SECTION 4.2

DISPLAY MANAGEMENT CSC 

�

�















































This page intentionally left blank.

�4.2	Display Management CSC

Section 4.2 identifies and describes the functional areas of the Display Management CSC.  The trigraphs associated with the Display Management CSC are listed below.



DISPLAY MANAGEMENT CSC TRIGRAPHS��aft�ent�mht�tit��bat�ept�mmt�tmt��bpt�ert�mot�tot��brs�est�mpt�trt��brt�ett�mut�ttt��bva�int�mxt�tvt��bvt�iot�obt�ult��bxt�irt�oet�umt��ckl_XMO�ist�oht�uxt��dmt�lbt�ost�wat��dst�ldt�out�wtt��edt�lht�rht�zdt��egt�llt�sdt���eit�ltt�sit���emt�mgl�tgt���

�















































This page intentionally left blank.

�4.2.1	Operator Interface  (lbt, lht, llt, mht, sit, ult, umt, wat, wtt, ckl_XMO, zdt)

4.2.1.1	User Defined Menus  (sit, umt)

4.2.1.1.1	Statement of Functionality

The User Defined Menu software will allow the user to display and select a set of menu items as buttons on a floating screen, allowing fast access to frequently accessed functions.

4.2.1.1.1.1	Access

Access to User Defined Menus will be through a "File -> Setup -> User Defined Menus" menu item. Selecting this item will display a floating window containing buttons associated with the currently selected menu commands.

4.2.1.1.1.2	Command Button Window

The command button window will be a floating window displaying the currently selected items. The items will be grouped by their associated menu.  Items within a group will appear in the order they are created.

Pressing one (1) of the displayed command buttons will perform the same operation(s) as if the menu were selected from the original application menu.

When the number of menu commands selected exceeds the number of buttons available, a scroll bar will appear to allow the user to scroll through the list of available commands.

Below the command buttons, there will be a "Close" button, and a "Select" button.

Pressing the "Select" button on the User Defined Menus window will bring up a command selection window, which will allow selection of the menu commands to display.

Selecting "Close" will remove the window from the screen.  Command selections will remain in effect for the current execution, and will be displayed if the User Defined Menus menu selection is selected again.

4.2.1.1.1.3	Command Selection Window

The Selection window will be a modal dialog displaying a scrolled list of menu commands available for selection.  Commands may be selected and de-selected by clicking their names.

Pressing the "Apply" button will cause the selected menu commands to be displayed in the User Defined Menus window, and dismiss the window.

Pressing the "Cancel" button will cause the selections in effect when the window was displayed to remain in effect, and dismiss the window.

Pressing the "Save Selections" button will cause the current selections to be saved as default selections for the current MPM and user.

4.2.1.1.2	Design Description

The User Defined Menu software will allow the user to associate menu items to buttons on a floating palette, allowing quick & easy access to the associated operation.  The currently selected items will be saved during processing of the "Save Defaults" command, and reloaded in subsequent executions.

4.2.1.1.2.1	Start-Up

At start-up, software will read in any currently set defaults for the current user and MPM.  As menus are created through the current UMT software, information pertaining to their activation callbacks will be retained.

�

4.2.1.1.2.2	Displaying the Button Window

Selecting a new menu option under the "Setup" menu, "Menu Commands...", will bring up a floating window of currently selected menu commands.

The default information will be matched against the information retained during menu creation to create a list of current items to display, and a list of callbacks to be called when the associated button is pressed.  The labels of the displayed buttons will be changed to match the associated menu commands.



�

�4.2.1.1.2.3	Activating a Command

Pressing one (1) of the buttons will cause a callback to umt_buttons, which will use the information obtained during menu creation to synthesize the sequence of callback(s) that would have occurred if the user had selected the item from the menu.

�

�4.2.1.1.2.4	Selecting Commands

Also on the floating window there will be a "Close" button, and a "Select..." button.  Pressing the "Close" button will remove the floating window from the screen.  Pressing the "Select..." button will cause a command selection window to be displayed.

The command selection window will contain a scrolled list of available commands, with the current selections highlighted.  The user may select/deselect items by clicking on their names.  At the bottom of the window will be an "Apply" and a "Cancel" button.  Pressing "Apply" will cause the new selections to be displayed in the floating window and close the selection window.  Pressing "Cancel" will close the selection window.



�

4.2.1.1.2.5	Saving Selections

The current selections will be saved as an addition to the processing that is currently done during the "Save Defaults" operation.



	�





4.2.1.2	Multiple Symbol Sets  (aft, dmt, dst, int, lbt, mht, mmt, mot, mpt, mxt, obt, oet, oht, ost, out, rht, sdt, tot, ust)

4.2.1.2.1	Statement of Functionality

4.2.1.2.1.1	Symbol Set Selection

The user will be able to select or switch the symbol set used for display.  The selections for a planner or dba will include TAMPS and all MPM-specific symbol sets.  If there are variants for the MPM, these will also be listed.  The planner will be able to save the selected symbol set as the default symbol set using “Save User Defaults.”  To save and switch the selected symbol set, the “OK” button is selected.  This action will display a warning message of “Change symbol sets will reset all symbols and colors.  Do you want to continue?  Yes/No.”  If the user selects “Yes,” both color and symbol will reset to the defaults for the selected symbol set.  If the user selects “No,” no change will be made to the symbol set selected or to the user’s display.

4.2.1.2.1.2	Object Editor

From the existing Object Editor, the user will be able to access the Symbol Mapping tool to associate MPM-specific symbols to TAMPS objects.  When creating or editing an object, the user will be able to access the Symbol Annotation tool to select a symbol from the TAMPS Core symbol set as the TAMPS symbol for that object.  This instance of the Symbol Annotation tool also provides selection of the Plot Color pen to support the plotter interface.

4.2.1.2.1.3	Symbol Mapping Tool

The Symbol Mapping tool is available from the Workstation Executive and the Object Editor.  It allows the MPM developers to associate MPM-specific symbols to TAMPS objects and to add new symbol objects for direct use in the MPMs.  The tool will provide a list of all objects and displayable symbols in TAMPS.

To add a new symbol to the list, the “New” button is selected.  This action will bring up the New Symbol dialog box.  From this dialog, the user will be able to name the symbol, give a description and pick the symbol from the symbol directories using the “Select Symbol” button.  This will bring up the Edit/Select Symbol dialog box  described below.  Selection of the “OK” button will save the new symbol and its associated graphic symbol and color to the database, and the New Symbol dialog box will be unmanaged.  Selection of the “Apply” button will save the new symbol and the associated graphic symbol and color to the database and the dialog box will stay up with the Symbol Name and Description fields cleared out, allowing for the next data entry.  Selection of the “Cancel” button will unmanage the New Symbol dialog. 

The user will be able to view all symbols mapped to a specific symbol object by selecting the “Edit” button after selecting an entry from the list.  This action will bring up the Edit/Select Symbol dialog box.  From this dialog, the user will be able to invoke the Symbol Annotation tool to select a new symbol to replace the currently mapped symbol for a desired symbol set.  To change the color of a previously mapped symbol, the user will be able to pick a color from the Color Option menu located next to the Symbol Display box.  The user will have the option to undo any modification made to an object by selecting the symbol set of interest and selecting the “Reset” button.  Selecting the “Close” button on the Edit/Select Symbol dialog invoked from the Symbol Mapping tool will update the database for the edited symbol object with the associated graphic symbols and color.  Selecting the “Close” button on the Edit/Select Symbol dialog invoked from the New Symbol dialog will return a list of associated graphic symbols and color for the newly created object symbol.

