of data. In that case, the toggle button set/unset action is the only action that will occur until the Ok/Apply button on the Download Dialog is pressed.
When “OK/Apply” is pressed, the software will first read the cartridge to get the Cartridge Label data, and if any “Keep Data” toggles have been set, read that data from the MDL cartridge and store it temporarily. The software will then allow the planner to update the Cartridge Label (if applicable) and then loop through the Core MDL Interface Data Table to see what has been selected, process the selections, retrieve and format the data associated with those selections, and download the data to the MDL cartridge.
4.4.2.2.4.3.1	Algorithm Overview
The MDL Download State diagram is provided in Figure 4.4.2.2.4.3.1-1.

�
Figure 4.4.2.2.4.3.1-1. MDL Download State Diagram
�4.4.2.2.4.3.2	PDL and Control Flow Diagrams
The scenarios are provided below only for the Core Common MDL Download HMI.
Download Control Flow Diagram #1

�

From MPM Menubar:
Select Output->MDL->Download		// callback to create dialog is invoked

Call bdt_DownloadMMICreate()

	if (NOT bdt_DnldDlg_c)
		instantiate bdt_DnldDlg_c object
		instantiate bdt_Cartridge_c object

		Check status of TAMPS DAFIF data
		if (EXPIRED)
		 display warning dialog

		Check status of TAMPS GPS ALMANAC data
		if (EXPIRED)
		 display warning dialog

		Call bdt_DnldDlg_c::create()			// Create Download HMI
	 	 	Call bdt_PaintDownloadDataList()	// Add MDL registered types
								// to HMI
	endif

	Call bdt_Cartridge_c::AllocateMDL()		// Alocate an MDL DTM
	If NOT SUCCESS
		// Not an error condition, assume that planner will
		// be setting up loadset definitions, rather than downloading
		// to an MDL
	else

		if Primary ID data is present on the existing MDL cartridge
			Set “Keep Data” toggle button on
			Desensitize “Edit” button
		else
			Set “Keep Data” toggle button off
			Sensitize “Edit” button
		end if

	end if

	Call bdt_DnldDlg_c::xd_show()			// Display Download HMI

 	Return 						// return to XtAppMainLoop()

// The following events are processed from the Download HMI:

// Download “Select” Toggle / “Edit” Pushbutton events	
�Download Control Flow Diagram #2

�

	Press Flight Plan Files “Select” Toggle =>
	Press Flight Plan Files “Edit” Pushbutton =>
		See paragraph 4.4.2.2.4.5.1.1, Core MDL Flight Plan Selection, Algorithm �		Overview
		return to XtAppMainLoop()

	Press Reversionary Data “Select” Toggle =>
	Press Reversionary Data “Edit” Pushbutton =>
		See paragraph 4.4.2.2.4.5.2.1, Core Reversionary Data Selection, Algorithm �		Overview
		return to XtAppMainLoop()

	Press GPS Almanac Data “Select” Toggle =>
		Turn on Toggle	// Almanac Data will be processed
					// for current date @ OK/Apply event
		return to XtAppMainLoop()

	Press Mag Var Coefficients Data “Select” Toggle =>
		Turn on Toggle 	// Mag Var Coefficients Data
					// will be processed @ OK/Apply event
		return to XtAppMainLoop()

	Press Mag Var Table Data “Select” Toggle =>
		Turn on Toggle 	// Mag Var Table Data
					// will be processed @ OK/Apply event
		return to XtAppMainLoop()
	Press Primary ID Data “Select” Toggle =>
	Press Primary ID Data “Edit” Pushbutton =>
		return to XtAppMainLoop()
Download Control Flow Diagram #3

�

	Press “Deselect All” =>
		// loop thru MDL Data Table
		//	 if Table Item Toggle on
		//		call Table Item class or function to remove data
		//		if “edit” button, set sensitivity to off
		//		turn off Toggle
		//	endif
		// endloop
		return to XtAppMainLoop()

	Press “Report” =>
		// Display report of all files & file types currently selected for download
		return to XtAppMainLoop()

// Loadset Pushbutton events
	Press “Save” =>
		See paragraph 4.4.2.2.4.4.1, Core Loadset Operations, Algorithm Overview
		return to XtAppMainLoop()
	Press “Retrieve” =>
		See paragraph 4.4.2.2.4.4.1, Core Loadset Operations, Algorithm Overview
		return to XtAppMainLoop()

	Press “Delete” =>
		See paragraph 4.4.2.2.4.4.1, Core Loadset Operations, Algorithm Overview
		return to XtAppMainLoop()

// Download HMI Pushbutton events
Download Control Flow Diagram #4

�

	Press “OK” =>
	Press “Apply” =>

		Call bdt_Cartridge_c::AllocateMDL()
	 if FAILURE
	Call bdt_DnldDlg_c::DisplayMsg(“MDLR empty”)
	Return to XtAppMainLoop()
		else
	Call bdt_Cartridge_c::InitializeDownload()

	Call bdt_DnldDlg_c::CartridgeDataMMI()

	Call bdt_DnldDlg_c::DisplayMsg(“Retrieving Data For Download”)
	// On Cartridge Data HMI, enter Cartridge Label
	// On Cartridge Data HMI, change Update Date (if required -
	// Initial Date will default to current date and is non-modifiable,
	// Update Date defaults to current TAMPS DAFIF database
	// expiration date)
	// Press OK/Apply
	// Data stored in Cartridge Data Table Item
	// Press Cancel, Download cancelled
	// (data selected will still be there for use)

	// Retrieve all data selected thru Select HMIs for
	// formatting & downloading

	loop thru MDL Data Table

	if (bdt_DnldDlg_c::Toggle(FlightPlan))
		Call bdt_FlightPlan_c::Retrieve()
	endif

	if (bdt_DnldDlg_c::Toggle(Reversionary))
		Call bdt_Reversionary_c::Retrieve()
	endif

	if (bdt_DnldDlg_c::Toggle(Almanac))
		Call bdt_Almanac_c::Retrieve()
	endif

	if (bdt_DnldDlg_c::Toggle(MagVarCoefficents))
		Call bdt_ MagneticVariation_c::RetrieveCoefficientData()
	endif

	if (bdt_DnldDlg_c::Toggle(MagVarTable))
		Call bdt_ MagneticVariation_c::RetrieveTableData()
	endif

	if (bdt_DnldDlg_c::Toggle(PrimaryId))
		Call bdt_PrimaryId_c::Retrieve()
	endif

	if (bdt_DnldDlg_c::Toggle(MPM_Data))
		Call MPM_Data::Retrieve()
	endif

	end loop

	endif
�Download Control Flow Diagram #5

�

		Call bdt_DnldDlg_c::DisplayMsg(“Downloading Data”)

		loop thru MDL Data Table

	if bdt_TableOfContents_c:: RegistryEntryExists(FlightPlan)
		Call bdt_DnldDlg_c::DisplayMsg(“Downloading Flight Plan Data”)
		Call bdt_FlightPlan_c::Data()
	end if

	if bdt_TableOfContents_c:: RegistryEntryExists(Reversionary)
		Call bdt_DnldDlg_c::DisplayMsg(“Downloading
							Reversionary Data”)
		Call bdt_Reversionary_c::Data()
	end if

	if bdt_TableOfContents_c:: RegistryEntryExists(Almanac)
		Call bdt_DnldDlg_c::DisplayMsg(“Downloading
							GPS Almanac Data”)
		Call bdt_Almanac_c::Data()
	end if

	if bdt_TableOfContents_c:: RegistryEntryExists(MagVarCoefficients)
		Call bdt_DnldDlg_c::DisplayMsg(“Downloading
							Mag Var Coeff Data”)
		Call bdt_MagneticVariation_c::CoefficientData()
	end if

	if bdt_TableOfContents_c:: RegistryEntryExists(MagVarTable)
		Call bdt_DnldDlg_c::DisplayMsg(“Downloading
							Mag Var Table Data”)
		Call bdt_MagneticVariation_c::TableData()
	end if

	if PrimaryID data is to be kept from cartridge
		Call bdt_DnldDlg_c::DisplayMsg(“Reloading
							Primary ID Data”)
		Download Primary ID data read from cartridge,
			updating the Status Label with current date
	else
		if bdt_TableOfContents_c:: RegistryEntryExists(PrimaryId)
			Call bdt_DnldDlg_c::DisplayMsg(“Downloading
								Primary ID Data”)
			Call bdt_PrimaryId_c::Data()
		end if
	end if

	if (bdt_DnldDlg_c::Toggle(MPM_Data))
		Call bdt_DnldDlg_c::DisplayMsg
			(“Downloading” MDL_DataTable::dataName “Data”)
		Call MPM_Data::Data()
	endif

	end loop

		Call bdt_Cartridge_c::Download()			// download data to
									// MDL device
		If (ok)
			Call bdt_Cartridge_c::DeallocateMDL()	// release MDL device
			Call bdt_DnldDlg_c::xd_hide()		// undisplay HMI
		endif
		return to XtAppMainLoop()

	Press “Cancel” =>
		Call bdt_Cartridge_c::DeallocateMDL()		// release MDL device
		Call bdt_DnldDlg_c::xd_hide()			// undisplay HMI
		return to XtAppMainLoop()

	Press “Help” =>
		// display Help HMI
		return to XtAppMainLoop()

 endif
4.4.2.2.4.4	Loadset Operations
4.4.2.2.4.4.1	Algorithm Overview
The concept of an MDL loadset is being developed to support fleet users who have identified the need to be able to set up a set of data (mission plans, reversionary file, primary id file, almanac data, etc.) and use that same set of data for multiple flights or missions. To support that need, the MDL Download HMI will allow a planner to save, retrieve, delete and display information related to a set of data defined as a “loadset.” A “loadset” will not contain all of the data required to load an MDL, it will be a reference to the location where the required information can be obtained, thereby relieving the necessity of performing obsolete data checks on a “loadset” when it is retrieved. The obsolete data check would be performed as necessary by the current functions that retrieve the data when a planner is defining MDL download data interactively.
The Loadset HMI will be the same HMI that is used for the “Mission Open, Save as, Delete” HMI, with required changes to support processing the Loadset data tables. Loadset operations will call the registered callback function provided for each type of data to save, retrieve, delete, or report the information associated with that data. The MPM-registered functions will be passed the type of data and the name of the loadset that the data is (or will be, in the “Save” case) stored with. The MPM functions are then responsible for saving (Loadset Save), retrieving (Loadset Retrieve), deleting (Loadset Delete) or reporting on (Loadset Report) the MPM specific data. The Core-supported Common MDL data types will also be processed in the same manner.
4.4.2.2.4.4.2	PDL
Press “Save”=>

	Call bdt_Loadset_c::createMMI(Save)		// Loadset HMI displays

	Manage Loadset screen widget

	Planner selects loadset name
	Planner selects OK/Apply

	Call bdt_Loadset_c::Save()

	Display LoadsetName @ top of MDL Download Dialog

	if bdt_DnldDlg_c::Toggle(Almanac)
		Call bdt_Almanac_c::GetAlmanacDate()
	endif

	if bdt_DnldDlg_c::Toggle(FlightPlan)
		loop through all flight plans
			Call bdt_FlightPlan_c::GetValues()
		end loop
	endif

	if bdt_DnldDlg_c::Toggle(MagVarCoefficients)
		Call MagneticVariation_c::Save(MagVarCoefficients)
	endif

	if bdt_DnldDlg_c::Toggle(MagVarTable)
		Call MagneticVariation_c::Save(MagVarTable)
	endif

	if bdt_DnldDlg_c::Toggle(Reversionary)
		loop through all reversionary files
			Call bdt_Reversionary_c::GetValues()
		end loop
	endif

	if bdt_DnldDlg_c::Toggle(PrimaryId)
		Call bdt_PrimaryId_c::GetValues()
	endif

	if bdt_DnldDlg_c::Toggle(MPM_Data)
		Call MPM_Data::GetValues()
	endif

Press “Retrieve” =>

	Call bdt_Loadset_c::Retrieve()		// Retrieve values from database

	Display LoadsetName @ top of MDL Download Dialog

	if bdt_Loadset_c::DataAvailable(Almanac)
		Call bdt_Almanac_c::SetAlmanacDate()
		Call bdt_DnldDlg_c::Toggle(Almanac, ON)
	endif

	if bdt_Loadset_c::DataAvailable(FlightPlan)
		loop through all flight plan entries
			Call FlightPlan_c::SetValues()
		end loop
		Call bdt_DnldDlg_c::Toggle(FlightPlan, ON)
	endif

	if bdt_Loadset_c::DataAvailable(MagVarCoefficients)
		Call bdt_DnldDlg_c::Toggle(MagVarCoefficients, ON)
	endif

	if bdt_Loadset_c::DataAvailable(MagVarTable)
		Call bdt_DnldDlg_c::Toggle(MagVarTable, ON)
	endif

	if bdt_Loadset_c::DataAvailable(Reversionary)
		loop through all reversionary files
			Call Reversionary_c::SetValues()
		end loop
		Call bdt_DnldDlg_c::Toggle(Reversionary, ON)
	endif

	if bdt_Loadset_c::DataAvailable(PrimaryId)
		Call bdt_PrimaryId_c::SetValues()
		Call bdt_DnldDlg_c::Toggle(PrimaryId, ON)
	endif

	if bdt_Loadset_c::DataAvailable(MPM_data)
		Call MPM_Data::LoadsetRetrieveCb()
		Call bdt_DnldDlg_c::Toggle(MPM_Data, ON)
	endif

XtAppMainLoop() re-entered after every “event”
�4.4.2.2.4.5	Download HMI Edit Button Callback Core HMI
4.4.2.2.4.5.1	Core MDL Flight Plan Selection
4.4.2.2.4.5.1.1	Algorithm Overview
The Flight Plan Select State diagram is provided in Figure 4.4.2.2.4.5.1.1-1.
�
Figure 4.4.2.2.4.5.1.1-1. Flight Plan Select State Diagram
4.4.2.2.4.5.1.2	PDL and Control Flow Diagrams
From MDL Download dialog:

	Press Flight Plan Data “Toggle” =>
	Press Flight Plan Data “Edit” =>

	Call bdt_DnldFlightPlanCb()
		if (toggle ON)
			set toggle OFF
			set Edit sensitivity OFF
		else
			instantiate bdt_FltPlnDlg_c object
			Call bdt_FltPlnDlg_c::create()		// create HMI
			Call bdt_FltPlnDlg_c::xd_show()		// display HMI
		endif
		return to XtAppMainLoop()

// If Flight Plan Dialog is displayed
// 	process Flight Plan Data Dialog events:
Flight Plan Control Flow Diagram #1