The user will be able to update the list of objects with any new objects that have been created from the Object Editor using the “Update” button.  Selecting the “Close” button will unmanage the Symbol Mapping tool dialog box.

4.2.1.2.1.4	Symbol Annotation

The Symbol Annotation tool will be available from the Annotation tool, Object Editor, and Symbol Mapping tool.  The Symbol Annotation tool will allow the user to browse through all directories in the symbol path for selecting the desired symbol.

The tool will display up to three (3) levels of a directory path at a time and the user will be able to use the left and right arrow buttons to view the previous or next level.  As a symbol file is selected from the directory list, its graphic is displayed with the color selected in the Symbol Color option menu.  The user will be able to change the color of this symbol with the Symbol Color option menu.

If the Symbol Annotation tool is launched from the Annotation tool, it also requires a latitude/longitude selection for placing the symbol on the map.  The “Locate” button allows the user to select the location from the map.

Selecting the “Apply” button of the Symbol Annotation tool launched from the Annotation tool will display the selected symbol with the selected color on the map.

Selecting the Ok button from the Symbol Annotation tool launched from the Object Editor will associate the selected symbol and color with the currently created/edited tamps object. 

Selecting the Ok button from the Symbol Annotation tool launched from the Symbol Mapping tool will associate the selected symbol and color with the specific object for the currently edited symbol set.

The Symbol Annotation tool will be unmanaged as a result of selecting either the Ok or the Cancel button.

4.2.1.2.1.5	Import/Export Tool

The Import/Export function will export symbol data for a specific MPM from the MPM development laboratory and import it into the TAMPS integration laboratory.  The executable script files will be located in $DBA_EXE_PATH/ dlt_symbol_export.csh and $DBA_EXE_PATH/dlt_symbol_import.csh

The Export function will create a temporary table in the development laboratory’s database and populate it with the MPM-specific data from the OH_GRAPHIC table.  The data in the temporary table will then be exported out via the Sybase Bulk Copy (BCP) Utility into $OH_DATA_PATH/<MPM>_symbols.bcp (e.g., F18_symbols.bcp).  BCP will generate a message indicating how many rows were exported.  This will be written to an output file.  Once the data has been exported, the temporary table will be dropped.  It is expected that the MPM creating the installation tape will write this data file to the tape.

The Import function will create a temporary table in the integration laboratory’s database and populate it with MPM-specific symbol data via the Sybase BCP utility.  BCP will generate a message indicating how many rows were imported.  The BCP file containing the symbol data will be located in $OH_DATA_PATH/<MPM>_symbols.bcp.  It is expected that the MPM installation software will extract this data file from the tape and write it to disk for access by the import script.  If the BCP file does not exist, an error message will be generated.  Once the data has been successfully imported into the temporary table, the data will be processed into the OH_GRAPHIC table.  The executable script file for the import function will be located in $DBA_EXE_PATH/dlt_symbol_import.csh.

4.2.1.2.1.6	Flight Event Symbol

A TAMPS default symbol object and priority will be defined for each Core flight event.  Each symbol object will be assigned a default graphic symbol.  The MPM will be able to override the default graphic symbol for each Core flight event symbol object and/or add a symbol object for each MPM-specific flight event using the Symbol Mapping tool.  The MPM will be able to register a symbol object and priority for each flight event during flight event initialization or database installation.  If there is no symbol object registered for an MPM-specific flight event, then the default nav point symbol object will be used.  Likewise, if there is no priority registered for an MPM flight event, then it will be assigned the lowest priority.  The MPM-registered symbol object and priority for each Core flight event will override the TAMPS default symbol object and priority.  An exclusive flight event symbol object always has the highest priority.  The symbol object of the flight event with the highest priority will be used for nav point display.  If a nav point has no flight event, then the default nav point symbol object will be used.

4.2.1.2.2	Design Description

4.2.1.2.2.1	Overview

The Multiple Symbol Sets software provides the planner with the capability to select any symbol set used for display during a planning session.  The planner is able to save the selected symbol set as the default symbol set for the current application so that every time he brings up the same application, the same symbol set will be used.  The planner is also able to display a static symbol from the Annotation tool.  Static symbols are independent of the selected symbol set.

The Multiple Symbol Sets software includes three (3) new tools: a Symbol Mapping tool, A Symbol Browser tool and an Object Migration tool, and two (2) symbol import/export scripts: dlt_symbol_export_csh and dlt_symbol_import.csh.  Code modifications are needed in the following libraries: maps, system, layer, intel, a_msn_plan, b_msn_tools, dbase and objh.  In addition, the Object Editor and Object Server software will also be modified.

4.2.1.2.2.2	Design Considerations

Backward compatibility is the most important design consideration for the design of the Multiple Symbol Sets software.  To this end, a Symbol Mapping tool is available from the Workstation Executive and Object Editor to allow the MPM developers to associate MPM-specific symbols to TAMPS objects and to add new symbol objects used in the MPM.  The OH_GRAPHIC table is modified to include symbol object name and symbol pathname fields.  A tool is provided to migrate existing TAMPS objects data stored from the current OH_GRAPHIC table to the new table schema.  During this process, each TAMPS object will be assigned a symbol object name of “obj:objectId.”  Via the Symbol Mapping tool, the user also will be able to create a symbol object for any non-TAMPS object with the currently used symbol filename as the symbol object name.  The maps software is modified to use the symbol object name to determine the symbol pathname of the symbol bitmap file and the symbol color during the creation of the display object.  To save query time, all symbol objects data is read in memory during map initialization.  Software in the layer, a_msn_plan, b_msn_tools and dbase libraries that currently use symbol id and symbol set name are modified to use a symbol object name to specify a symbol and its color.  Also to support the new OH_GRAPHIC table schema, software modifications are required in the following functional areas:  objh and object server.  All of the above changes are made to the Core software; therefore, the MPM developers should not have to make any software changes.

The import/export scripts are provided to MPM developers to export symbol data from MPM development laboratories and import it into the TAMPS integration laboratory.  Therefore, the MPM developers do not have to repeat the process of mapping symbols.  These executable script files are located in the directory specified by the environment variable $DBA_EXE_PATH.

The new Symbol Browser will be invoked by the Annotation tool, the Object Editor, and the Symbol Mapping tool.  The software is designed to customize its hmi based on how it is accessed (i.e., the Hmi includes the lat/lon fields and a “LOCATE” button if accessed from the Annotation tool, or includes a Plot Color Option menu if called from the Object Editor, etc...).

The Symbol Browser also enables the user to specify which subdirectories found beneath $MT_SYMBOL_PATH/symbols path are accessible.  The first level in $MT_SYMBOL_PATH/symbols path will include two (2) subdirectories: tamps and mpm.  All TAMPS Core symbols are resided in “tamps” while each MPM can create a directory for its specific symbols under “mpm”.  The MPM has to name this directory the same as the MPM’s application name as set during MPM initialization with special characters stripped out and use all lower case characters.  For example:  if an MPM-registered application name is F-14 A, then its directory name should be f14a.  An MPM symbol directory can be organized with as many subdirectories and symbol files as needed.  However the symbol name starting from the “mpm” or “tamps” subdirectories should have less than or equal to 255 characters (i.e., mpm/route/mpt_nav).  It is very important that each MPM registers its application name to the Core software, either via a call to sit_init or a call to ult_setAppName directly. 

Once the symbol browser is developed, minor changes are needed in the intel library and the Object Editor application to invoke it.

To implement multiple symbol sets for flight events, a new table called TAMPS_FLIGHT_EVENTS_PRIORITY is created and a set of default priorities and symbol name for the following Core flight events:  Attack, Manual Release/Jettison, Refuel, GRND, LZ, FARP, EAF, HACK and NASP is delivered and loaded during database installation.  Each MPM can have it own set of priorities and symbol names for flight events either by installing them directly into the table or assigning a priority and symbol name with each registered flight event.  The latter method requires code modifications in the mpm.  Exclusive events do not need an assigned priority because they always have the highest priority (priority 1) and their symbol is drawn at a nav point if that nav point contains one (1) of those exclusive flight events.  The default priorities and symbol names for the Core flight events are as follows:

Flight Event�Priority�Symbol Object Name��Attack Target �1 (exclusive)�mp_attack��Refuel�1 (exclusive)�mp_refuel��Manual Release/Jettison�2�mp_mnlRelJet��GRND�2�mp_grnd��LZ�2�mp_lz��FARP�2�mp_farp��EAF�2�mp_eaf��Hack�3�mp_hack��NASP�3�mp_nasp��

The TAMPS_FLIGHT_EVENTS_PRIORITY table also includes a color column for the MPM to specify a color for a static symbol.  (Refer to paragraph 4.1.11.1 for the TAMPS_FLIGHT_EVENTS_PRIORITY table schema.)

The system library software is modified to save a user default value for symbol set.

4.2.1.2.2.3	Design Details

4.2.1.2.2.3.1	Symbol Set Data Directories

All symbols for the TAMPS system will reside in the “symbols” subdirectory beneath the $MT_SYMBOL_PATH directory.  There will be a directory for TAMPS Core symbols and a directory for MPM symbols.  Under the MPM directory, each MPM will have a directory for its specific symbols.  The directory will be named the same as the MPM’s application name as set during MPM initialization with special characters stripped out and any variants appended to the end.  For example, if the application name is F-14 A, then the directory should be named F14A.  A symbol directory can be organized with as many subdirectories and symbol files as is appropriate.  It is assumed that the symbol file is a bitmap file.

An MPM need not have a symbol in its directory if one is provided by TAMPS.  The MPM need only provide additional symbols or symbols that are different than the TAMPS Core symbols.  The MPM will install its symbols in its designated directory at the time of MPM installation.

Existing TAMPS symbols will be reviewed to determine which symbols are not used or needed and to delete them from the system.  The remaining TAMPS symbols will be moved to the TAMPS symbol directory.

4.2.1.2.2.3.2	Symbol Mapping Tool

The MPM developers will be provided a Symbol Mapping tool to associate MPM-specific symbols to TAMPS symbols and objects.  The MPMs will also be able to add new symbols to the symbol list for direct use in their MPMs.  The tool will provide a list of all objects and displayable symbols in TAMPS.  The MPM developer will pick an item from the list for which the symbol is to be overridden for that MPM.  A browser of all symbols for TAMPS and the MPM’s symbol set will be provided for the user to select a symbol.  Once the selection is confirmed that symbol is the one that will be displayed in an application with that MPM symbol set selected instead of the TAMPS Core symbol.  The MPM developer can also override the color as well as the symbol using this tool.  If the MPM symbol directory organization is modified, the mappings must be edited accordingly.

Example of Overriding a TAMPS Symbol.  The Symbol Mapping tool list will have an item called MP_WAYPOINT.  This is the symbol that is displayed when an action point is added to a route.  The user selects the MP_WAYPOINT item from the list and overrides it with a symbol in their MPM symbol directory called XX_WAYPT.  When the MPM is running and the symbol set is set to MPM, the XX_WAYPT symbol will be drawn when an action point is added to a route instead of MP_WAYPOINT.  All previously drawn action points will be redisplayed as XX_WAYPT symbols as well.

The Symbol Mapping tool will be available from the Workstation Executive and Object Editor to users with the DBA privilege.

4.2.1.2.2.3.3	Object Editor Modifications

The Object Editor will only be used to select a symbol for TAMPS Core.  MPM symbol mappings to objects will be done through the Symbol Mapping tool.  The symbol selection from the Object Editor will use the Annotation tool’s Symbol Selection Browser, but only the TAMPS Core symbol directory will be accessable.  The reason for this limitation is that there is no guarantee that other MPMs will be installed on any given system.  For convenience, the Symbol Mapping tool will be available from the Object Editor.

4.2.1.2.2.3.4	Import/Export of MPM Symbol Associations

Once the MPM developer has completed the mappings, the information must be captured for installation with the MPM software.  A Symbol Export tool will be provided to export the symbol mapping information into a file.  A Symbol Import tool will be provided to load the exported data into TAMPS at MPM installation time.  The Symbol Import tool will be script driven and require no man-in-the-loop.  It is intended to be a part of the MPM installation scripts.  For mappings to TAMPS objects, the imported data will be verified against the TAMPS object hierarchy data to confirm that an object of the same name still exists on TAMPS.  Verification will be against the object name, since object names are unique and uneditable, whereas object identifiers (ids) can change if an object is deleted and re-created.  If no object of that name exists, an installation warning will be provided.  If an object of the same name exists, but has a different object id, the id of the MPM object will be updated.  Symbol import will be a full replacement of the MPM’s symbol set.

4.2.1.2.2.3.5	Coordinating Updates to TAMPS Object Hierarchy

It is assumed that MPMs will have access to the current TAMPS baseline at the beginning of a development cycle.  If an MPM is dependent on new TAMPS objects or object modifications, these should be implemented and delivered to the MPM as part of an interim TAMPS build prior to the MPM’s effort to map their symbols to TAMPS objects.  MPM developers will map their symbols to TAMPS Core objects and create any new symbol references necessary to their MPM.  The MPM data will then be exported to a file to be imported at MPM installation time.

If TAMPS Core objects are significantly modified after an MPM has done all or part of its symbol mappings, the MPM will export its symbol mappings, replace the object hierarchy with the updated TAMPS object hierarchy and import its symbol mappings on its system.  The MPM can then adjust the mappings if necessary and perform the export/import process as discussed above.

Significant object changes would be changes in name or object deletion.  Potentially significant changes would be new objects or TAMPS symbol or color changes.  If a new object is added, but the MPM does not care to change the symbol for it, it is not significant.  If a TAMPS symbol or color changes, the MPM may then want to override the symbol/color.  Insignificant changes would be changes to amplifying information, labels, etc. that are irrelevant to the symbol display.  Insignificant changes do not require additional coordination.