�

- Enter filter criteria (strike name, mission name,
			owner name, and/or aircraft type) =>	
	Call bdt_FltPlnDlg_c::TextFldCb()
		// validate text entry & store values
	return to XtAppMainLoop()

- Press “Search” =>

	Call bdt_FltPlnDlg_c::SearchCb()
		// Query mission database to determine the list of
		// missions to be displayed

		Call bdt_FltPlnDlg_c::displayList()
			// display query results

	return to XtAppMainLoop()

Flight Plan Control Flow Diagram #2

�

- Select list item in “Data Selection Criteria” list window =>

	Call bdt_FltPlnDlg_c::ListSelectCb()
		// Update “Data Currently Selected” list window with
		// FP label, FP number & # of waypoints
	return to XtAppMainLoop()
�
Flight Plan Control Flow Diagram #3

�

- Press “Remove Data” =>

	Call bdt_FltPlnDlg_c::RemoveCb
		// if (item selected)
		// remove item from “Data Currently Selected” list window
		// release data associated with selected item
	return to XtAppMainLoop()
�
Flight Plan Control Flow Diagram #4

�

- Press “Cancel” =>

	Call bdt_FltPlnDlg_c::ButtonCb()			// process button event
		Call bdt_FltPlnDlg_c::xd_hide()		// undisplay HMI
	return to XtAppMainLoop()
�
Flight Plan Control Flow Diagram #5

�

- Press “OK” =>

	Call bdt_FltPlnDlg_c::ButtonCb()			// process button event
		loop through selections
			Call bdt_FlightPlan_c::SetValues()	// pass selected data to Flight
								// Plan class
		end loop

	// NOTE: No retrieval of data occurs until the Download
	// HMI OK/Apply button is pressed

		Call bdt_FtPlnDlg_c::xd_hide()		// undisplay HMI
	return to XtAppMainLoop()
4.4.2.2.4.5.2	MDL Reversionary File Selection
4.4.2.2.4.5.2.1	Algorithm Overview
The Reversionary Data Select State diagram is provided in Figure 4.4.2.2.4.5.2.1-1.
�
Figure 4.4.2.2.4.5.2.1-1. Reversionary Data Select State Diagram
4.4.2.2.4.5.2.2	PDL and Control Flow Diagrams
From MDL Download dialog:

	Press Reversionary Data “Toggle” =>
	Press Reversionary Data “Edit” =>

	Call bdt_DnldRevDataCb()
	if (toggle ON)
		set toggle OFF
		set Edit sensitivity OFF
	else
		instantiate bdt_RevDataDlg_c object
		Call bdt_RevDataDlg_c::create()			// create HMI
		Call bdt_RevDataDlg_c::xd_show()			// display HMI
	endif
	return to XtAppMainLoop()

// If Reversionary Data Dialog is displayed
// 	process Reversionary Data Dialog events:
�
Reversionary Data Control Flow Diagram #1

�

- Enter filter criteria =>
	(file name, owner name, date created)
	Call bdt_RevDataDlg_c::TextFldCb()		// validate text entry & store
								// values
	return to XtAppMainLoop()

- Press “Search” =>

	Call bdt_RevDataDlg_c::SearchCb()			// Query GPS Navfile catalog
								// for list of files that match
								// filter criteria

		Call bdt_RevDataDlg_c::displayFileList()	// display query results
	return to XtAppMainLoop()
�
Reversionary Data Control Flow Diagram #2

�

- Select list item in “File Display”
	 list window =>					// Selects GPS NavFile to use

	Call bdt_RevDataDlg_c:: FileListCb()		// process selection

		Call bdt_RevDataDlg_c::displaySelectList()	// Update Reversionary file
								// label & number in “Data
								// Currently Selected” list
	return to XtAppMainLoop()
�
Reversionary Data Control Flow Diagram #3

�

- Press “Remove Data” =>

	Call bdt_RevDataDlg_c::RemoveCb
		// if (item selected)
		// remove item from “Data Currently Selected” list window
		// release data associated with selected item
	return to XtAppMainLoop()
�
Reversionary Data Control Flow Diagram #4

�

- Press “Cancel” =>

	Call bdt_RevDataDlg_c::ButtonCb()				// process button event
		Call bdt_RevDataDlg_c::xd_hide()			// undisplay HMI
	return to XtAppMainLoop()
�
Reversionary Data Control Flow Diagram #5

�

- Press “OK” =>

	Call bdt_RevDataDlg_c::ButtonCb()				// process button event

	// NOTE: No retrieval of data occurs until the Download
	// HMI OK/Apply button is pressed

		loop through all selections
			Call bdt_Reversionary_c::SetValues()	// pass selected data to
									// Reversionary Data
									// object
		end loop

		Call bdt_RevDataDlg_c::GetRevData()		// Get Reversionary
									// File data (name,
									// dates, format)
		Call bdt_RevDataDlg_c::xd_hide()			// undisplay HMI
	return to XtAppMainLoop()
4.4.2.2.4.5.3	Core Magnetic Variation Data
There will be individual toggles on the MDL Download HMI for both types of Magnetic Variation data. This will support the Common MDL MPMs, as well as make it simpler to support MPMs that do not use both types of magnetic variation files.
4.4.2.2.4.5.4	Core MDL Primary ID File Selection
4.4.2.2.4.5.4.1	Algorithm Overview
The Primary ID Data Select State diagram is provided in Figure 4.4.2.2.4.5.4.-1.
�
Figure 4.4.2.2.4.5.4.1-1. Primary ID Data Select State Diagram
4.4.2.2.4.5.4.2	PDL and Control Flow Diagrams
From MDL Download dialog:

	Press Primary ID Data “Toggle” =>
	Press Primary ID Data “Edit” =>

	Call bdt_DnldPrimIDCb()
		if (toggle ON)
			set toggle OFF
			set Edit sensitivity OFF
		else
			instantiate bdt_PrimIdDlg_c object
			Call bdt_PrimIdDlg_c::create()			// create HMI
			Call bdt_PrimIdDlg_c::xd_show()			// display HMI
		endif
		return to XtAppMainLoop()

// If Primary ID Dialog is displayed
//	process Primary ID Data Dialog events:
Primary ID Control Flow Diagram #1

�

- Enter filter criteria =>
	(file name, owner name, date created)
	Call bdt_PrimIdDlg_c::TextFldCb()			// validate text entry & store
								// values
	return to XtAppMainLoop()

- Press “Search” =>
	Call bdt_PrimIdDlg_c::SearchCb()			// Query GPS navfile catalog
								// to determine the list of
								// navfiles to be displayed
		Call bdt_PrimIdDlg_c::displayFileList()	// display query results
	return to XtAppMainLoop()
�Primary ID Control Flow Diagram #2

�

- Select list item in Navfile display
	list window =>					// Selects GPS NavFile to use

	Call bdt_PrimIdDlg_c:: FileListCb()		// process selection
							// Update Primary ID file
							// label & dates
	return to XtAppMainLoop()
Primary ID Control Flow Diagram #3

�
- Press “Cancel” =>

	Call bdt_PrimIdDlg_c::ButtonCb()			// process button event
		Call bdt_PrimIdDlg_c::xd_hide()		// undisplay HMI
	return to XtAppMainLoop()
�
Primary ID Control Flow Diagram #4

�

- Press “OK” =>

	Call bdt_PrimIdDlg_c::ButtonCb()			// process button event

	// NOTE: No retrieval of data occurs until the Download
	// HMI OK/Apply button is pressed

		Call bdt_PrimaryID_c::SetValues()		// pass selected data to
								// Primary ID class

		Call bdt_PrimIdDlg_c::xd_hide()		// undisplay HMI
	return to XtAppMainLoop()

4.4.2.2.5	Core MDL Data Class Definitions
Class Name:	bdt_Almanac_c
Purpose:
This object provides operations to retrieve the GPS Almanac data. Only one set of almanac data is written to the MDL cartridge. An MPM specified number of GPS almanac records can be processed by this object.
Exportability:
Local
Interactions:
(bdt_TableOfContents_c
(bdt_date_t
Class Name:	bdt_Cartridge_c
Purpose:
This class encapsulates the attributes and operations to manipulate the MDL cartridge.
Exportability:
Local
Interactions:
(bdt_TableOfContents_c
Class Name:	bdt_Dafif_c
Purpose:
This class encapsulates operations and attributes to process the data from the GPS Navigation File. This file is used to retrieve DAFIF records from the database.
Exportability:
Local
Interactions:
(Core “dbase/dgt” functions to access and retrieve DAFIF data from database
(Rogue Wave tools.h++ COTS
Class Name:	bdt_FlightPlan_c
Purpose:
This class encapsulates functions and attributes to process flight plan data from the TAMPS mission database. A flight plan identifies 50 waypoints. Up to 12 flight plans are allowed.
Exportability:
Local
Interactions:
(bdt_TableOfContents_c
(Core ìa_msn_plan/adtî library calls to access Mission DB.
(Core ìa_msn_planî route data structures to retrieve flight plan data from retrieved missions.
(Rogue Wave tools.h++ COTS
Class Name:	bdt_Loadset_c
Purpose:
This template class encapsulates the operations to save and retrieve a loadset.
Exportability:
Local
Interactions:
None
Class Name:	bdt_MagneticVariation_c
Purpose:
This object provides operations and attributes to process the magnetic variation data.
Exportability:
Local
Interactions:
(bdt_TableOfContents_c
(CORE “a_msn_plan/aut” library for calculation of mag var data.
Class Name:	bdt_PrimaryID_c
Purpose:
This object encapsulates the operations and attributes to process the Primary ID data. This object inherits operations and attributes from bdt_Dafif_c class to process GPS navigation data.
Exportability:
Local
Interactions:
(bdt_Dafif_c
(bdt_TableOfContents_c
(Rogue Wave tools.h++ COTS
Class Name:	bdt_Reversionary_c
Purpose:
This class encapsulates the operations and attributes to process GPS navigation files into reversionary format for the MDL. Multiple reversionary files can be specified, but the total number of waypoints for all the files can not exceed the maximum number of points defined for the class.
Exportability:
Local
Interactions:
(bdt_Dafif_c
(bdt_TableOfContents_c
(Rogue Wave tools.h++ COTS
Class Name:	bdt_TableOfContents_c
Purpose:
This class provides operations to maintain the table of contents which will be written to the MDL cartridge.
Exportability:
None
Interactions:
(bdt_Cartridge_c
Class Name:	bdt_Waypoint_c
Purpose:
This class provides an operation to retrieve the waypoints for a flight plan.
Exportability:
Local
Interactions:
None
4.4.2.2.6	MDL Loadset Tables

� tc “BDT_MDL_DATA_FILE_XREF” \12 �BDT_MDL_DATA_FILE_XREF�������Field Name�TYPE�Units�Remarks��LOADSET_ID�int� -�id of loadset��DATA_TYPE�int� -�Type of data (BDT_FILE_TYPE enums)��MPM_DATA_TYPE�int� -�MPM type definition (any int)��DATA_NAME�varchar(32)�-�Name where source data can be retrieved���

� tc “BDT_MDL_FLT_PLAN_XREF” \12 �BDT_MDL_FLT_PLAN_XREF�������Field Name�TYPE�Units�Remarks��LOADSET_ID�int�-�id of loadset��DATA_TYPE�int�-�Type of data (BDT_FILE_TYPE enums)��MPM_DATA_TYPE�int�-�MPM type definition (any int)��MISSION_ID�smallint�-�Mission id that flight plan data came from��FP_NUMBER�smallint�-�Flight Plan number where data will be stored on MDL��FP_LABEL�varchar(32) �-�FP Label for the associated flight plan (not in F-14D)�������������������������������������
�
� tc “BDT_MDL_LOADSET” \12 �BDT_MDL_LOADSET�������Field Name�TYPE�Units�Remarks��LOADSET_ID�int�-�Unique loadset identifier��LOADSET_NAME�varchar(32)�-�Loadset name (APT_NAMELEN-1)��ACFT_TYPE�varchar(32) �-�Loadset a/c type (APT_NAMELEN-1)��OWNER�varchar(32)�-�Loadset owner (APT_NAMELEN-1)��CLASSIFICATION�varchar(255) �-�Classification of loadset (APT_TEXTLEN-1)��CREATE_DATE�datetime �-�Date loadset was created��LAST_MOD_DATE�datetime �-�Date loadset was last modified��DESCRIPTION�varchar(255)�-�Short loadset description (APT_TEXTLEN-1)��OP_AREA�varchar(32) �-�Name of op area for loadset��PERMISSIONS�int�-�Access permission: 1=ro, 2=rw��

� tc “BDT_MDL_LOADSET_DELETED” \12 �BDT_MDL_LOADSET_DELETED�������Field Name�TYPE�Units�Remarks��LOADSET_ID�int�-�id of deleted loadsets���
�
� tc “BDT_MDL_REV_DATA_XREF” \12 �BDT_MDL_REV_DATA_XREF�������Field Name�TYPE�Units�Remarks��LOADSET_ID�int �-�id of loadset��DATA_TYPE�int �-�Type of data (BDT_FILE_TYPE enums)��MPM_DATA_TYPE�int �-�MPM type definition (any int)��REVFILE_LABEL�varchar(10)�-�Label for reversionary file on MDL��SUBFILE_LABEL�varchar(8)�-�Subfile label��SUBFILE_NUMBER�smallint �-�Subfile number��NAVFILE_NAME�varchar(10)�-�Name of GPS Nav File��NAVFILE_SIZE�int�-�Number of records in GPS Nav File��FORMAT�int�-�Rev File Format (CDNU = 1 (default), 3A = 2, MAGR � = 3)�����������������

4.4.3	JNL File Creation (bjv)
4.4.4	JTIDS Initialization File Transfer to E-2C TID via SCSI Interface (tsl)
4.4.4.1	Statement of Functionality
The TID-SCSI (TIDS) device driver will support all SCSI ìprocessor deviceî commands which have been implemented: Test Unit Ready, Request Sense, Inquery, Send, and Receive. This device driver will act as a communication conduit for an application to send/receive TIDS commands, status and data.
The API will consist of UNIX streaming I/O commands (i.e., open, read, write). Tape Transport control will be accomplished exclusively by application sequencing of TIDS commands.
The TAMPS environment will provide the environment variable E2C_SCSI_TID. This environment variable will contain the special device file name for the SCSI interface.
4.4.4.2	Design Description
4.4.4.2.1	Data Flow Diagram
The JTIDS initialization file transfer to E-2C TIDS data flow diagram is provided in Figure 4.4.4.2.1-1.
�
Figure 4.4.4.2.1-1. JTIDS Initialization File Transfer to� E-2C TIDS Data Flow Diagram
4.4.4.2.2	Control Flow Diagram
The JTIDS initialization file transfer to E-2C TIDS control flow diagram is provided in Figure 4.4.4.2.2-1.
�

Figure 4.4.4.2.2-1. JTIDS Initialization File Transfer to� E-2C TIDS Control Flow Diagram (1 of 4)

�
Figure 4.4.4.2.2-1. JTIDS Initialization File Transfer to� E-2C TIDS Control Flow Diagram (2 of 4)

�
Figure 4.4.4.2.2-1. JTIDS Initialization File Transfer to� E-2C TIDS Control Flow Diagram (3 of 4)

�
Figure 4.4.4.2.2-1. JTIDS Initialization File Transfer to� E-2C TIDS Control Flow Diagram (4 of 4)
4.4.4.2.3	PDL
The application functionality to be provided by the TIDS device driver will include:
Device Allocation for Exclusive Use (Unix open(), fopen())
Device Deallocation (Unix close(), fclose())
Data Transfer to Device (Unix write(), fwrite(), fprintf())
Data Transfer from Device (Unix read(), fread(), fscanf())
The numbers shown in the pseudocode in the paragraphs below (e.g., (1), etc.) correspond to the numbers in Figure 4.4.4.2.2-1, JTIDS Initialization File Transfer to E-2C TIDS Control Flow Diagram.
4.4.4.2.3.1	Device Allocation Description
Device allocation is requested through any of the Unix device ìopenî system calls to the device named /dev/tsl/<n>. Upon successful allocation of the device, a valid file descriptor will be returned to the requesting application for future use. If the device has been previously allocated, the succeeding allocation request will not be allowed and an error status will be returned.
Device Driver Open Pseudocode:
(1) Application requests device allocation.
(2) Unix file system passes ìopenî request to device driver.
(3) If device_flags inconsistent then
	(4) return error.
endif
(5) If per-instance-data retrieval fails then
	(6) return error.
endif
(7) If device-busy then
	(8) return error.
endif
(9) Mark busy flag in per-instance-data.
(10) If probe-device() fails then
	(11) Unmark busy flag in per-instance-data
	(12) return error
	(14.1) UNIX file system returns status to application.
endif
(13) return success
(14) Unix file system returns status and file descriptor to application.
4.4.4.2.3.2	Device Deallocation Description
Similar to device allocation, device deallocation is requested through any of the Unix device ìcloseî system calls via the file descriptor obtained from a successful ìopenî call. Upon successful deallocation of the device, all device driver data structures will be reset for future use.
Device Driver Close Pseudocode:
(15) Application requests device deallocation.
(16) Unix file system passes ìcloseî request to device driver.
(17) If per-instance-data retrieval fails then
	(18) return error.
endif
(19) If busy flag not set then
	(20) return error
endif
(22) Unmark busy flag in per-instance-data
(23) return success
(24) Unix file system returns status to application.
4.4.4.2.3.3	Device I/O
Device read and write operations follow virtually identical entry and logic paths; therefore, both will be detailed in the following. After an application has successfully allocated the TIDS and received a file descriptor, it may request I/O operations. The TIDS uses Group-0 SCSI commands which limit its (device driver perspective) I/O size to a maximum of 16 megabytes.
Device Driver I/O Pseudocode:
(25) Application requests I/O operation.
(26) Unix file system passes I/O request to device driver.
(27) Device driver dispatches I/O request to strategy() routine.
(28) If per-instance-data retrieval fails then
	(29) return error.
endif
(30) while I/O-flag busy
	(31) spin
end
(32) Mark per-instance I/O-flag busy.
(33) Contruct SCSI I/O command block
(34) If command-transport fails then
	(35) return error
endif
(36) return 0

WAIT FOR INTERRUPT SERVICE ROUTINE TO SIGNAL COMPLETION....
When the device completes processing the I/O command, it should send a reply packet to the initiating host which will cause the device driver’s interrupt service routine to be called.	
(37) Callback triggered from Host Adapter
(38) If per-instance-data retrieval fails then
	(39) return error.
endif
(40) If command-incomplete then
	(41) If request-sense command-transport fails then
		(42) return error
	endif
(43) elseif auto-request-done
	(44) handle-arq
(45) elseif request-sense
	(46) handle-sense
 else
	(45.1) mark command complete.
endif

(46.1) if command-complete then
	(47) examine-return-status
	(48) if return-errors then
		(49) set error flags
	endif
	(50) destroy SCSI packet
	(51) interrupt caller with I/O status
	(51.1) unmark I/O busy flag
endif

(52) return

4.4.5	ARC-210 (bct, dlt)
4.4.5.1	Statement of Functionality
The ARC-210 Planning application performs the general maintenance of ARC-210 data. As a naming convention, an ARC-210 data set is comprised of any number of the ten (10) ARC-210 files. Examples of ARC-210 files are the Single Channel Presets and SATCOM files. An ARC-210 aircraft data set consists of the 31 aircraft addresses and associated values. An ARC-210 data set may be associated with any number of ARC-210 aircraft data sets and vice versa. Each ARC-210 data set and associated ARC-210 aircraft data set is called an ARC-210 loadset. The ARC-210 loadset is what is downloaded to a Data Transfer Device (DTD) (AN/CYZ-10).
The TAMPS ARC-210 application program will allow the DBAs only, to load and delete Single-Channel Ground and Airborne Radio System (SINCGARS) data from Revised Battlefield Electronic Communications-Electronics Operation Instructions (CEOI) System (RBECS). Mission planners will have the ability to prepare ARC-210 loadsets. All tasks will be performed through a TAMPS-defined GUI compliant with the AMPUIS. The final product will be an ARC-210 loadset that may be selected and downloaded to a DTD.
The ARC-210 Planning application will be available from the WSE Application Manager under “Mission Planning->Avionics->ARC-210.” A mission planner will be allowed to create/edit/delete ARC-210 data sets, create/edit/delete ARC-210 aircraft data sets, and save/delete/print/download ARC-210 loadsets from this application. Upon selection of New (to create a new data set), default data stored in TAMPS ARC-210 database tables will be retrieved and displayed. The planner may then alter the data in accordance with the defined limits of the ARC-210 Fill Program Systems Requirements Specifications, ECAC-CR-94-036. Once complete, the planner may save the data into the TAMPS ARC-210 database tables for future use. The same capabilities will be available when an existing data set is selected. Upon selection of Delete data set, the planner will be presented with an interface which allows selection of ARC-210 data sets which may be deleted. The same functionality is available for ARC-210 aircraft data sets.
The planner may create an ARC-210 loadset by selecting an ARC-210 data set and one (1) or more ARC-210 aircraft data sets from a list of available data sets. The user may save or print the ARC-210 loadset. Note that the planner cannot modify the loadset directly, but may edit the components of the loadset (i.e., the ARC-210 data set and the ARC-210 aircraft data set). Upon selection of Delete data set, the planner will be presented with an interface which allows selection of ARC-210 loadsets which may be deleted.
Mission planners will also have the ability to download and print an ARC-210 loadset from the MPM or ARC-210 application. This capability will be available from the Output menu. Upon selection of download, the planner will be presented with an interface which allows selection of previously created ARC-210 loadsets to be sent to a DTD. Upon selection of Print, the planner will select from a list of previously generated ARC-210 loadsets to be converted to a report format and sent to the TAMPS generic print HMI for output to the printer. The MPM will also have the ability to query for ARC-210 loadset data to build a customized report or loadset for download.
4.4.5.2	Design Description
4.4.5.2.1	ARC-210 Planning Application
The ARC-210 Planning application is invoked through the WSE Application Manager under Mission Planning->Avionics->ARC210. On the ARC-210 Planner HMI, the Dataset Name label contains the name of the current data set. Upon start-up, the field will be set to the previous data set name, unless that value is undetermined, in which case the field will be set to “<No Dataset>”. The Main Window status will reflect the status of the current data set. All files that are contained in the current data set will have the toggle button set to ON, and the Edit pushbutton set available. All Files that are omitted from the current data set will have the toggle button set OFF, but available, and the Edit pushbutton set unavailable. In the “<No Dataset>” case, all toggle buttons will be set OFF, but available, and all Edit pushbuttons will be set unavailable. Under the File menu only File->New, File->Open, and File->Exit will be available until a data set is opened. This will be the initial configuration.
From the ARC-210 Planning Application, the user has access to several types of functions (refer to Figure 4.4.5.2.1-1).
�
Figure 4.4.5.2.1-1. ARC-210 Planning Functions
File. A pull-down menu which contains general purpose functions such as Classification and Exit and functions that pertain to the maintenance of ARC-210 data sets such as New, Save, etc.
Edit. The main window contains functions that pertain to the selection and editing of individual files within an ARC-210 data set.
Aircraft. A pull-down menu which contains functions that perform creation and deletion of Aircraft data sets.
Loadset. A pull-down menu which contains functions that relate to the creation and deletion of ARC-210 Loadsets.
Output. A pull-down menu which contains functions that pertain to the output of ARC-210 Loadset data.
The following functions are for general use in Planning an ARC-210 data set.
Functional Descriptions
void bct_createPlanningMMI (Widget w, XtPointer client_data, XtPointer call_data);
	Called: When user selects Mission Planning->Avionics->ARC-210 from the WSE App Manager.
	Action:
	Call BCT_DATASET_STRUCT *bct_getLastSession().
	Generate and display the ARC-210 Planning Application.

BCT_DATASET_STRUCT *bct_getLastSession ();
	Called: bct_createPlanningMMI()
	Action: Gets and returns info on last session from Sybase.

void bct_setCurrentDataset (BCT_DATASET_STRUCT * data_struct);
	Action: Set current data set structure to input structure.

BCT_DATASET_STRUCT *bct_getCurrentDataset ()
	Action: Returns the current data set structure.

void bct_editToggleCB (Widget w, int type, XtPointer call_data);
	Action: Callback for toggle buttons in main edit window. Sets the appropriate edit button to available/unavailable based on status of toggle.

void bct_displayWarning (char *message, (XtCallbackProc)okCB);
	Action: Generate and display the input Warning message with OK Callback, if not NULL. Otherwise the OK callback is an Unmanage of the Warning widget. The Cancel callback is always an unmanage of the Warning widget.

void bct_setDatasetData (BCT_DATASET_STRUCT *);
	Action: Temp holding for data structure while something else is going on.

BCT_DATASET_STRUCT bct_getDatasetData ();
	Action: Returns structure set by last call to bct_setDatasetData ();

void bct_killCurrentDataset (BCT_DATASET_STRUCT * data_struct);
	Action: Free memory for input data set. Set current data set ID to NULL.

4.4.5.2.1.1	File
The ARC-210 File pull-down menu contains general purpose functions, such as Classification and Exit, and functions that pertain to the maintenance of ARC-210 data sets, such as New, Open, Save, SaveAs, and Delete (refer to Figure 4.4.5.2.1.1-1).
�
Figure 4.4.5.2.1.1-1. Arc-210 File Pull-down Menu Functions
4.4.5.2.1.1.1	New
The planner will be able to select File->New to create a new ARC-210 data set. The user will enter a 20 char Dataset Name and 20 char Comment in the ARC-210 New HMI. When OK/Apply is selected, it first determines if the new data set has a unique name. If not, the user is warned and must re-enter the name. If the name is unique, it determines if there is already a current ARC-210 data set. The user is asked if he would like to save that data set before creating a new one. If the user selects Yes, the data set is saved. If the user selects No, or after the previous data set is saved, the new data set is opened and the Dataset Name in the ARC-210 Planning Application window is updated with the new data set name. All toggle buttons in the Main Edit Window are set to OFF, but available, and all Edit pushbuttons are set unavailable. Only one (1) ARC-210 data set may be open at a time. The New window is removed upon an OK or Cancel.
4.4.5.2.1.1.1.1	Control Flow Diagram
The ARC-210 File New HMI control flow diagram is provided below in Figure 4.4.5.2.1.1.1.1-1.
�
Figure 4.4.5.2.1.1.1.1-1. ARC-210 File New HMI Control Flow Diagram
4.4.5.2.1.1.1.2	PDL
Functional Descriptions
void bct_createNewMMI (Widget w, XtPointer client_data, XtPointer call_data);
	Called: When user selects File->New from the ARC-210 Planner Application.
	Action: Generate and display the ARC-210 New HMI.

void bct_newApplyCB (Widget w, XtPointer client_data, XtPointer call_data);
	Called: When user selects OK or Apply from the ARC-210 New HMI.
	Action:
	get the user entered data;
	store in calloc’d BCT_DATASET_STRUCT * instance;
	call bct_setDatasetData (BCT_DATASET_STRUCT *);
	Call bct_checkDatasetUnique(BCT_NEW,
			(void *) BCT_DATASET_STRUCT *);
	if the name is unique then
	 if there is an opened ARC210 dataset then
		call bct_askSaveDataset (parent);
	 else
		bct_newDataset (BCT_DATASET_STRUCT *);
	 endif
	else
	 call bct_displayWarning(char *, XtCallbackProc); to put up an error message and do NOT take down the New HMI even if OK was selected.
	endif

void bct_newCancelCB (Widget w, XtPointer client_data, XtPointer call_data);
	Called: When Cancel is selected from the ARC-210 New HMI.
	Action: Remove ARC-210 New HMI.

Boolean bct_checkDatasetUnique(int type, void *);
	Called: bct_newApplyCB, bct_openApplyCB
	Action:
	Get LIST * of appropriate Datasets from Sybase.
	Compare input dataset name from casted void * input structure, with saved datasets for uniqueness. Return True = Unique, False = NonUnique.

void bct_askSaveCB (Widget w, int caller, XtPointer call_data);
	Called: When user selects Yes/No from Save Dataset window.
	Action:
	Call BCT_DATASET_STRUCT * bct_getCurrentDataset ();
	If exists and user selected Yes then
	 Call bct_saveDataset (BCT_DATASET_STRUCT *);
	bct_killCurrentDataset (BCT_DATASET_STRUCT *);
	BCT_DATASET_STRUCT *bct_getDatasetData ();
	Call bct_newDataset (BCT_DATASET_STRUCT *);

void bct_newDataset (BCT_DATASET_STRUCT *);
	Action:
	Call bct_setCurrentDataset(BCT_DATASET_STRUCT *);
	Call bct_updatePlanning(BCT_DATASET_STRUCT *);

ST_STATUS bct_updatePlanning (BCT_DATASET_STRUCT *data);
	Called: bct_newDataset
	Action: Update the Dataset Name field, and Edit window status with the input data set values.