4.2.1.2.2.3.6	Symbol Set Selection

From the MPM Setup menu, where application customization is performed, the option to change symbol sets is provided.  The option list will include “tamps” and all mpm symbol sets.

This option is also available from the DB Admin application under the utilities menu.

The symbol set will always default to the TAMPS symbol set in the DB Admin application.  In the mpm application, the symbol set will default to the symbol set previously saved as default.  If no symbol set has been saved as default, the symbol set will default to the mpm symbol set.  The mpm symbol set is determined by the value of the mpm application name set during mpm initialization.  If the user changes the symbol set, on confirmation, each object on the display will be redrawn to show the symbol and color of the newly selected set.

4.2.1.2.2.3.7	Symbol Hierarchy

A hierarchy of symbols will be established to resolve ambiguities. 

If the MPM symbol set is the currently selected set and there is no MPM-specific symbol for a display object, or the MPM symbol cannot be found (i.e., MPM did not override this symbol) the TAMPS symbol will be displayed.

If an MPM other than the currently executing MPM symbol set is selected and there is no MPM-specific symbol for a display object, or the MPM symbol cannot be found (i.e., the MPM did not override this symbol), the TAMPS symbol will be displayed. 

If TAMPS is the currently selected symbol set and no symbol exists for a displayed object (i.e., the application has displayed an MPM-unique symbol) the MPM symbol will be used.  

If an MPM symbol set is selected, the symbol displayed will be for the currently selected  MPM regardless of the source of the data (e.g. an imported route from another MPM).

In any event, if the end of the hierarchy is reached and no symbol has been found, a system wide default symbol will be displayed.  The default symbol to be displayed will be a question mark (i.e., ?).  This situation should never occur, but is included to detect integration/installation errors.

4.2.1.2.2.3.8	Annotation Tool Symbol Browser

From the existing Annotation tool, a user can select a symbol to be displayed on the map.  The Annotation tool symbol selection will be enhanced to provide symbol selection from any installed symbol set.  The tool will browse through all directories in the symbol path allowing the user to choose any directory, subdirectory or file.  If a file is selected, the graphic for that symbol will be displayed for the user’s verification.  On confirmation, the symbol will be drawn on the display.

Symbols selected from the Annotation tool for display on the map background will be considered “static” symbols.  Since the user can select from any given symbol set, it is assumed the user intends to display that symbol regardless of changes in the selected symbol set.

An application interface will be provided for access to the Annotation tool’s symbol browser.  This is the user interface that will be used by the Object Editor and Symbol Mapping tools.

4.2.1.2.2.3.9	Clutter/Declutter Tool Impacts

The symbols on the display can be changed from the clutter/declutter tool by using the more specific symbol option.  This option will now take into account the selected symbol set for determining symbol and color.

Symbol colors can be changed from the Clutter/Declutter tool using the Color, Color By and Reset options. If the symbol set is changed after Clutter/Declutter has been used, the following warning message will be provided to the user:  “Changing Symbol Sets will reset all symbols and colors.  Do you want to continue?”   If the user chooses to continue, the colors will be reset according to the default of the currently selected symbol set.  If the user chooses not to continue, the symbol set will not be changed and the display will remain the same.   Reset will set the color to the default of the currently selected symbol set.

4.2.1.2.2.3.10	Application Interface to Draw Symbols

The TAMPS Core mpt library has existing functions for MPMs to draw symbols on the map display (mpt_buildSymbolObj).  The interfaces to these functions will not be modified in the interest of backward compatibility.  The following enhancements to the functionality will be made.  When a named symbol is passed in to the function, the symbol name will be looked up in the system table for the currently selected symbol set.  The symbol hierarchy will be used to try to find the symbol name in a different set if it is not found.  Once the symbol name is found, the system table will provide the fully qualified path to the symbol file’s location.  If the mpt_buildSymbolObj function is called using the symbol’s name, switching symbol sets will show the symbol for the selected set.

All named symbols currently accessed by Core and MPM software will be in the system look-up table.  The MPM development that takes place henceforth must add a symbol name to the system look-up table using the Symbol Mapping tool in order for the mpt library to know where to find it. 

If the MPM wishes to use a symbol within their application without adding it to the system look-up table, it can use the same mpt_buildSymbolObj function, but must provide a fully qualified path to the symbol filename beginning with a “/”.  A symbol name that starts with a “/” is assumed to be a static symbol that will not be looked up in the system look-up table, but will be drawn explicitly.  If the symbol set is switched to a different set, this symbol will not change. 

4.2.1.2.2.3.11	Enhancements to Aircraft Mission Planning

The TAMPS aircraft mission planning libraries currently display one (1) generic symbol for all waypoints in a route.  TAMPS Core will now support showing a different symbol for each waypoint based on flight event.  MPMs will be able to have their own symbols for each waypoint based on flight event by overriding the TAMPS Core symbols.  For example: TAMPS will display the symbol MP_REFUEL if there has been a refuel event.  If the MPM wants a different symbol for refueling points, it can map the TAMPS MP_REFUEL point to its symbol. 

4.2.1.2.2.3.12	Enhancements to Save Default 

The Save Default enhancement allows the user to save a generic user symbol set default.  The value of the generic symbol set default is set to “tamps” if the active symbol set is “tamps,” or “MPM” if the active symbol set is an mpm symbol set.  If the generic user symbol set default is “MPM,” then the user will be able to save the active symbol set as its default symbol set for the current MPM.  Each user can have a default symbol set for each MPM.  The active symbol set can be selected via the Symbol Set Selection tool.  A generic system symbol set default is available in the tamps defaults database with a value set to “MPM.”  The generic system symbol set default value is used when a generic user symbol set default does not exist. 

When an application is brought up, the generic symbol set default value determines its active symbol set.  If the generic symbol set default value is “MPM,” then the defaults database is queried to see if the user has saved a default symbol set for this MPM application.  If a default symbol set exists, then it will be the application active symbol set.  Otherwise, the application name will be converted to lower case and without any special characters before assigning it as the value of the active symbol set.  If the generic symbol set default value is “TAMPS” then the symbol set “tamps” will be used as the active symbol set. 

4.2.1.2.2.4	Data Flow Diagrams

The Multiple Symbol Sets data flow diagrams are provided below in Figures 4.2.1.2.2.4-1 and 4.2.1.2.2.4-2.

�

Figure 4.2.1.2.2.4-1.  Multiple Symbol Sets Data Flow Diagram

�

Figure 4.2.1.2.2.4-2.  Multiple Symbol Sets �Import/Export Data Flow Diagram

4.2.1.2.2.5	Control Flow Diagrams

The Multiple Symbol Sets control flow diagrams are provided below in Figures 4.2.1.2.2.5-1 through 4.2.1.2.2.5-9.