Calls
void bct_askSaveDataset ();
void bct_killCurrentDataset ();
ST_STATUS bct_saveDataset ();
void bct_displayWarning ();
bct_setDatasetData ();

4.4.5.2.1.1.2	Open
The planner will be able to select File->Open to view a previously saved data set. This will display the ARC-210 Open HMI. The list contains the data set name, the date last modified, and the user-entered comment for all saved ARC-210 data sets. When the user selects a data set to open, followed by OK/Apply, the processing determines if there is already a current ARC-210 data set open. If there is, the user is asked if he would like to save that data set before creating a new one. If the user selects Yes, the data set is saved. If the user selects No, or after the previous data set is saved, the new data set is opened and the Dataset Name in the main window is updated with the new data set name which is carried throughout the user interface until a New data set is started or Opened. For opened data sets, files that were selected for inclusion when the data set was saved will be selected in the Main Edit Window. That is, the toggle button for that file will be highlighted. The user may then edit the files or select/deselect the files. Only one (1) ARC-210 data set may be open at a time. The Open window is removed upon an OK or Cancel.
4.4.5.2.1.1.2.1	Control Flow Diagram
The ARC-210 File Open HMI control flow diagram is provided below in Figure 4.4.5.2.1.1.2.1-1.
4.4.5.2.1.1.2.2	PDL
Functional Description
void bct_createOpenMMI (Widget w, XtPointer client_data, XtPointer call_data);
	Called: When user selects File->Open from the ARC-210 Planner Application.
	Action: Generate and display the ARC-210 Open HMI.

void bct_openApplyCB (Widget w, XtPointer client_data, XtPointer call_data);
	Called: When user selects OK or Apply from the ARC-210 Open HMI.
	Action:
	get the user selected dataset;
	get data from Sybase;
	store in calloc’d BCT_DATASET_STRUCT * instance;
	call bct_setDatasetData (BCT_DATASET_STRUCT *);
	if there is an opened ARC-210 dataset then
	 call bct_askSaveDataset (parent);
	else
	 if class changes then
	 call bct_updateClass();
	 endif
	 call bct_newDataset();
	endif

void bct_openCancelCB (Widget w, XtPointer client_data, XtPointer call_data);
	Called: When Cancel is selected from the ARC-210 Open HMI.
	Action: Remove ARC-210 Open HMI.

�
Figure 4.4.5.2.1.1.2.1-1. ARC-210 File Open HMI Control Flow Diagram
�Calls
void bct_newDataset ();
void bct_askSaveDataset ();
void bct_askSaveCB ();
void bct_setDatasetData();
void bct_updateClass();
4.4.5.2.1.1.3	Save
The planner will be able to select File->Save to save the data set to the database with the name and comment with which it was opened. There is no HMI associated with the Save function.
Save is invoked from the File pull-down menu. The processing first checks to see that all constraints are met (refer to paragraph 4.4.5.2.1.1.3.2 below under bct_checkConstraints for a list of constraints). If any are not met, the user is warned, and may continue the Save, or Cancel. If the Save is continued, the information is taken from the current data set structure and inserted into the appropriate database tables. Because this action will take time, the user will be given an information window to notify him “Save in progress...Please Wait.” The information window will be automatically removed when the save is complete.
4.4.5.2.1.1.3.1	Control Flow Diagram
The ARC-210 File Save HMI control flow diagram is provided below in Figure 4.4.5.2.1.1.3.1-1.
4.4.5.2.1.1.3.2	PDL
Functional Descriptions
ST_STATUS bct_saveDataset (BCT_DATASET_STRUCT *);
	Action:
	call bct_getCurrentDataset ();
	call bct_checkConstraints (BCT_DATASET_STRUCT *);
	call bct_insertData (BCT_DATASET_STRUCT *);

void bct_askSaveDataset (Widget parent);
	Action: Generates and displays the Save Dataset window.

void bct_insertData (BCT_DATASET_STRUCT *);
	Action: Puts data into the appropriate Sybase tables.

�
Figure 4.4.5.2.1.1.3.1-1. ARC-210 File Save HMI Control Flow Diagram

void bct_checkConstraints (BCT_DATASET_STRUCT *);
	Action:
	Checks for the following constraint errors:
	1) If SINCGARS AntiJam data is loaded, Cue & Cold Start is required.
	2) If the Mode is MWOD, warn if MWOD file is not selected.
	3) If the Mode is WOD, warn if WOD file is not selected.

Calls
BCT_DATASET_STRUCT *bct_getCurrentDataset ();
bct_displayWarning ();
4.4.5.2.1.1.4	SaveAs
The File->SaveAs window looks exactly like the File->New window. This is because the SaveAs function effectively creates a New data set with the configuration of the currently opened data set. When the user selects OK/Apply, the currently opened data set is stored in the database with the new name. The Dataset Name field in the main window is updated with the new data set name and is carried throughout the user interface until a New data set is started or Opened. The SaveAs window is removed upon an OK or Cancel.
4.4.5.2.1.1.4.1	Control Flow Diagram
The ARC-210 File SaveAs HMI control flow diagram is provided below in Figure 4.4.5.2.1.1.4.1-1.
�
Figure 4.4.5.2.1.1.4.1-1. ARC-210 File SaveAs HMI �Control Flow Diagram
4.4.5.2.1.1.4.2	PDL
Functional Descriptions
void bct_createSaveAsMMI (Widget w, XtPointer client_data, XtPointer call_data);
	Called: When user selects File->SaveAs from the ARC-210 Planner Application.
	Action: Generate and display the ARC-210 SaveAs HMI.

void bct_saveAsCancelCB (Widget w, XtPointer client_data, XtPointer call_data);
	Called: When Cancel is selected from the ARC-210 SaveAs HMI.
	Action: Remove ARC-210 SaveAs HMI.

Calls
void bct_NewApplyCB ();

4.4.5.2.1.1.5	Classification
The planner will be able to select File->Classification to view/modify the Classification of the current ARC-210 data set. The ARC-210 Classification HMI shows the current classification value that the user may change. Any Loadset that has the current data set as a component, will inherit the classification values set in this window. ARC-210 Classification option menu values come from the TAMPS_CLASSIFICATION Sybase table. Currently the default values are: Unclassified, Confidential, Secret, and Top Secret. For Official Use Only will be added as a default value to the table with PRECEDENCE between Unclassified and Confidential. The default classification for all newly created data sets will be what the previous classification was set to. If that value cannot be determined, the default will be the default specified in the TAMPS_CLASSIFICATION table. For an Unclassified Baseline, only Unclassified will be available. The ARC-210 Classification window is removed upon an OK or Cancel.
4.4.5.2.1.1.5.1	Control Flow Diagram
The ARC-210 File Classification HMI control flow diagram is provided below in Figure 4.4.5.2.1.1.5.1-1.
�
Figure 4.4.5.2.1.1.5.1-1. ARC-210 File Classification HMI �Control Flow Diagram
4.4.5.2.1.1.5.2	PDL
Functional Descriptions
void bct_createClassMMI (Widget w, XtPointer client_data, XtPointer call_data);
	Called: When user selects File->Classification from the ARC-210 Planner Application.
	Action: Generate and display the ARC-210 Open HMI. Get Classification values in the Option Menu come from the TAMPS_CLASSIFICATION Sybase table.

void bct_classApplyCB (Widget w, XtPointer client_data, XtPointer call_data);
	Called: When user selects OK or Apply from the ARC-210 Classification HMI.
	Action:
	Get user entered data.
	Determine color of selected class.
	call bct_setClass (char *class, int color);
	Determine class type from user input.
	call bct_notifyWSE (int type);

void bct_classCancelCB (Widget w, XtPointer client_data, XtPointer call_data);
	Called: When Cancel is selected from the ARC-210 Classification HMI.
	Action: Remove ARC-210 Classification HMI.

void bct_updateClass (char *class)
	Called: bct_openApplyCB() if class changed.
	Action:
	Determines what new class/color should be.
	Calls bct_setClass();

void bct_setClass (char *class, int color);
	Called: bct_classApplyCB.
	Action: Sets the classification in lower left corner of ARC-210 Planning Application to input value.

ST_STATUS bct_notifyWSE (BCT_DATASET_STRUCT *);
	Called: bct_classApplyCB.
	Action: Sends WSE App Manager a notice that the classification has changed.

4.4.5.2.1.1.6	Delete
The planner will be able to select File->Delete to remove a previously saved data set from the database. When the user selects a data set to delete from the ARC-210 Delete HMI, followed by OK/Apply, all loadsets are checked for inclusion of this data set. If a loadset(s) exists with this data set, the user is notified of which data set and loadset(s) will be deleted. The user may select Cancel to abort the entire Delete function, or Continue, which will delete both the selected data set and any associated loadsets. If no loadsets are affected, the user will be asked “Are You Sure?” The user may select Cancel to abort the entire Delete function, or Continue to delete the data set. If the current data set is deleted, the Dataset Name field in the Main Window is returned to <No Dataset> and all toggle/edit buttons are greyed out. The Delete window is removed upon an OK or Cancel.
4.4.5.2.1.1.6.1	Control Flow Diagram
The ARC-210 File Delete HMI control flow diagram is provided below in Figure 4.4.5.2.1.1.6.1-1.
4.4.5.2.1.1.6.2	PDL
Functional Descriptions
void bct_createDeleteMMI (Widget w, XtPointer client_data, XtPointer call_data);
	Called: When user selects File->Delete from the ARC-210 Planner Application.
	Action: Generate and display the ARC-210 Delete HMI.

void bct_deleteApplyCB (Widget w, XtPointer client_data, XtPointer call_data);
	Called: When user selects OK or Apply from the ARC-210 Delete HMI.
	Action:
	Get data from Sybase for user selected dataset.
	Call LIST *bct_checkLoadset (BCT_DELETE,
	(void *) BCT_DATASET_STRUCT *);
	if (returned list is NOT NULL) then
	 Generate Message from LIST *
	 call bct_displayWarning (char *, (XtCallbackProc) bct_displayDeleteCB);
	else
	 Generate Message that Dataset will be deleted.
	 call bct_displayWarning (char *,
			(XtCallbackProc) bct_displayDeleteCB);
	endif

void bct_deleteCancelCB (Widget w, XtPointer client_data, XtPointer call_data);
	Called: When Cancel is selected from the ARC-210 Delete HMI.
	Action: Remove ARC-210 Delete HMI.

LIST * bct_checkLoadset (int type, void *);
	Called: bct_deleteApplyCB ();
	Action:
	Get list of all Loadsets from Sybase with appropriate dataset contents. The input value, void *, will be casted to the correct structure based on the input type.
	Create and return a LIST of loadsets that contain the input dataset as a component.
�
Figure 4.4.5.2.1.1.6.1-1. ARC-210 File Delete HMI �Control Flow Diagram

void bct_displayDeleteCB (Widget w, LIST *, XtPointer call_data);
	Called: When Yes is selected on Loadset DeleteWarning window.
	Action:
	get dataset data;
	call bct_deleteDataset (BCT_DATASET_STRUCT *);
	get loadset LIST *;
	for each item in LIST *
	 call bct_deleteLoadset (BCT_LOADSET_STRUCT *);

void bct_deleteDataset (BCT_DATASET_STRUCT *);
	Called: bct_displayDeleteCB
	Action: Remove the item from Sybase.

Calls
void bct_deleteLoadset ();
bct_displayDeleteWarning ();

4.4.5.2.1.1.7	Exit
The planner will be able to select File->Exit to exit out of the ARC-210 Planner Application. If there is a current data set, the planner is asked if he would like to save before exiting.
4.4.5.2.1.1.7.1	Control Flow Diagram
The ARC-210 File Exit Control Flow diagram is provided below in Figure 4.4.5.2.1.1.7.1-1.
4.4.5.2.1.1.7.2	PDL
Functional Descriptions
void bct_exitCB (Widget w, XtPointer client_data, XtPointer call_data);
	Called: When user selects File->Exit from the ARC-210 Planner Application.
	Action:
	call bct_askSaveDataset ();
	if Yes then
	 call bct_saveLastSession ();
	if NOT Cancel then
	 call bct_cleanUp ();
	 exit the application.
	endif

void bct_saveLastSession ();
	Called: bct_exitCB
	Action: Saves the current data set in the database as the most recent modified.

void bct_cleanUp ();
	Called: bct_exitCB
	Action: Clean up any memory leaks.

�
Figure 4.4.5.2.1.1.7.1-1. ARC-210 File Exit Control Flow Diagram
Calls
void bct_askSaveDataset ();
bct_saveDataset ();

4.4.5.2.1.2	Edit
The ARC-210 Edit Window is the main window area of the ARC-210 Planning Application. The toggle buttons status will reflect the current data set status. If there is no current data set, the toggle buttons will be set OFF and the Edit buttons will be unavailable. To create a current data set, the user must select New, or Open from the File pull-down menu. The user may select the ARC-210 file by activating the toggle to the left of the label for the file of interest. This selects a default version of the file for inclusion in the current data set and, with the exception of the FMT file, displays the appropriate Edit HMI. The Edit pushbutton to the right of the file label will also become available for future edits. The user may remove a file from the current data set by selecting the toggle again. This action will grey out the Edit button for that file until it is reselected. When the file is reselected, the edited version of that file will be restored. The user may return to the default version, where applicable, through the individual Edit windows. In some cases, a default option is not provided, only a clear option.
The Edit functions are available in the Main Edit Window of the ARC-210 Planning application. Edit functions are divided into three (3) categories: Have Quick, SINCGARS, and Single Channel (refer to Table 4.4.5.2.1.2-I.)
Table 4.4.5.2.1.2-I. ARC-210 Edit Functions by Category
EDIT FUNCTIONS��CATEGORY�FUNCTION��Have Quick�Antijam Presets, WOD (Word of the Day), MWOD (Multiple WOD),
FMT (Frequency Managed Training)��SINCGARS�Antijam Presets, Cue and Cold Start��Single Channel�LOS, SATCOM, SATCOM DAMA, Manual��
The ARC-210 Edit Window Control Flow Diagram is provided below in Figure 4.4.5.2.1.2-1.
Functional Description
LIST *bct_editGetData (int type, int datasetID);
	Action: Get and return LIST * of appropriate data for input datasetID from Sybase.
4.4.5.2.1.2.1	Mode
The planner will be able to select the option button next to the Mode label to change the mode. The default mode is MWOD. When the planner selects a mode, this is sent as part of a loadset to the DTD, and subsequently to the ARC-210 itself. Changing the mode value changes the value that is sent. There is no change to the availability of the MWOD and WOD functions; however, upon a Save or Download, the user will be warned if the selected Mode data file is not marked for inclusion in the data set. There is no additional HMI associated with the mode function.
4.4.5.2.1.2.1.1	PDL
Functional Descriptions
void bct_changeModeCB (Widget w, int type, XtPointer call_data);
	Called: When either WOD or MWOD is selected from the option menu.
	Action:
	Input type is either BCT_WOD or BCT_MWOD.
	call bct_setMode (type) to set the Mode variable to the new value.

void bct_setMode (int mode);
	Called: bct_changeModeCB();
	Action: Sets mode value to input mode.

int bct_getMode ();
	Action: Returns mode value.