�

Figure 4.2.1.2.2.5-1.  Symbol Set Selection Control Flow Diagram

�

Figure 4.2.1.2.2.5-2.  Symbol Set Set-up Control Flow Diagram

�

Figure 4.2.1.2.2.5-3.  Symbol Mapping Tool Control Flow Diagram (1 of 2)

�

Figure 4.2.1.2.2.5-3.  Symbol Mapping Tool Control Flow Diagram (2 of 2)

�

Figure 4.2.1.2.2.5-4.  Symbol Browser Tool Control Flow Diagram

�

Figure 4.2.1.2.2.5-5.  Export Control Flow Diagram

�

Figure 4.2.1.2.2.5-6.  Import Control Flow Diagram

�

Figure 4.2.1.2.2.5-7.  Draw Flight Events Control Flow Diagram

�

Figure 4.2.1.2.2.5-8.  Register Flight Events Control Flow Diagram

�

Figure 4.2.1.2.2.5-9.  Save Defaults Control Flow Diagram

4.2.1.2.2.6	Algorithm Overview

4.2.1.2.2.6.1	Setup the Default Symbol Set 

Initialization

After the creation of the TAMPS_DEFAULTS table, insert the following entry: 



     - insert TAMPS_DEFAULTS (USERNAME, DEFAULTNAME, MPM_NAME, TYPE, VALUE)

        values (“SYSTEM”,”symbolSet”,”DEFAULT”,”char”,”MPM”)



This can be done by running the script tamps_system_defaults_insert.sql found in $BUILDTOPDIR/src/dbinstalltampsdb/load/catalog.

During the map initialization process, default symbol set variable in the map structure is set to the value of $TAMPS_SYMBOL_SET.

Execution

When retrieving default settings, check if the user has previously saved his own set of default settings.

If user has his own set of default settings

{

  If (symbol set setting saved = “TAMPS”)

  {

    set default symbol set = $TAMPS_SYMBOL_SET

  }

  else /* if (symbol set setting saved = “MPM”) */

  {

      get the application registered name

      if (the application has not registered a name)

      {

         set default symbol set = $TAMPS_SYMBOL_SET

      }

      else /* if application has registered a name */

     {

         query TAMPS_DEFAULTS where USERNAME = user name that brings up the application and MPM_NAME = application name

         if the query returns nothing 

            set default symbol set = $TAMPS_SYMBOL_SET

         else

           set default symbol set = value of symbol set return from the above query

     }

  }

else /* if user does not have his own set of default settings */

{

   query TAMPS_DEFAULTS for the symbol set saved for the SYSTEM

   set default symbol set = value returned from the query

}

Completion

The default symbol set variable in the map structure is set with the appropriate symbol set.  This is used to determine the right symbols to be drawn.



Error Conditions

Generate and send an error to the logger if the environment variable TAMPS_SYMBOL_SET does not exist.



Generate and send an error to the logger for failure to access the tamps defaults database.



4.2.1.2.2.6.2	Symbol Set Selection

Initialization

Initialize the default symbol set variable in the map structure.

Select the “Symbol Set” button under the “File->Set Up” pulldown option menu.

Execution

If not exists, create the Symbol Set Selection dialog using standard code generated by BuilderXcessory

Fill in the symbol list with the value of $TAMPS_SYMBOL_SET 

Fill in the symbol list the name of all mpms subdirectories located under $MT_SYMBOL_PATH/symbols/mpm. 

Highlight the entry in the list with the default symbol set 

Manage the dialog box.

if user selects Ok button

{

   get  the selected symbol set from the list

   compare to see if this is the current default symbol set

   if (this is not the current default symbol set)

   {

      display a message for confirmation of switching symbol set.  The message should state that continuation of the switching symbol process will redisplay all non-static displayed objects with the symbol set selected.

      if (the user wishes to conitue the symbol set switching process)

     {

        set default symbol set to the selected symbol set

       call lbt_switch_symbol_set() to update map and text tool displays

     }

   }

}

else if user selects Cancel button

  Unmanage the dialog box

Completion

Update color variable in bucket object of a symbol object to color of the selected symbol set.

Unmanage all text tool display.  Update item list of each text tool with the new color.

Remanage all text tool display.

For each symbol object, update the icon with the selected symbol set icon.

Redisplay the map.

Error Conditions

Generate error and send to the logger if any environment variable is undefined.

Generate and display a message if the user selects the OK button without selecting any symbol set from the list.

4.2.1.2.2.6.3	Symbol Browser

Initialization

The symbol browser can be accessed from the Object Editor, Symbol Mapping tool and Annotation tool.

The software performs the following actions during the initialization phase of the process:



  - Create the base symbol browser dialog using standard code generated by BuilderXcessory.  Based on the value of input parameter “annotFlag”, create any additional widgets needed

      if (the value is 1) /* from the annotation tool */

     {

        create “LOCATE” button and lat/lon label and text field widgets.  Also replace the OK button with the Apply button

     }

     else if (the value is 2) /* from the object editor */

     {

        create a plot color option menu 

     }

 - Allocate memory for client data structure to store widget ids and data needed to be passed in to callback routines

 - Fill the top level directory list with the $TAMPS_SYMBOL_SET entry and determine if the “mpm” entry will also be displayed based on the value of the parameters “mpmFlag” and “specificMpmDirs”. 

     if (the value of mpmFlag = 1)

    {

       display “mpm”

    }

    else if (the value of “mpmFlag” = 0) and (the value of “specificMpmDirs” != NULL)

    {

       display “mpm”

       parse “specificMpmDirs” into a list of mpm directory names.  These will be the only mpm subdirectory names displayed when “mpm” is selected 

    }

 - Store the pointers to the callback functions that are passed in from the calling routine.  These

      functions will be invoked when the Apply/Ok or Cancel button is selected

 -  Store any pointers to pMap and client data structure passed in from the calling routine

 - Create the graphics context used for drawing purpose

 - Grey background of the drawing area

 - Manage the dialog box       

Execution

Once an entry from a list is selected, the following actions will take place:

  - Update the symbol drawing area:

       Clear the drawing area

       if (the selected entry is from the parent list)

       {

          Clear the display of the sibling and child lists

          if (the entry is a bitmap)

          {

             display the selected symbol in the drawing area

          }

          else /* selected entry is a directory */

          {

            Get the list of subdirectory and file names resided under the selected directory name

            Update the display of the sibling list with the above list

          }

       }

       else if (the selected entry is from the sibling list)

       {

          Clear the display of the child list

          If (the entry is a bitmap)

          {

             display the selected symbol in the drawing area

          }

          else /* selected entry is a directory */

          {

           Get the list of subdirectory and file names resided under the selected directory name

           Update the display of the child list with the above list

          } 

       }

       else

      {

          If (the entry is a bitmap)

          {

             display the selected symbol in the drawing area

          }

          else

          {

             Clear the display for all three lists

             Get the list of subdirectory and file names resided under the selected directory name

             Replace the parent list with the sibling list

             Replace the sibling list with the child list

             Replace the child list with the new list of subdirectory and file names

             Update the display for all lists

          }    

      }



If a shift right action is selected by the user, the following process will take place:

  If (the parent list  is not the list of subdirectory and file names in the top level symbol directory)

  {

    -  Clear the display for all three lists

    -  Replace the child list with the sibling list

    -  Replace the sibling list with the parent list

    -  Determine the parent directory of the directory where the current selected item in the sibling list resided in

    -  Replace the parent list with the list of subdirectory and file names of the above parent directory

       If the parent directory is the “mpm” main directory, then remove any mpm subdirectories that should not been

       displayed for this instance of the browser

    -  Update the display for all lists

  }



If a shift left action is selected by the user, the following process will take place:

  If (the sibling and child lists are not empty and an entry has been selected from the child list and the entry is not

  a bitmap file)

  {

    -  Clear the display for all three lists

    -  Replace the parent list with the sibling list

    -  Replace the sibling list with the child list

    -  Get the list of subdirectory and file names in the directory currently selected from the child list

    -  Replace the child list with the above list

    -  Update the display for all lists

  }

Completion

The symbol browser window is closed when the operator selects either the OK or Cancel button.

If any callback routine (okCallback, cancelCallback) pointers exist, then the callback routine will be invoked once the corresponding button is selected.

The following data will be passed to the OK callback routine:  symbol filename including the full path, symbol color, plot color (if available), pointer to pMap (if available), lat/lon values in radian (if available), and the ok client data while only client data will be passed to the Cancel callback routine.

Deselect all items from all display lists.

Error Conditions

Generate and send an error message to the logger if unable to allocate memory.

Generate and send an error message to the logger if the environment variable TAMPS_SYMBOL_SET is undefined.

Generate a message to the display, if the user does not enter lat/lon values.

Beep if the user enters an incorrent format for the lat/lon value.



4.2.1.2.2.6.4	Symbol Mapping Tool

Initialization

The Symbol Mapping Tool can be accessed from the Workstation Executive and the Object Editor.  The software performs the following steps for initialization:

  - Create the “Symbol Mapping Tool” dialog using the standard code generated by BuilderXcessory.

  - Query the OH_GRAPHIC table for a distinct list of objects and displayable symbols in TAMPS.

  - Display the symbols data in the symbol/description scrolled list area.

  - If the software is invoked from the Object Editor, the symbol name ( eg. obj:100 ) can be passed as 

     the command argument, and if the symbol name exists in the scrolled list, it will be highlighted.

Execution

If the user selects the “New” button

{

   If the ‘NEW SYMBOL’ dialog has not been created

   {

      Create the dialog

   }

   Manage the dialog



   User enters the desired symbol name and description



   If the user selects the “Select Symbol” button

   {

      If the ‘EDIT/SELECT SYMBOL’ dialog has not been created

      {

         Create the dialog

         Read from the $MT_SYMBOL_MAP environment variable for the symbol sets directories

         Create the toggle button and the corresponding drawing area and the color option menu for each symbol set

      }  

      Manage the dialog

   }



   If the user selects the “OK” or “Apply” button

   {

      Get the new symbol name and desciption

      Verify that the new symbol name does not contain a tilda, comma, or period character and does not start with “obj:” value.

      Save the new symbol name along with its associated graphic symbol and color in the OH_GRAPHIC table

   }



   If the user selects the “OK” button

       Unmanage the ‘NEW SYMBOL’ dialog

   Else if the user selects the “Apply” button

      Clear out the symbol name, description text fields for the next data entry



    If the user selects the “Cancel” button

   {

      Unmange the ‘NEW SYMBOL’ dialog and the new symbol is not saved to the database

   }

}  /* NEW */



If the user highlights a desired symbol entry and selects the “Edit” button

{

   If the ‘EDIT/SELECT SYMBOL’ dialog has not been created

   {

      Create the dialog

      Read from the $MT_SYMBOL_PATH environment variable for the symbol sets directories

      Create the toggle button and the corresponding drawing area and the color option menu for each symbol set

   }



   -  For the selected symbol name, query the OH_GRAPHIC table for a list of Core and MPM’s symbol sets and their corresponding graphic symbol and color.

   -  Draw the graphic symbol and its color for each symbol set found



   If the user selects the “Edit” button

   {

      Bring up the Symbol Annotation Tool

      The user selects the graphic symbol and the symbol color for the derised symbol set

      The user selects the “OK” button from the Symbol Annotation Tool, then the registered function is called and the symbol file name and the symbol color are returned

   }



   If the user selects a desired symbol set and the “Reset” button

   {

      Discard the currently display symbol and color.

      Update the drawing area and previously assigned graphic symbol and color.

   }



   If the dialog is invoked from the ‘NEW SYMBOL’ dialog and the user selects the “Close” button

   {

      Invoke the registered function to return a list of symbol sets and the associated symbol filename and color.

      Unmanage the ‘EDIT/SELECT SYMBOL’ dialog.

   }



   If the dialog is invoked from the ‘SYMBOL MAPPING TOOL’ dialog and the user selects the “Close” button

   {

      If there are changes for the selected symbol name, then update the OH_GRAPHIC table with the changes

      Unmanage the ‘EDIT/SELECT SYMBOL’ dialog.

   }

}  /* EDIT */



If the user selects the “Update” button

{

   Query the OH_GRAPHIC table for a new list of objects and display the new symbol list in the scrolled list.

}

Completion

The Symbol Mapping Tool window is closed when the user selects the “Close” button.  At this point, changes for an object/symbol have already been updated to the OH_GRAPHIC table.  Hence, the software exits.

Error Conditions

-  Generate and send an error message to the logger if unable to allocate memory.

-  Generate and send to the logger if MT_SYMBOL_PATH or TAMPS_SYMBOL_SET environment variable is not set.

-  Generate and send to the logger if unable to draw the graphic symbol.

-  Generate and display an error message if the user selects the “Edit” button without selecting a symbol object to be edited.

-  Generate and display an error message if the user selects the “Edit” button without selecting a symbol set to be edited.

-  Generate and display an error message if the new symbol name contains any carriage, period, or comma character.



4.2.1.2.2.6.5	Migrate Data in OH_GRAPHIC from TAMPS 6.0 to TAMPS 6.1

Initialization

-  BCP the original data from OH_GRAPHIC table into /tmp/OH_GRAPHIC.BCP file

-  If the temporary table temp_oh_graphic exists, then drop the temporary table

Execution

-  Select * into temp_oh_graphic from OH_GRAPHIC

-  Drop the OH_GRAPHIC table

-  Create the OH_GRAPHIC table with the new schema

-  Migrate the old data in temp_oh_graphic table to the new OH_GRAPHIC table:



   {

      - First insert into OH_GRAPHIC table data from temp_oh_graphic.  The new OH_GRAPHIC table has two new fields: SYMBOL_NAME and SYMBOL_FILENAME �SYMBOL_NAME has the value of ‘obj:OBJECT_ID’ and SYMBOL_FILENAME has the value of temp_oh_graphic.SYMSET_NAME

      - For each data entry in the new OH_GRAPHIC table, update the SYMBOL_FILENAME field with the value of platform/bitmapname ( eg. tamps/misc_target ).  To get the bitmapname, read the SYMSET_NAME and the SYMBOL_ID fields in the old table in temp_oh_graphic.  The SYMSET_NAME file can be found under the $MT_SYMBOL_PATH/find_symbols directory.  Open and read the SYMSET_NAME file and use the SYMBOL_ID as the offset in the file to get the bitmap file name.

   }

Completion

Drop temp_oh_graphic table.

Error Conditions

Generate and display a message, then exit if the Sybase user and password are not specified.



4.2.1.2.2.6.6	Export Script

Initialization

The script drops existing temp_oh_graphic table.