�
Figure 4.4.5.2.1.2-1. ARC-210 Edit Window Control Flow Diagram
4.4.5.2.1.2.2	Have Quick Anti Jam Presets
The Anti Jam Presets function is invoked from the Main Edit Window. The user may select the Have Quick Presets portion of the file by activating the toggle to the left of the Presets label under the Have Quick section. This action will set active the Edit pushbutton to the right of the Presets label and automatically display the ARC-210 Anti Jam Presets HMI.
The ARC-210 Anti Jam Presets HMI is used for both Have Quick and SINCGARS Anti Jam Presets. No default data will be provided for Anti Jam Presets. The user may enter data by highlighting an item in the list. By default, the first item in the list will be selected. The data for the highlighted item will appear in the bottom portion of the ARC-210 Anti Jam Presets screen labeled “Edit.” The type of Anti Jam Preset will be indicated by the Toggle buttons. The user may change the type by toggling the other button. The user may modify the data by entering the text field and typing the data in manually. The item can be cleared by selecting the Clear pushbutton while the line is highlighted. A modify verify callback is used to ensure the data the user enters is checked for errors. The user will not be able to enter invalid data. The “Select Net Cov” pushbutton is greyed out for Have Quick Anti Jam Presets. If the highlighted item is a SINCGARS preset, the pushbutton will be available. The Anti Jam Presets window is removed upon selection of OK or Cancel. Note that even though the user can enter SINCGARS Anti Jam Presets from this window, the SINCGARS Anti Jam Presets toggle on the Main Edit window must be ON in order for those values to be included in the data set.
4.4.5.2.1.2.2.1	Control Flow Diagram
The ARC-210 Have Quick Anti Jam Presets control flow diagram is provided below in Figure 4.4.5.2.1.2.2.1-1.
�
Figure 4.4.5.2.1.2.2.1-1. ARC-210 Have Quick Anti Jam Presets �Control Flow Diagram
�4.4.5.2.1.2.2.2	PDL
Functional Descriptions
void bct_editAntijamCB (Widget w, XtPointer client_data, XtPointer call_data);
	Called: When user selects the Edit pushbutton next to the label Presets under the Anti jam Have Quick section of the main edit window on the ARC-210 Planning Application.
	Action:
	call BCT_DATASET_STRUCT *bct_getCurrentDataset ();
	bct_createEditAntijamMMI(BCT_DATASET_STRUCT *);

void bct_createEditAntijamMMI (BCT_DATASET_STRUCT *);
	Called: bct_editAntijamCB();
	Action:
	Generate and display the ARC-210 Anti Jam HMI.
	if Anti Jam data from input BCT_DATASET_STRUCT * is NOT NULL then
	 fill list with this data
	else
	 call LIST *bct_editGetData(int type, int datasetID); to get data from Sybase.
	 if no data returned then
	 use default set
	 endif
	 fill list with this data.
	endif

void bct_editAntijamListCB(Widget w, XtPointer client_data, XtPointer call_data);
	Called: When an item in the list is selected.
	Action: Parse data and put into appropriate fields in Edit section.

void bct_editAntijamModVerifyCB(Widget w, LIST *, XtPointer call_data);
	Called: When a text field is typed in.
	Action: The input LIST * will contain the range values and increment for the text field that called the callback. This function will check the typed value against the ranges for validation.

void bct_editAntijamApplyCB (Widget w, XtPointer client_data, XtPointer call_data);
	Called: When OK/Apply is selected from the Anti Jam HMI.
	Action:
	Call BCT_DATASET_STRUCT * bct_getCurrentDataset ();
	Get user entered data from Edit section.
	Add user entered data to structure.
	Call bct_setCurrentDataset (BCT_DATASET_STRUCT *) to put data into
	Anti Jam section of the
	BCT_DATASET_STRUCT *
	 for the current dataset.
	if list window is still up then
	 replace old line with new line
	endif

void bct_editAntijamClearCB (Widget w, XtPointer client_data, XtPointer call_data);
	Called: When Clear is selected from the Anti Jam HMI.
	Action: Clears the Edit values for the selected Preset.

void bct_editAntijamCancelCB (Widget w, XtPointer client_data, XtPointer call_data);
	Called: When Cancel is selected from the Anti Jam HMI.
	Action: Remove ARC-210 Anti Jam HMI.

Calls
bct_editToggleCB ();
bct_getCurrentDataset ();
bct_setCurrentDataset ();
LIST *bct_editGetData (int type, int datasetID);
4.4.5.2.1.2.3	WOD
The WOD function is invoked from the Main Edit Window. The user may select the WOD file by activating the toggle to the left of the WOD label. This action will set active the Edit pushbutton to the right of the WOD label and display the �ARC-210 WOD HMI. From here, the user may select data to edit by highlighting an item in the list. By default, the first item in the list will be highlighted. The data for the highlighted item will appear in the bottom portion of the ARC-210 WOD screen labeled “Edit.” The user may modify the data by entering the text field and typing the data in manually. To return to the default value for an item, the user should select the default button with the line highlighted. A modify verify callback is used to ensure the data the user enters is checked for errors. The user will not be able to enter invalid data. The WOD window is removed upon an OK or Cancel.
4.4.5.2.1.2.3.1	Control Flow Diagram
The ARC-210 WOD HMI control flow diagram is provided below in Figure 4.4.5.2.1.2.3.1-1.
4.4.5.2.1.2.3.2	PDL
Functional Descriptions
void bct_editWODCB (Widget w, XtPointer client_data, XtPointer call_data);
	Called: When user selects the Edit pushbutton next to the label WOD under the Anti jam Have Quick section of the main edit window on the ARC-210 Planning Application.
	Action:
	call BCT_DATASET_STRUCT *bct_getCurrentDataset ();
	bct_createEditWODMMI(BCT_DATASET_STRUCT *);

�
Figure 4.4.5.2.1.2.3.1-1. ARC-210 WOD HMI Control Flow Diagram
void bct_createWODMMI (BCT_DATASET_STRUCT *);
	Called: bct_editWODCB();
	Action:
	Generate and display the ARC-210 WOD HMI.
	if WOD data from input BCT_DATASET_STRUCT * is NOT NULL then
	 fill list with this data
	else
	 call LIST *bct_editGetData(int type, int datasetID); to get data from Sybase.
	 if no data returned then
	 use default set
	 endif
	 fill list with this data.
	endif

void bct_editWODListCB(Widget w, XtPointer client_data, XtPointer call_data);
	Called: When an item in the list is selected.
	Action: Parse data and put into appropriate fields in Edit section.

void bct_editWODModVerifyCB(Widget w, LIST *, XtPointer call_data);
	Called: When a text field is typed in.
	Action: The input LIST * will contain the range values and increment for the text field that called the callback. This function will check the typed value against the ranges for validation.

void bct_editWODApplyCB (Widget w, XtPointer client_data, XtPointer call_data);
	Called: When OK/Apply is selected from the WOD HMI.
	Action:
	Call BCT_DATASET_STRUCT * bct_getCurrentDataset ();
	Get user entered data from Edit section.
	Add user entered data to structure.
	Call bct_setCurrentDataset (BCT_DATASET_STRUCT *) to put data into
	WOD section of the BCT_DATASET_STRUCT *
		for the current dataset.
	if list window is still up then
	 replace old line with new line
	endif

void bct_editWODDefaultCB (Widget w, XtPointer client_data, XtPointer call_data);
	Called: When Default Pushbutton is selected from the WOD HMI.
	Action:
	Get default values from Sybase.
	Set all values for selected Segment to default values.

void bct_editWODCancelCB (Widget w, XtPointer client_data, XtPointer call_data);
	Called: When Cancel is selected from the WOD HMI.
	Action: Remove ARC-210 WOD HMI.

Calls
bct_editToggleCB ();
bct_getCurrentDataset ();
bct_setCurrentDataset ();
LIST *bct_editGetData (int type, int datasetID);

4.4.5.2.1.2.4	MWOD
The MWOD function is invoked from the Main Edit Window. The planner may select the MWOD file by activating the toggle to the left of the MWOD label. This action will set active the Edit pushbutton to the right of the MWOD label and display the ARC-210 MWOD HMI. From here, the user may select data to edit by highlighting an item in the list. By default, the first item in the list will be highlighted. The user should select the Edit pushbutton to edit the selected data. This action will display the ARC-210 MWOD Edit window with the selected data. Duplicate date values will be checked upon OK or Apply. The ARC-210 MWOD window is removed upon an OK or Cancel.
The data for a highlighted item in the ARC-210 MWOD HMI window will appear in the scrolled list of the ARC-210 MWOD Edit window. The user may modify the data much like the WOD data is entered. The Date field applies to the entire MWOD. The user should select data to edit by highlighting an item in the list. By default, the first item in the list will be highlighted. The user may modify the data by entering the text fields and typing the data in manually or by using the arrow buttons for the Date field. To return to the default value for an item, the user should select the Default pushbutton while the line is highlighted. Modify verify callbacks are used to ensure the data the user enters is checked for errors. The user will not be able to enter invalid data. The ARC-210 MWOD Edit window is removed upon an OK or Cancel.
4.4.5.2.1.2.4.1	Control Flow Diagram
The ARC-210 MWOD HMI control flow diagram is provided below in Figure 4.4.5.2.1.2.4.1-1.
4.4.5.2.1.2.4.2	PDL
Functional Descriptions
void bct_editMWODCB (Widget w, XtPointer client_data, XtPointer call_data);
	Called: When user selects the Edit pushbutton next to the label MWOD under the Anti Jam Have Quick section of the main edit window on the ARC-210 Planning Application.
	Action:
	call BCT_DATASET_STRUCT *bct_getCurrentDataset ();
	bct_createEditMWODMMI(BCT_DATASET_STRUCT *);

void bct_createMWODMMI (BCT_DATASET_STRUCT *);
	Called: bct_editMWODCB();
	Action:
	 Generate and display the ARC-210 MWOD HMI.
	if MWOD data from input BCT_DATASET_STRUCT * is NOT NULL then
	 fill list with this data
	else
	 call LIST *bct_editGetData(int type, int datasetID); to get data from Sybase.
	 if no data returned then
	 use default set
	 endif
	 fill list with this data.
	endif

void bct_editMWODListCB(Widget w, XtPointer client_data, XtPointer call_data);
	Called: When an item in the list is selected.
	Action: Parse data and put into appropriate fields in Edit section.

�
Figure 4.4.5.2.1.2.4.1-1. ARC-210 MWOD HMI �Control Flow Diagram

void bct_editMWODApplyCB (Widget w, XtPointer client_data, XtPointer call_data);
	Called: When OK/Apply is selected from the MWOD HMI.
	Action:
	Call BCT_DATASET_STRUCT * bct_getCurrentDataset ();
	Get user entered data from Edit section.
	Add user entered data to structure.
	Call bct_setCurrentDataset (BCT_DATASET_STRUCT *) to put data into
	MWOD section of the BCT_DATASET_STRUCT *
		for the current dataset.
	if list window is still up then
	 replace old line with new line
	endif

void bct_editMWODArrowCB (Widget w, XtPointer client_data, XtPointer call_data);
	Called: When an arrow button is selected.
	Action: This function will display the next valid Date value.

void bct_editMWODDefaultCB (Widget w, XtPointer client_data, XtPointer call_data);
	Called: When Default Pushbutton is selected from the MWOD HMI.
	Action:
	Get default values from Sybase.
	Set all values for selected Segment to default values.

void bct_editMWODCancelCB (Widget w, XtPointer client_data, XtPointer call_data);
	Called: When Cancel is selected from the MWOD HMI.
	Action: Remove ARC-210 MWOD HMI.

Calls
bct_editToggleCB ();
bct_getCurrentDataset ();
bct_setCurrentDataset ();
LIST *bct_editGetData (int type, int datasetID);
bct_editWODModVerifyCB();
4.4.5.2.1.2.5	FMT
The FMT function is invoked from the Main Edit Window. The user may select the FMT file by activating the toggle to the left of the FMT label. This action will set active the Edit pushbutton to the right of the WOD label. When the user selects the Edit pushbutton, the ARC-210 FMT Frequencies HMI is displayed. From here, the user may select data to edit by highlighting an item in the list. By default, the first item in the list will be highlighted. The data for the highlighted item will appear in the bottom portion of the ARC-210 FMT screen labeled “Edit.” The user may modify the data by entering the text field and typing the data in manually. To return to the default value for an item, the user should select the Default pushbutton while the line is highlighted. A modify verify callback is used to ensure the data the user enters is checked for errors. The user will not be able to enter invalid data. The FMT window is removed upon an OK or Cancel.
4.4.5.2.1.2.5.1	Control Flow Diagram
The ARC-210 Have Quick FMT HMI control flow diagram is provided below in Figure 4.4.5.2.1.2.5.1-1.
�
Figure 4.4.5.2.1.2.5.1-1. ARC-210 Have Quick FMT HMI �Control Flow Diagram
4.4.5.2.1.2.5.2	PDL
Functional Descriptions
void bct_editFMTCB (Widget w, XtPointer client_data, XtPointer call_data);
	Called: When user selects the Edit pushbutton next to the label FMT under the Anti Jam Have Quick section of the main edit window on the ARC-210 Planning Application.
	Action:
	call BCT_DATASET_STRUCT *bct_getCurrentDataset ();
	bct_createEditFMTMMI(BCT_DATASET_STRUCT *);

void bct_createFMTMMI (BCT_DATASET_STRUCT *);
	Called: bct_editFMTCB();
	Action:
	Generate and display the ARC-210 FMT HMI.
	if FMT data from input BCT_DATASET_STRUCT * is NOT NULL then
	 fill list with this data
	else
	 call LIST *bct_editGetData(int type, int datasetID); to get data from Sybase.
	 if no data returned then
	 use default set
	 endif
	 fill list with this data.
	endif

void bct_editFMTListCB(Widget w, XtPointer client_data, XtPointer call_data);
	Called: When an item in the list is selected.
	Action: Parse data and put into appropriate fields in Edit section.

void bct_editFMTApplyCB (Widget w, XtPointer client_data, XtPointer call_data);
	Called: When OK/Apply is selected from the FMT HMI.
	Action:
	Call BCT_DATASET_STRUCT * bct_getCurrentDataset ();
	Get user entered data from Edit section.
	Add user entered data to structure.
	Call bct_setCurrentDataset (BCT_DATASET_STRUCT *) to put data into
	FMT section of the BCT_DATASET_STRUCT *
	for the current dataset.
	if list window is still up then
	 replace old line with new line
	endif

void bct_editFMTDefaultCB (Widget w, XtPointer client_data, XtPointer call_data);
	Called: When Default Pushbutton is selected from the FMT HMI.
	Action:
	Get default values from Sybase.
	Set all values for selected Segment to default values.

void bct_editFMTCancelCB (Widget w, XtPointer client_data, XtPointer call_data);
	Called: When Cancel is selected from the FMT HMI.
	Action: Remove ARC-210 FMT HMI.