Execution

Select into temp_oh_graphic all entries from OH_GRAPHIC where PLATFORM like 

  “value of the input application name”

BCP out all entries from temp_oh_graphic into a file named = mpmName_symbols.bcp and stores it in $OH_DATA_PATH 

Completion

Drop temporary table temp_oh_graphic table.

Error Conditions

Generate and display a message and exit if the Sybase user and password are not specified.

4.2.1.2.2.6.7	Import Script

Initialization

The script checks if the symbol bcp file “mpmName_symbols.bcp” exists in $OH_DATA_PATH.

Generates an error if the symbol file does not exist and exits out of the script.

Execution

Create an empty table temp_oh_graphic

BCP into temp_oh_graphic data from mpmName_symbols.bcp file

Delete all entries from OH_GRAPHIC with PLATFORM like “value of the input mpm”

Process each record from temp_oh_graphic

  For each record

 {

   if (the symbol name is not something like “obj%”)

   { 

      insert into OH_GRAPHIC

   }

   else /* this is an OH symbol object */

   {

    if (the description matches an entry from OH_GRAPHIC where PLATFORM = ‘tamps’)

    {

       if (the symbol name matches the symbol name of entry from OH_GRAPHIC)

      {

         Insert entry into OH_GRAPHIC

      }

      else

      {

         Update symbol name and object id of entry from temp_oh_graphic with values found in OH_GRAPHIC

          Insert entry into OH_GRAPHIC

      }

    }

    else /* if object no longer exists */

    {

       generates an error

     }

  }

 }

Completion

Drop table temp_oh_graphic

Error Conditions

Generate and display a message, then exit if the Sybase user and password are not specified.

Generate and display a message, then exit if the MPM bcp file does not exist.



4.2.1.2.2.6.8	Maps Library Modifications for Choosing an Icon

Initialization

During map initialization process, call mpt_readSymbolTable to read symbol objects information and store them in a global table.

Execution

The maps software performs the following processes when choosing an icon for a symbol display object:



  If (this is a non-static symbol display object)

  {

     Obtain the default symbol set from the map structure 

     Look up the global table for the symbol file name and symbol color

  }

  If (this is a new symbol display object)

  {

    Allocate memory for the overlay pointer

  }

  check if this icon bitmap has been read into bitmap table

  If (the icon does not exist in the bitmap table)

  {

     Read in the bitmap data

  }

  else

  {

    Obtain bitmap data from the bitmap table  

  }

Completion

Fill in the overlay pointer with the bitmap data.

Error Conditions

Generate an error message and send to the logger if unable to allocate memory.

Generate an error message and send to the logger if any environment variable is undefined.



4.2.1.2.2.6.9	Layer Library Implementation to Support Symbol Set Switching

Initialization

Get the list of layers from the bucket manager.

Execution

For each layer

{

  For each bucket

  {

    For each object

    {

      If (a display object exists)

      {

         if (object has children)

         {

           for each children

           {

              if (object is a symbol)

              {

                 Get the symbol data from the object

                 if (object is not static)

                 {

                    Call mpt_getSymbolColor to get symbol color from the global symbol table

                    Assign color to bucket object

                 }

              }

           }/* for each child */

         }/* if object has children */

         If (this is a symbol object)

         {

           Get the symbol data from the object

           If (object is not static)

          {

            Call mpt_getSymbolColor to get symbol color from the global symbol table 

            Assign color to bucket object

          }

        }

    }/* if display object exists */

    }/* for each object */

    If (there exists a text tool for this bucket)

    {

      Unmanage the text tool dialog box

      Store bucket pointer in a temporary list

    }

  }

}

Call lbt_notify to notify the map and text tool handlers for switching color and symbol set

Manage text tool for each bucket on the temporary list

Completion

Free the temporary list nodes of bucket.



4.2.1.2.2.6.10	Save Default Modifications to Support Symbol Set Selection

Initialization

At installation time, a system generic symbol set row is inserted into the defaults database table with the value of the default “symbol set” set to “MPM.”



Select a symbol set via the Symbol Set Selection dialog box.  The default symbol set is then loaded into the pMap structure. 

Execution

The Save Default button, under the “File->Set Up” pulldown menu is pressed

if ( a set of generic defaults for this user exixts )

{

   delete all generic defaults for this user

}



Call mpt_getSymbolSet to get the name of the current default symbol set from the pMap structure

if ( (symbol set  != ‘tamps’) and (current user has a specific symbol set default saved for this application ) )

{

   delete the specific symbol set default saved for this application

}

   

if ( symbol set == ‘tamps’ )

{

	insert into TAMPS_DEFAULTS with DEFAULT_NAME = ‘symbolSet’, USERNAME = name of user, MPM_NAME = ‘DEFAULT’, TYPE = ‘char’ and VALUE = ‘TAMPS’

}

else

{

	insert into TAMPS_DEFAULTS with DEFAULT_NAME = ‘symbolSet’, USERNAME = name of user, MPM_NAME = ‘DEFAULT’, TYPE = ‘char’ and VALUE = ‘MPM’

	insert into TAMPS_DEFAULTS with DEFAULT_NAME = ‘symbolSet’, USERNAME = name of user, MPM_NAME = mpm application name, TYPE = ‘char’ and VALUE = name of mpm symbol set

}

Completion

The default database should contain a set of defaults saved, including the symbol set for the user that just performed the “save default” action.

Error Conditions

Generate and send an error to the logger if the environment variables do not exist.

Generate and send an error to the logger for failure to access the tamps defaults database.



4.2.1.2.2.6.11	Register Flight Event  Modifications to Support Multiple Symbols

Initialization

Insert into the TAMPS_FLIGHT_EVENT_PRIORITY_TABLE flight event, MPM, color, symbol name and priority.  Color, symbol name and priority are optional fields.

Execution

Register the flight event general data to the static flight event list.

For ( each flight event in the list of flight events for a navagition point )

{

         if ( flight event is exclusive ) then

         {

             set  priority to HIGH_PRIORITY

         }

         else

         {

            if ( flight event.priority is not blank ) then

            {

               set priority to flight event.priority

            }

            else

            {

               select priority from TAMPS_FLIGHT_EVENTS_PRIORITY

               where ( flight event == flight_event.name and MPM == platform )

                if ( ROW returned ) then

               {

                  set priority to DB value

               }

               else

               {

                   set priority to LOW_PRIORITY

               }

            }

         }



         if ( flight event.symbolName is not BLANK ) then

         {

             set symbolName to flight event.symbolName

         }

         else

         {

            select symbolName from TAMPS_FLIGHT_EVENTS_PRIORITY

            where ( flight event == flight_event.name and MPM == platform )

            if ( ROW returned ) then

            {

               set symbolName to DB result

            }

            else

            {

               if ( flight event is a core flight event ) then

              {

                  set symbolName to the core symbolName for the flight event

              }

              else

             {

                set symbolName to MP_NAV

             }

         }

}

Completion

Free symbol.symName and pass symbol to draw routine.

Error Conditions

Generate and send an error to the logger if the environment variables do not exist.  A default will be used in place of the environment variables.

Generate and send an error to the logger for failure to set the symbol structure.  Default values will be loaded into the structure.

4.2.1.2.2.6.12	Draw Flight Event Modifications to Support Multiple Symbols

Initialization

The flight events are registered and a list of events is generated.