Calls
	bct_editToggleCB ();
	bct_getCurrentDataset ();
	bct_setCurrentDataset ();
	LIST *bct_editGetData (int type, int datasetID);
4.4.5.2.1.2.6	SINCGARS Anti Jam Presets
The Anti Jam Presets function is invoked from the Main Edit Window. The user may select the SINCGARS Presets portion of the file by activating the toggle to the left of the Presets label under the SINCGARS section. This action will set active the Edit pushbutton to the right of the Presets label and automatically display the ARC-210 Anti Jam Presets HMI.
The ARC-210 Anti Jam Presets HMI is used for both Have Quick and SINCGARS Anti Jam Presets. No default data will be provided for Anti Jam Presets. The user may enter data by highlighting an item in the list. By default, the first item in the list will be selected. The data for the highlighted item will appear in the bottom portion of the ARC-210 Anti Jam Presets screen labeled “Edit.” The type of Anti Jam Preset will be indicated by the Toggle buttons. The user may change the type by toggling the other button. The user may modify the data by entering the text field and typing the data in manually. The item can be cleared by selecting the Clear pushbutton while the line is highlighted. A modify verify callback is used to ensure the data the user enters is checked for errors. The user will not be able to enter invalid data. For SINCGARS Anti Jam Presets, if the NetID field has not been initialized (i.e., a Net Coverage has not been selected), then the NetID field is not editable. Once the Net Coverage is selected, the user may modify the NetID. The user may select a Net Coverage for the highlighted preset value by selecting the “Select Net Cov” pushbutton. This will display the ARC-210 Net Coverage window. The Anti Jam Presets window is removed upon an OK or Cancel. Note that even though the user can enter Have Quick Anti Jam Presets from this window, the Have Quick Anti Jam Presets toggle on the Main Edit window must be ON in order for those values to be included in the data set.
4.4.5.2.1.2.6.1	Control Flow Diagram
The ARC-210 SINCGARS Anti Jam Presets HMI control flow diagram is provided below in Figure 4.4.5.2.1.2.6.1-1.
�
Figure 4.4.5.2.1.2.6.1-1. ARC-210 SINCGARS Anti Jam Presets �HMI Control Flow Diagram
4.4.5.2.1.2.6.2	PDL
Functional Description
void bct_editSGAntijamCB (Widget w, XtPointer client_data, XtPointer call_data);
	Called: When user selects the Edit pushbutton next to the label Presets under the Anti jam SINCGARS section of the main edit window on the ARC-210 Planning Application.
	Action:
	call BCT_DATASET_STRUCT *bct_getCurrentDataset ();
	call bct_createEditAntijamMMI (BCT_DATASET_STRUCT *);
	See paragraph 4.4.5.2.1.2.2.2 for more details.

Calls
void bct_createEditAntijamMMI();

4.4.5.2.1.2.7	Net Coverage
The SINCGARS Net Coverage function is invoked from the ARC-210 SINCGARS Anti Jam HMI. It displays the ARC-210 Net Coverage HMI. The top list contains the names of all the SINCGARS data “files” (old *.LST files, that now come from Sybase) that are available. The user would select a file to view. Its contents would then appear in the bottom list. The user should select a net value from the bottom list followed by OK/Apply to assign a Net Coverage to the SINCGARS Anti Jam Preset that was active when the Select Net Coverage pushbutton was selected. By default, if the Cold Start TSK has not been set, then it will be assigned the second available TSK. If a Common Lockout Conflict is detected, the user must reselect a NetID for this preset. The user may select a different file to view by selecting a different item in the top list. At that time, the contents of the file would appear in the bottom list. Note that these lists are for viewing only, there are no editable fields. The ARC-210 Net Coverage window is removed upon an OK or Cancel.
4.4.5.2.1.2.7.1	Control Flow Diagram
The ARC-210 Net Coverage HMI control flow diagram is provided below in Figure 4.4.5.2.1.2.7.1-1.
4.4.5.2.1.2.7.2	PDL
Functional Descriptions
void bct_editNetCovCancelCB (Widget w, XtPointer client_data, XtPointer call_data);
	Called: When Cancel is selected from the Net Cov HMI.
	Action: Remove ARC-210 Net Cov HMI.

void bct_createNetCovMMI (BCT_DATASET_STRUCT *);
	Called: When user selects the Select Net Cov pushbutton from the SINCGARS Anti Jam HMI.
	Action:
	Generate and display the ARC-210 Net Coverage HMI.
	if Net Cov data from input BCT_DATASET_STRUCT * is NOT NULL then
	 fill list with this data
	else
	 call LIST *bct_editGetData(int type, int datasetID); to get data from Sybase.
	 if no data returned then
	 use default set
	 endif
	 fill list with this data.
	endif
�
Figure 4.4.5.2.1.2.7.1-1. ARC-210 Net Coverage HMI�Control Flow Diagram

void bct_editNetCovList1CB(Widget w, XtPointer client_data, XtPointer call_data);
	Called: When an item in the list #1 is selected.
	Action: Fill list #2 with appropriate data.

void bct_editNetCovApplyCB (Widget w, XtPointer client_data, XtPointer call_data);
	Called: When OK/Apply is selected from the Net Cov HMI.
	Action:
	Call BCT_DATASET_STRUCT * bct_getCurrentDataset ();
	Get user selected data from list #2.
	Add user entered data to structure.
	call bct_checkColdStartTSK ();
	if not set then
	 call bct_setColdStartTSK ();
	call bct_checkCommonLockout ();
	if conflict then
	 set up warning message about a Lockout conflict.
	 call bct_displayWarning (char *, (XtCallbackProc) NULL);
		/* The callback is an unmanage of the warning widget */
	else
	 Call bct_setCurrentDataset (BCT_DATASET_STRUCT *) to �	put data into Net Cov section of the �	BCT_DATASET_STRUCT *
		for the current dataset.
	 call bct_UpdatePreset (BCT_DATASET_STRUCT *);
	endif

void bct_editNetCovList1CB(Widget w, XtPointer client_data, XtPointer call_data);
	Called: When an item in the list #1 is selected.
	Action: Fill list #2 with appropriate data.

Boolean bct_checkCommonLockout (BCT_DATASET_STRUCT *);
	Called: bct_editNetCovApplyCB
	Action: Check for common lockout conflict. Return True if no conflict, False if conflict.

void bct_updatePreset (BCT_DATASET_STRUCT *);
	Called: bct_editNetCovApplyCB
	Action: Updates the ARC-210 SINCGARS Anti Jam window with the Net Defn that was selected.

Boolean bct_checkColdStartTSK(BCT_DATASET_STRUCT *);
	Called: bct_editNewCovApplyCB
	Action:
	Checks to see if Cold Start TSK has been set. Return
	True if set,
	False if not set.

void bct_setColdStartTSK(BCT_DATASET_STRUCT *);
	Called: bct_editNewCovApplyCB
	Action: Sets Cold Start TSK to default value.

Calls
bct_editToggleCB ();
bct_getCurrentDataset ();
bct_setCurrentDataset ();
bct_displayWarning ();

4.4.5.2.1.2.8	Cue and Cold Start
The Cue and Cold Start function is invoked from the Main Edit Window. The user may select the Cue and Cold Start file by activating the toggle to the left of the Cue and Cold Start label. This action will set active the Edit pushbutton to the right of the Cue and Cold Start label and display the ARC-210 Cue and Cold Start HMI. The user may modify the data by entering the text fields and typing the data in manually. A modify verify callback is used to ensure the data the user enters is checked for errors. The user will not be able to enter invalid data. The TSK Name will be given a default value, if SINCGARS Antijam Presets have selected a NetID. If not, the <None> label will be displayed. The user may select/modify a TSK Name by pressing the “Select TSK” pushbutton. This will display the �ARC-210 SINCGARS Select TSK window. The Cue and Cold Start window is removed upon an OK or Cancel.
The SINCGARS Select TSK function is invoked from the ARC-210 Cue and Cold Start HMI. It displays the ARC-210 Select TSK HMI. The top list contains the names of all the SINCGARS data “files” (old *.LST files, that now come from Sybase) that are available. The user would select a file to view. Its contents would then appear in the bottom list. The user should select a TSK value from the bottom list followed by OK/Apply to assign a TSK Name to the Cue and Cold Start value. The user may select a different file to view by selecting a different item in the top list. At that time the contents of the file would appear in the bottom list. Note that these lists are for viewing only; there are no editable fields. The �ARC-210 Select TSK window is removed upon an OK or Cancel.
4.4.5.2.1.2.8.1	Control Flow Diagram
The ARC-210 Cue and Cold Start HMI control flow diagram is provided below in Figure 4.4.5.2.1.2.8.1-1.
4.4.5.2.1.2.8.2	PDL
Functional Descriptions
void bct_editColdCB (Widget w, XtPointer client_data, XtPointer call_data);
	Called: When user selects the Edit pushbutton next to the label Cue and Cold Start under the Anti jam SINCGARS section of the main edit window on the ARC-210 Planning Application.
	Action:
	call BCT_DATASET_STRUCT *bct_getCurrentDataset ();
	bct_createEditColdMMI(BCT_DATASET_STRUCT *);

void bct_createColdMMI (BCT_DATASET_STRUCT *);
	Called: bct_editColdCB();
	Action:
	Generate and display the ARC-210 Cue and Cold Start HMI.
	if Cue/Cold Start data from input BCT_DATASET_STRUCT * is NOT NULL then
	 fill fields with this data
	else
	 call LIST *bct_editGetData(int type, int datasetID); to get data from Sybase.
	 if no data returned then
	 use default set
	 endif
	 fill fields with this data.
	endif

void bct_editColdModVerifyCB(Widget w, LIST *, XtPointer call_data);
	Called: When a text field is typed in.
	Action: The input LIST * will contain the range values and increment for the text field that called the callback. This function will check the typed value against the ranges for validation.

�
Figure 4.4.5.2.1.2.8.1-1. ARC-210 Cue and Cold Start HMI �Control Flow Diagram
void bct_editColdApplyCB (Widget w, XtPointer client_data, XtPointer call_data);
	Called: When OK/Apply is selected from the Cue/Cold Start HMI.
	Action:
	Call BCT_DATASET_STRUCT * bct_getCurrentDataset ();
	Get user entered data from Edit section.
	Add user entered data to structure.
	Call bct_setCurrentDataset (BCT_DATASET_STRUCT *) to
	put data into Cold Start section of the
	BCT_DATASET_STRUCT *
		for the current dataset.

void bct_editColdCancelCB (Widget w, XtPointer client_data, XtPointer call_data);
	Called: When Cancel is selected from the Cue and Cold Start HMI.
	Action: Remove ARC-210 Cue and Cold Start HMI.

Calls
bct_editToggleCB ();
bct_getCurrentDataset ();
bct_setCurrentDataset ();
LIST *bct_editGetData (int type, int datasetID);
4.4.5.2.1.2.9	LOS
The LOS function is invoked from the Main Edit Window. The user may select the LOS file by activating the toggle to the left of the LOS label. This action will set active the Edit pushbutton to the right of the LOS label and display the ARC-210 LOS HMI. From here, the user may select data to edit by highlighting an item in the list. By default, the first item in the list will be highlighted. The data for the highlighted item will appear in the bottom portion of the ARC-210 LOS screen labeled “Edit.” The user may modify the data by entering the text field and typing the data in manually. To return to the default value for an item, the user should select the default button with the line highlighted. A modify verify callback is used to ensure the data the user enters is checked for errors. The user will not be able to enter invalid data. The LOS window is removed upon an OK or Cancel.
4.4.5.2.1.2.9.1	Control Flow Diagram
The ARC-210 LOS HMI control flow diagram is provided below in Figure 4.4.5.2.1.2.9.1-1.
4.4.5.2.1.2.9.2	PDL
Functional Descriptions
void bct_editLOSCB (Widget w, XtPointer client_data, XtPointer call_data);
	Called: When user selects the Edit pushbutton next to the label LOS under the Single Channel section of the main edit window on the ARC-210 Planning Application.
	Action:
	call BCT_DATASET_STRUCT *bct_getCurrentDataset ();
	bct_createEditLOSMMI(BCT_DATASET_STRUCT *);

�
Figure 4.4.5.2.1.2.9.1-1. ARC-210 LOS HMI Control Flow Diagram
void bct_createLOSMMI (BCT_DATASET_STRUCT *);
	Called: bct_editLOSCB();
	Action:
	Generate and display the ARC-210 LOS HMI.
	if LOS data from input BCT_DATASET_STRUCT * is NOT NULL then
	 fill list with this data
	else
	 call LIST *bct_editGetData(int type, int datasetID); to get data from Sybase.
	 if no data returned then
	 use default set
	 endif
	 fill list with this data.
	endif

void bct_editLOSListCB(Widget w, XtPointer client_data, XtPointer call_data);
	Called: When an item in the list is selected.
	Action: Parse data and put into appropriate fields in Edit section.

void bct_editLOSModVerifyCB(Widget w, LIST *, XtPointer call_data);
	Called: When a text field is typed in.
	Action: The input LIST * will contain the range values and increment for the text field that called the callback. This function will check the typed value against the ranges for validation. It will also update the Modulation Option Menu to the default based on the frequency value.

void bct_editLOSApplyCB (Widget w, XtPointer client_data, XtPointer call_data);
	Called: When OK/Apply is selected from the LOS HMI.
	Action:
	Call BCT_DATASET_STRUCT * bct_getCurrentDataset ();
	Get user entered data from Edit section.
	Add user entered data to structure.
	Call bct_setCurrentDataset (BCT_DATASET_STRUCT *) to
	put data into LOS section of the
	BCT_DATASET_STRUCT *
		for the current dataset.
	if list window is still up then
	 replace old line with new line
	endif

void bct_editLOSDefaultCB (Widget w, XtPointer client_data, XtPointer call_data);
	Called: When Default Pushbutton is selected from the LOS HMI.
	Action:
	Get default values from Sybase.
	Set all values for selected Preset to default values.

void bct_editLOSCancelCB (Widget w, XtPointer client_data, XtPointer call_data);
	Called: When Cancel is selected from the LOS HMI.
	Action: Remove ARC-210 LOS HMI.

Calls
bct_editToggleCB ();
bct_getCurrentDataset ();
bct_setCurrentDataset ();
LIST *bct_editGetData (int type, int datasetID);

4.4.5.2.1.2.10	SATCOM
The Satellite Communication (SATCOM) function is invoked from the Main Edit Window. The user may select the SATCOM file by activating the toggle to the left of the SATCOM label. This action will set active the Edit pushbutton to the right of the SATCOM label and display the ARC-210 SATCOM HMI. From here, the user may select data to edit by highlighting an item in the list. By default, the first item in the list will be highlighted. The data for the highlighted item will appear in the bottom portion of the ARC-210 SATCOM screen labeled “Edit.” The user may modify the data by entering the text field and typing the data in manually. To return to the default value for an item, the user should select the default button with the line highlighted. A modify verify callback is used to ensure the data the user enters is checked for errors. The user will not be able to enter invalid data. The SATCOM window is removed upon an OK or Cancel.
4.4.5.2.1.2.10.1	Control Flow Diagram
The ARC-210 SATCOM HMI control flow diagram is provided below in Figure 4.4.5.2.1.2.10.1-1.
�
Figure 4.4.5.2.1.2.10.1-1. ARC-210 SATCOM HMI Control Flow Diagram
4.4.5.2.1.2.10.2	PDL
Functional Descriptions
void bct_editSATCOMCB (Widget w, XtPointer client_data, XtPointer call_data);
	Called: When user selects the Edit pushbutton next to the label SATCOM under the Single Channel section of the main edit window on the ARC-210 Planning Application.
	Action:
	call BCT_DATASET_STRUCT *bct_getCurrentDataset ();
	bct_createEditSATCOMMMI(BCT_DATASET_STRUCT *);

void bct_createSATCOMMMI (BCT_DATASET_STRUCT *);
	Called: bct_editSATCOMCB();
	Action:
	Generate and display the ARC-210 SATCOM HMI.
	if SATCOM data from input BCT_DATASET_STRUCT * is NOT NULL then
	 fill list with this data
	else
	 call LIST *bct_editGetData(int type, int datasetID); to get data from Sybase.
	 if no data returned then
	 use default set
	 endif
	 fill list with this data.
	endif

void bct_editSATCOMListCB(Widget w, XtPointer client_data, XtPointer call_data);
	Called: When an item in the list is selected.
	Action: Parse data and put into appropriate fields in Edit section.

void bct_editSATCOMApplyCB (Widget w, XtPointer client_data, XtPointer call_data);
	Called: When OK/Apply is selected from the SATCOM HMI.
	Action:
	Call BCT_DATASET_STRUCT * bct_getCurrentDataset ();
	Get user entered data from Edit section.
	Add user entered data to structure.
	Call bct_setCurrentDataset (BCT_DATASET_STRUCT *) to �	put data into SATCOM section of the �	BCT_DATASET_STRUCT *
		for the current dataset.
	if list window is still up then
	 replace old line with new line
	endif

void bct_editSATCOMDefaultCB (Widget w, XtPointer client_data, XtPointer call_data);
	Called: When Default Pushbutton is selected from the SATCOM HMI.
	Action:
	Get default values from Sybase.
	Set all values for selected Preset to default values.

void bct_editSATCOMCancelCB (Widget w, XtPointer client_data, XtPointer call_data);
	Called: When Cancel is selected from the SATCOM HMI.
	Action: Remove ARC-210 SATCOM HMI.

Calls
bct_editToggleCB ();
bct_getCurrentDataset ();
bct_setCurrentDataset ();
LIST *bct_editGetData (int type, int datasetID);
bct_editLOSModVerifyCB();
4.4.5.2.1.2.11	SATCOM DAMA
The SATCOM DAMA function is invoked from the Main Edit Window. The user may select the SATCOM DAMA file by activating the toggle to left of the SATCOM DAMA label. This action will set active the Edit pushbutton to the right of the SATCOM DAMA label and display the ARC-210 SATCOM DAMA HMI. From here, the user may select data to edit by highlighting an item in the list. By default, the first item in the list will be highlighted. The data for the highlighted item will appear in the bottom portion of the ARC-210 SATCOM DAMA screen labeled “Edit.” The user may modify the data by entering the text field and typing the data in manually. To return to the default value for an item, the user should select the default button with the line highlighted. A modify verify callback is used to ensure the data the user enters is checked for errors. The user will not be able to enter invalid data. The SATCOM DAMA window is removed upon an OK or Cancel.
4.4.5.2.1.2.11.1	Control Flow Diagram
The ARC-210 SATCOM DAMA HMI control flow diagram is provided below in Figure 4.4.5.2.1.2.11.1-1.
�
Figure 4.4.5.2.1.2.11.1-1. ARC-210 SATCOM DAMA HMI �Control Flow Diagram
4.4.5.2.1.2.11.2	PDL
Functional Descriptions
void bct_editSATCOMDamaCB (Widget w, XtPointer client_data,XtPointer call_data);
	Called: When user selects the Edit pushbutton next to the label SATCOM DAMA under the Single Channel section of the main edit window on the ARC-210 Planning Application.
	Action:
	call BCT_DATASET_STRUCT *bct_getCurrentDataset ();
	bct_createEditSATCOMDamaMMI(BCT_DATASET_STRUCT *);

void bct_createSATCOMDamaMMI (BCT_DATASET_STRUCT *);
	Called: bct_editSATCOMDamaCB();
	Action:
	Generate and display the ARC-210 SATCOM DAMA HMI.
	if SATCOM DAMA data from input BCT_DATASET_STRUCT * is NOT NULL then
	 fill list with this data
	else
	 call LIST *bct_editGetData(int type, int datasetID); to get data from Sybase.
	 if no data returned then
	 use default set
	 endif
	 fill list with this data.
	endif

void bct_editSATCOMDamaListCB(Widget w, XtPointer client_data, XtPointer call_data);
	Called: When an item in the list is selected.
	Action: Parse data and put into appropriate fields in Edit section.

void bct_editSATCOMDamaApplyCB (Widget w, XtPointer client_data, XtPointer call_data);
	Called: When OK/Apply is selected from the SATCOM DAMA HMI.
	Action:
	Call BCT_DATASET_STRUCT * bct_getCurrentDataset ();
	Get user entered data from Edit section.
	Add user entered data to structure.
	Call bct_setCurrentDataset (BCT_DATASET_STRUCT *) to
	put data intoSATCOM DAMA section of the
	BCT_DATASET_STRUCT *
		for the current dataset.
	if list window is still up then
	 replace old line with new line
	endif

void bct_editSATCOMDamaDefaultCB (Widget w, XtPointer client_data, XtPointer call_data);
	Called: When Default Pushbutton is selected from the SATCOM DAMA HMI.
	Action:
	Get default values from Sybase.
	Set all values for selected Preset to default values.

void bct_editSATCOMDamaCancelCB (Widget w, XtPointer client_data, XtPointer call_data);
	Called: When Cancel is selected from the SATCOM DAMA HMI.
	Action: Remove ARC-210 SATCOM DAMA HMI.

Calls
bct_editToggleCB ();
bct_getCurrentDataset ();
bct_setCurrentDataset ();
LIST *bct_editGetData (int type, int datasetID);
bct_editLOSModVerifyCB();

4.4.5.2.1.2.12	Manual
The Manual function is invoked from the Main Edit Window. The user may select the Manual file by activating the toggle to the left of the Manual label. This action will set active the Edit pushbutton to the right of the Manual label and display the ARC-210 Manual HMI. From here, the user may modify the frequency, offset and modulation defaults for the radio when it is in the Manual mode. The user would enter the text fields and type the data in manually, or select the modulation from the option menu. The ARC-210 Manual window is removed upon an OK or Cancel.
4.4.5.2.1.2.12.1	Control Flow Diagram
The ARC-210 Manual HMI control flow diagram is provided below in Figure 4.4.5.2.1.2.12.1-1.
�
Figure 4.4.5.2.1.2.12.1-1. ARC-210 Manual HMI Control Flow Diagram
4.4.5.2.1.2.12.2	PDL
Functional Descriptions
void bct_editManualCB (Widget w, XtPointer client_data, XtPointer call_data);
	Called: When user selects the Edit pushbutton next to the label Manual under the Single Channel section of the main edit window on the ARC-210 Planning Application.
	Action:
	call BCT_DATASET_STRUCT *bct_getCurrentDataset ();
	bct_createEditManualMMI(BCT_DATASET_STRUCT *);

void bct_createManualMMI (BCT_DATASET_STRUCT *);
	Called: bct_editSATCOMDamaCB();
	Action:
	Generate and display the ARC-210 Manual HMI.
	if Manual data from input BCT_DATASET_STRUCT * is NOT NULL then
	 fill list with this data
	else
	 call LIST *bct_editGetData(int type, int datasetID); to get data from 	Sybase.
	 if no data returned then
	 use default set
	 endif
	 fill list with this data.
	endif

void bct_editManualApplyCB (Widget w, XtPointer client_data, XtPointer call_data);
	Called: When OK/Apply is selected from the Manual HMI.
	Action:
	Call BCT_DATASET_STRUCT * bct_getCurrentDataset ();
	Get user entered data from Edit section.
	Add user entered data to structure.
	Call bct_setCurrentDataset (BCT_DATASET_STRUCT *) to
	put data into Manual section of the
	BCT_DATASET_STRUCT *
		for the current dataset.
	if list window is still up then
	 replace old line with new line
	endif

void bct_editManualCancelCB (Widget w, XtPointer client_data, XtPointer call_data);
	Called: When Cancel is selected from the Manual HMI.
	Action: Remove ARC-210 Manual HMI.

Calls
bct_editToggleCB ();
bct_getCurrentDataset ();
bct_setCurrentDataset ();
LIST *bct_editGetData (int type, int datasetID);
bct_editLOSModVerifyCB();

4.4.5.2.1.3	Aircraft
The Aircraft pulldown menu contains functions such as Aircraft New, Aircraft Open, and Aircraft Delete for the purposes of maintaining ARC-210 aircraft data sets.
The ARC-210 Aircraft Menu control flow diagram is provided below in Figure 4.4.5.2.1.2.3-1.

�
Figure 4.4.5.2.1.2.3-1. ARC-210 Aircraft Menu Control Flow Diagram
Functional Descriptions
LIST *bct_getACData (BCT_AC_DATASET_STRUCT * data_struct);
	Action: Store data to appropriate Sybase tables.

void bct_saveACDataset (BCT_AC_DATASET_STRUCT * data_struct);
	Action: Store data to appropriate Sybase tables.

4.4.5.2.1.3.1	Aircraft New
To create a new aircraft data set, the planner would select Aircraft->New to display the ARC-210 Aircraft New window. The user will enter an aircraft data set name. A list of 31 aircraft addresses appears in the list window with a default set of Yes/No values. The user may edit the address data by selecting a line from the list. The values of that line appear in the Edit section for the user to modify.
When OK/Apply is selected, the processing first determines if the New AC data set has a non-default name. If not, the user is warned and must re-enter the name. Once the name is valid, the Save is performed on an OK or Apply from the Aircraft New window. The Aircraft New window is removed upon an OK or Cancel.
4.4.5.2.1.3.1.1	Control Flow Diagram
The ARC-210 Aircraft New HMI control flow diagram is provided below in Figure 4.4.5.2.1.3.1.1-1.
�
Figure 4.4.5.2.1.3.1.1-1. ARC-210 Aircraft New HMI Control Flow Diagram
4.4.5.2.1.3.1.2	PDL
Functional Descriptions
void bct_createACNewMMI (Widget w, XtPointer client_data, XtPointer call_data);
	Called: When user selects Aircraft->New from the ARC-210 Planner Application.
	Action: Generate and display the ARC-210 Aircraft New HMI.

void bct_ACNewApplyCB (Widget w, XtPointer client_data, XtPointer call_data);
	Called: When user selects OK or Apply from the ARC-210 Aircraft New HMI.
	Action:
	get the user entered data;
	store in calloc’d BCT_AC_DATASET_STRUCT * instance;
	Call bct_checkDatasetUnique(BCT_AC_NEW,
					(void *) BCT_AC_DATASET_STRUCT *);
	if the name is valid then
	 Call bct_saveACDataset (BCT_AC_DATASET_STRUCT *);
	else
	 call bct_displayWarning(char *, XtCallbackProc); to put up
	 	an error message and do NOT take down the Aircraft New HMI
		even if OK was selected.
	endif

void bct_ACNewCancelCB (Widget w, XtPointer client_data, XtPointer call_data);
	Called: When Cancel is selected from the ARC-210 Aircraft New HMI.
	Action: Remove ARC-210 Aircraft New HMI.

Calls
ST_STATUS bct_saveACDataset ();
bct_displayWarning ();
bct_checkDatasetUnique ();
4.4.5.2.1.3.2	Aircraft Open
The planner would select Aircraft->Open to view the list of default data sets, or a previously saved user-created aircraft data set. The ARC-210 Aircraft Open window is displayed with the list populated with aircraft data sets from the database. The default set of aircraft data sets is non-editable. The user must change the name in the ARC-210 Aircraft Edit window. When the user selects an aircraft data set to open, followed by OK/Apply, the ARC-210 Aircraft Edit window is displayed with information from the opened aircraft data set for the user to modify. The ARC-210 Aircraft Open window is removed upon an OK or Cancel.
The ARC-210 Aircraft Edit HMI functions exactly like the ARC-210 Aircraft New HMI. If a default aircraft data set was selected, the user MUST change the name in this window. The default set of aircraft data sets is to be copied only; they are non-editable in the database. If the data set is a user-entered data set, then the user may choose to save with the same name, or re-name the data set. The Save is performed on an OK or Apply from the Aircraft Edit window. The ARC-210 Aircraft Edit window is removed upon an OK or Cancel.
4.4.5.2.1.3.2.1	Control Flow Diagram
The ARC-210 Aircraft Open HMI control flow diagram is provided below in Figure 4.4.5.2.1.3.2.1-1.
�
Figure 4.4.5.2.1.3.2.1-1. ARC-210 Aircraft Open HMI �Control Flow Diagram
4.4.5.2.1.3.2.2	PDL
Functional Descriptions
void bct_createACOpenMMI (Widget w, XtPointer client_data, XtPointer call_data);
	Called: When user selects Aircraft->Open from the ARC-210 Planner Application.
	Action: Generate and display the ARC-210 Open HMI.

void bct_ACOpenApplyCB (Widget w, XtPointer client_data, XtPointer call_data);
	Called: When user selects OK or Apply from the ARC-210 Aircraft Open HMI.
	Action:
	Get user entered data;
	 if (default dataset) then
		check for new name.
		if (NOT new name) then
		 call bct_displayWarning (); about Dataset needing new name.
			upon compliance, call bct_saveACDataset.
		else
		 call bct_saveACDataset ();
		endif
	else
	 call bct_saveACDataset();
	endif

void bct_ACOpenCancelCB (Widget w, XtPointer client_data, XtPointer call_data);
	Called: When Cancel is selected from the ARC-210 Aircraft Open HMI.
	Action: Remove ARC-210 Aircraft Open HMI.

Calls
void bct_saveACDataset();
bct_displayWarning ();
4.4.5.2.1.3.3	Aircraft Delete
To remove a previously saved aircraft data set from the database, the planner would select Aircraft->Delete to display the ARC-210 Aircraft Delete HMI. The default data sets are not listed for deletion. When the user selects an aircraft data set to delete, followed by OK/Apply, all loadsets are checked for inclusion of this aircraft data set. If a loadset(s) exists with this data set, the user is notified of which data set and loadset(s) will be deleted. The user may select Cancel to abort the entire Delete function, or Continue, which will delete both the selected data set and any associated loadsets. If no loadsets are affected, the user will be asked, “Are You Sure?” The user may select Cancel to abort the entire Delete function, or Continue to delete the aircraft data set. The Aircraft Delete window is removed upon an OK or Cancel. If the same aircraft data set that is in the New/Edit window is deleted, then the New/Edit window will be removed, and the user must select New or Open to create/open another aircraft data set.
4.4.5.2.1.3.3.1	Control Flow Diagram
The ARC-210 Aircraft Delete HMI control flow diagram is provided below in Figure 4.4.5.2.1.3.3.1-1.
4.4.5.2.1.3.3.2	PDL
Functional Descriptions
void bct_createACDeleteMMI (Widget w, XtPointer client_data, XtPointer call_data);
	Called: When user selects Aircraft->Delete from the ARC-210 Planner Application.
	Action: Generate and display the ARC-210 Aircraft Delete HMI.

void bct_ACDeleteApplyCB (Widget w, XtPointer client_data, XtPointer call_data);
	Called: When user selects OK or Apply from the ARC-210 Aircraft Delete HMI.
	Action:
	Get data from Sybase for user selected data set.
	Call LIST *bct_checkLoadset (BCT_AC_DELETE, �(void *) BCT_AC_DATASET_STRUCT *);
	if (returned list is NOT NULL) then

�
Figure 4.4.5.2.1.3.3.1-1. ARC-210 Aircraft Delete HMI �Control Flow Diagram
	 Generate Message from LIST *
	 call bct_displayWarning (char *,
						(XtCallbackProc) bct_displayACDeleteCB);
	else
	 Generate Message that Dataset will be deleted.
	 call bct_displayWarning (char *,
					(XtCallbackProc) bct_displayACDeleteCB);
	endif

void bct_ACDeleteCancelCB (Widget w, XtPointer client_data, XtPointer call_data);
	Called: When Cancel is selected from the ARC-210 Aircraft Delete HMI.
	Action: Remove ARC-210 Aircraft Delete HMI.

void bct_deleteACDataset (BCT_AC_DATASET_STRUCT *);
	Called: bct_displayACDeleteCB
	Action: Remove the item from Sybase.

void bct_displayACDeleteCB (Widget w, LIST *, XtPointer call_data);
	Called: When Yes is selected on Loadset Delete Warning window.
	Action:
	get dataset data;
	call bct_deleteACDataset (BCT_DATASET_STRUCT *);
	get loadset LIST *;
	for each item in LIST *
	 call bct_deleteLoadset (BCT_LOADSET_STRUCT *);

Calls
bct_displayWarning ();
LIST * bct_checkLoadset ();
void bct_deleteLoadset ();
4.4.5.2.1.4	Loadset
The Loadset pull-down menu contains functions that apply to the creation and deletion of ARC-210 loadsets.
The ARC-210 Loadset Menu control flow diagram is provided below in Figure 4.4.5.2.1.4-1.
�
Figure 4.4.5.2.1.4-1. ARC-210 Loadset Menu �Control Flow Diagram
The Loadset pull-down menu contains functions such as Loadset New and Loadset Delete for the purposes of maintaining ARC-210 Loadsets.
4.4.5.2.1.4.1	Loadset New
The planner would select Loadset->New to create a new ARC-210 Loadset. The Dataset and Aircraft Dataset scrolled lists are populated with data sets from the database. The user would select exactly one (1) item from the Dataset list and one (1) or many items from the Aircraft Dataset list and enter a 16-character Loadset Name and an optional 20-character comment. When OK/Apply is selected, the processing first determines if the new loadset has a unique name. If not, the user is warned and must re-enter the name. If the name is unique, the association between the ARC-210 data set and one (1) or more aircraft data sets is saved. Note that the actual Loadset file will not be created here. Only the association is saved. The loadset file is created from the database when a Report or Download option is selected. This way, if an ARC-210 data set or an aircraft data set change, the loadset will always be generated with the current versions of each. Additionally, different versions of a loadset will not have to be maintained.
4.4.5.2.1.4.1.1	Control Flow Diagram
The ARC-210 Loadset New HMI control flow diagram is provided below in Figure 4.4.5.2.1.4.1.1-1.
�
Figure 4.4.5.2.1.4.1.1-1. ARC-210 Loadset New HMI �Control Flow Diagram
4.4.5.2.1.4.1.2	PDL
Functional Descriptions
void bct_createLDNewMMI (Widget w, XtPointer client_data, XtPointer call_data);
	Called: When user selects Loadset->New from the ARC-210 Planner Application.
	Action: Generate and display the ARC-210 Loadset New HMI.

void bct_LDNewApplyCB (Widget w, XtPointer client_data, XtPointer call_data);
	Called: When user selects OK or Apply from the ARC-210 Loadset New HMI.
	Action:
	Get user entered data.
	Store in calloc’d BCT_LOADSET_STRUCT * instance.
	Call bct_checkLoadsetUnique(BCT_LOADSET_STRUCT *);
	if the name is unique then
	 Call bct_saveLoadset (BCT_LOADSET_STRUCT *);
	else
	 call bct_displayWarning(char *, XtCallbackProc); to put up
		an error message and do NOT take down the Loadset New HMI
		even if OK was selected.
	endif

void bct_LDNewCancelCB (Widget w, XtPointer client_data, XtPointer call_data);
	Called: When Cancel is selected from the ARC-210 Loadset New HMI.
	Action: Remove ARC-210 Loadset New HMI.

Boolean bct_checkLoadsetUnique(BCT_LOADSET_STRUCT *);
	Called: bct_LDNewApplyCB
	Action:
	Get LIST * of appropriate data sets from Sybase.
	Compare input loadset name with saved loadsets for uniqueness. Return
		True = Unique, False = NonUnique

void bct_saveLoadset (BCT_LOADSET_STRUCT *);
	Called: bct_LDNewApplyCB
	Action: Store input loadset data into appropriate Sybase tables.

Calls
bct_displayWarning ();
4.4.5.2.1.4.2	Loadset Delete
The planner would select Loadset->Delete to delete an ARC-210 loadset. The Loadset scrolled list is populated with loadsets from the database. The user would select one (1) item from the list. When OK/Apply is selected, it asks if the user is sure about deleting the selected loadset. The user may select Cancel to abort the entire Delete Loadset function, or Continue to delete the loadset association. Note that only the association of each component of the loadset with the loadset name is deleted. The component pieces remain intact. The Loadset Delete window is removed upon an OK or Cancel.
4.4.5.2.1.4.2.1	Control Flow Diagram
The ARC-210 Loadset Delete HMI control flow diagram is provided below in Figure 4.4.5.2.1.4.2.1-1.
�
Figure 4.4.5.2.1.4.2.1-1. ARC-210 Loadset Delete HMI �Control Flow Diagram
4.4.5.2.1.4.2.2	PDL
Functional Descriptions
void bct_createLDDeleteMMI (Widget w, XtPointer client_data, XtPointer call_data);
	Called: When user selects Loadset->Delete from the ARC-210 Planner Application.
	Action: Generate and display the ARC-210 Loadset Delete HMI.

void bct_LDDeleteApplyCB (Widget w, XtPointer client_data, XtPointer call_data);
	Called: When user selects OK or Apply from the ARC-210 Loadset Delete HMI.
	Action:
	Get user selected data.
	Get data from Sybase for user selected loadset.
	call bct_displayWarning (char *,
						(XtCallbackProc) bct_displayDeleteLDCB);

void bct_LDDeleteCancelCB (Widget w, XtPointer client_data, XtPointer call_data);
	Called: When Cancel is selected from the ARC-210 Loadset Delete HMI.
	Action: Remove ARC-210 Loadset Delete HMI.

void bct_displayDeleteLDCB (Widget w, XtPointer client_data, XtPointer call_data);
	Action:
	Get user selected data;
	Store in BCT_LOADSET_STRUCT *;
	Call bct_deleteLoadset (BCT_LOADSET_STRUCT *);.

void bct_deleteLoadset (BCT_LOADSET_STRUCT *);
	Action: Remove item from Sybase.

Calls
bct_displayWarning ();
4.4.5.2.1.5	Output
The Output pull-down menu contains functions that apply to the printing of �ARC-210 loadset reports and downloading of ARC-210 loadsets.
The ARC-210 Output Menu control flow diagram is provided below in Figure 4.4.5.2.1.5-1.
�
Figure 4.4.5.2.1.5-1. ARC-210 Output Menu �Control Flow Diagram
The Output pull-down menu contains functions such as Report and Download for the purposes of outputting ARC-210 Loadset data.
4.4.5.2.1.5.1	Report
Report is invoked from the Output pull-down menu. It displays the ARC-210 Report HMI. The list is populated with loadsets from the database that were previously saved. For loadsets from the database, the Loadset Name and associated Dataset Name will be listed. The user would select one (1) item from the list. When OK/Apply is selected, the loadset report is generated, or opened in the case of a file, and the TAMPS Generic Print HMI is displayed. The ARC-210 Report window is removed upon an OK or Cancel.
From the TAMPS Generic Print HMI, the user may send the ARC-210 loadset report to the printer. The landscape/portrait option and classification will be removed since the report has already been generated. The Destination to a File will be removed. A number of copies field will be added. The user may select the number of copies to print, and preview the output or send it to the specified destination.
4.4.5.2.1.5.1.1	Control Flow Diagram
The ARC-210 Report HMI control flow diagram is provided below in Figure 4.4.5.2.1.5.1.1-1.
�
Figure 4.4.5.2.1.5.1.1-1. ARC-210 Report HMI �Control Flow Diagram
4.4.5.2.1.5.1.2	PDL
Functional Descriptions
void bct_createOutputMMI (Widget w, XtPointer client_data, XtPointer call_data);
	Called: When user selects Output->Report from the ARC-210 Planner Application.
	Action: Generate and display the ARC-210 Report HMI.

void bct_reportApplyCB (Widget w, XtPointer client_data, XtPointer call_data);
	Called: When user selects OK or Apply from the ARC-210 Report HMI.
	Action:
	Get user selected data.
	Store in calloc’d BCT_LOADSET_STRUCT * instance.
	call bct_genLDReport (BCT_LOADSET_STRUCT *);
	call prl_print_file (parent, filename);

void bct_reportCancelCB (Widget w, XtPointer client_data, XtPointer call_data);
	Called: When Cancel is selected from the ARC-210 Report HMI.
	Action: Remove ARC-210 Report HMI.

void bct_genLDReport (BCT_LOADSET_STRUCT *);
	Called: bct_reportApplyCB();
	Action: Use AFP Ada code to generate loadset report.

Calls
bct_displayWarning ();
prl_print_file (Widget topLevel, char *filename);
4.4.5.2.1.5.2	Download
Download is invoked from the Output pull-down menu. It displays the ARC-210 Download HMI. The list is populated with loadsets from the database. The user would select one (1) item from the list. When OK/Apply is selected, the loadset is generated and sent to the DTD (AN/CYZ-10). The ARC-210 Download Status window will appear to indicate the time remaining. The ARC-210 Download window is removed upon an OK or Cancel.
The ECAC/IITRI DS-101 Emulation Software (EDES) program is spawned from the ARC-210 Download HMI upon an OK. The ARC-210 Download Status window is displayed for the user to view the status of the download process. Input to this process will not be allowed. As a result, the “ESC - Abort Exchange” line at the bottom of the window will be removed. The Current Status is either Connecting, Connected, Disconnecting, or Disconnected. As the loadset is downloaded, the Percent Complete, Time, and Byte information are updated every few seconds. The ARC-210 Download Status window is removed upon completion of the download, or if the connection is not established within a time-out period (< 1 min).
4.4.5.2.1.5.2.1	Control Flow Diagram
The ARC-210 Download HMI control flow diagram is provided below in Figure 4.4.5.2.1.5.2.1-1.
�
Figure 4.4.5.2.1.5.2.1-1. ARC-210 Download HMI �Control Flow Diagram
4.4.5.2.1.5.2.2	PDL
Functional Descriptions
void bct_downloadApplyCB (Widget w, XtPointer client_data, XtPointer call_data);
	Called: When user selects OK or Apply from the ARC-210 Download HMI.
	Action:
	Get user selected data.
	Store in calloc’d BCT_LOADSET_STRUCT * instance.
			call bct_checkConstraints (BCT_DATASET_STRUCT *);
	call bct_genLoadset (BCT_LOADSET_STRUCT *);
	call bct_sendLoadset (BCT_LOADSET_STRUCT *);

void bct_downloadCancelCB (Widget w, XtPointer client_data, XtPointer call_data);
	Called: When Cancel is selected from the ARC-210 Download HMI.
	Action: Remove ARC-210 Download HMI.

void bct_genLoadset (BCT_LOADSET_STRUCT *);
	Called: bct_downloadApplyCB
	Action: Use AFP Ada code to generate loadset.

void bct_sendLoadset (char *filename);
	Called: bct_downloadApplyCB
	Action:
	Using EDES, send input loadset file to the AN/CYZ-10.
	Call bct_downloadStatus to display and update the status of the download process.

void bct_downloadStatus ();
	Called: bct_sendLoadset
	Action: Using status from EDES, display and update the status of the download process. The window will be removed when the user selects Cancel.

Calls
void bct_createOutputMMI ();
bct_displayWarning ();
void bct_checkConstraints (BCT_DATASET_STRUCT *);

4.4.5.2.2	Data Flow Diagram
The ARC-210 data flow diagram is provided below in Figure 4.4.5.2.2-1.
�
Figure 4.4.5.2.2-1. ARC-210 Data Flow Diagram
4.4.5.2.3	Control Flow Diagram
The ARC-210 Planning Application control flow diagram is provided below in Figure 4.4.5.2.3-1.
�
Figure 4.4.5.2.3-1. ARC-210 Planning Application �Control Flow Diagram
DRAFT
Document No. 160047-SDD-6.1 - March 1997

	DRAFT

07-03 Para 4.2 SDD; �; &
	DRAFT

4.4-�
DRAFT