Execution

set symbol.lat to the action point’s latitude

set symbol.lon to the action point’s longitude



If ( the specified navagation point (nav_ptr) exists )

{

      set  highPriorityMarker to lowest possible priority

      while ( flight event in nav_ptr->flt_event and 

                   exclusiveFlightEvent not found )

      {

         set priority to nav_ptr->flt_event.priority

         if ( flight event is exclusive )

         {

	set exclusiveFlightEvent to found

	allocate memory and set symbol.symName to nav_ptr->flt_event.symbolName

	set symbol.color to nav_ptr->flt_event.color

	set bkObj->color to nav_ptr->flt_event.color

         }

         else

         {

            if ( priority  is higher priority then highPriorityMarker )

            {

	set highPriorityMarker to priority

	allocate memory and 

	set symbol. symbol.symName to nav_ptr->flt_event.symbolName

	set symbol.color to nav_ptr->flt_event.color

	set bkObj->color to nav_ptr->flt_event.color

            }

         }

      }

}



if (symbol. symbol.symName is BLANK )

{

   return failure

}

Completion

Free symbol.symName and pass symbol to draw routine.

Error Conditions

Generate and send an error to the logger if the environment variables do not exist.  A default will be used in place of the environment variables.



Generate and send an error to the logger for failure to set the symbol structure.  Default values will be loaded into the structure.

4.2.2	Operational Area  (ltt)

4.2.3	Operational Area Creation/Deletion  (bvt)

4.2.4	Overlay Control  (tot)

4.2.5	Object Actions  (ist)

4.2.6	Annotations  (irt, mgl, ldt)

4.2.7	Mapping  (mpt, tgt, mut)

4.2.8	Display and Control of Imagery and Maps  (trt, ttt, tvt)

4.2.9	Map Display Imagery  (tit)

4.2.9.1	Statement of Functionality

The Imagery will be enhanced to allow for map selection of cataloged imagery data.  Knowledge of the Unix operating system will not be required when using this HMI to display imagery.  The HMI will not be resizeable.  The redesigned HMI is divided into four (4) components: Imagery Selection, Data Coverage Map Area, Non Geo-Rectification Data, and HMI Processing.

Imagery Selection.  The Imagery Selection HMI will support Arc-Digitized Raster Imagery (ADRI), CIB, LANDSAT, NITF and SPOT.  Each type of imagery will be assigned a unique color that will fill the toggle as well as color the extent rectangles for that imagery type when the Apply Button in the Imagery Selection component is pressed.  Deselecting an Imagery type will remove all data of that type from the display list.

Data Coverage Map Area.  The Data Coverage Map Area will initially display the DCW data for the geographic area currently displayed on the main map.  A customized Toolbar will provide the capability to Zoom in, Zoom out, Box zoom, Recenter, Box select, and Box deselect on the map.  The ability to select/deselect charts will be supported using the Box Select/Deselect functions from the Toolbar.  A point-and-click capability inside an individual chart's rectangle may also support the select/deselect function.  As data is selected, the color of its extent rectangle will change to WHITE.  The imagery data will be graphically displayed as rectangles outlining each individual piece of data.  All data outlined in WHITE will be displayed on the main map.

Non Geo-Rectification Data.  NITF images which do not contain geo-rectification parameters will be placed in a scrolled list for selection and will be displayed in their own separate window.  The scrolled list will only be managed when images containing no geo-rectification parameters are found.

HMI Processing.  The standard OK, Apply, Cancel and Help buttons will be available with the normal AMPIUS functionality.  Seemless display of the selected imagery on the main map will take place when the OK/Apply button is selected from the parent (Background Tool) dialog.

4.2.9.1.1	Colormap Processing.  

Each CIB image includes a colormap that will be used when generating that image.

8-bit Colormap Processing.  Each pixel value in the CIB image will require a look up to determine the nearest color/grey value in the TAMPS standard colormap table.  That look up value is then inserted into the image.  Further testing will be required on a large number of CIB images to determine if the resultant image is readable.  If unsatisifactory, then the TAMPS standard colormap table may require some adjustment (e.g., support more grey tones).

24-bit Colormap Processing.  Each pixel's RGB value can be passed directly to the image.  This is how the software currently operates.  There is no practical limit on the number of shades of color/grey.

4.2.9.1.2	Imagery Catalog Report

The Imagery Catalog Report will be modified to include the SLICE_NUM, SIZE, and DESCRIPTION fields.

4.2.9.1.3	Archive/Restore of CIB data

There are no changes anticipated to the current archive/restore functionality supported in TAMPS 6.0.

4.2.9.1.4	Modifications to the IMAGERY Sybase Table

The IMAGERY Sybase table (refer to paragraph 4.1.4.3) will be modified to include SLICE_NUM, SIZE, and DESCRIPTION.  SLICE_NUM represents the map slice that the data is loaded on.  SIZE represents the data size in KBytes.  DESCRIPTION is an 80 character field in which the DBA can optionally describe, during load, the map data.

4.2.9.2	PDL for CIB Processing

Get Imagery from Sybase table within the area of interest.

FOREACH (image)

IF CIB THEN

Call new function to read/process CIB.

ELSE

Call existing function to read/process normal ADRI.

ENDIF

ENDFOR

Return map image.

4.2.10	View of Map Data  (tmt)

4.2.11	Map Tools  (int, mmt)

4.2.12	Vertical Display  (bva)

4.2.13	Threat Displays  (iot)

4.2.14	RTM Display  (est, egt, eit, emt, ent, ert, ett, ept)

4.2.15	Threat Range Ring Display  (edt)

4.2.16	Radar Prediction Display  (brs, brt)

4.2.17	Flight Profile Display  (bxt)

4.2.17.1	Statement of Functionality

Flight Profile provides the capability to display sample points with the relative distance from the first sample point on the x axis and the point elevation on the y axis.  All route points are initially displayed upon execution.  The following additional capabilities are available to the user:

Display Threat Objects (i.e., RTM, range rings and Special Use Air Space (SUAS)).  Each threat object that is displayed on the map and intersects the route is depicted as a polygon on the Flight Profile display.  Each threat object is displayed in the color that it appears on the map.

Display in Multiple Units.  The units for the x and y axes of the Flight Profile are changeable.  The elevation, or y axis, can either be displayed in meters or feet.  The distance, or x axis, can be displayed in meters, feet, yards, nautical miles, or statute miles.  These units are controlled by the main map units and can be changed using the File Setup Units menu.

Display DTED Corresponding to the Sample Points.  DTED corresponding to each route point is displayed in green on the Flight Profile display.  All route-relevant DTED is read from disk when the initial display window is created.  All subsequent actions (e.g., Zoom, Corridor changes) work with the already loaded DTED, thus there is only an up-front penalty for the reading of DTED data.

Display Min/Max Elevation Corridor Lines.  The initial values for the min and max corridor values are passed in to the Flight Profile routine.  Horizontal dashed lines are displayed at the min and max elevations.  Once the Flight Profile display has been created, the user can change the min/max corridor by pressing the corridor button and changing the values displayed on the subsequent form.

Specify which Points to Display (Zoom/Unzoom).  Once the Flight Profile display has been created with all provided points displayed, the user has the ability to only display a desired piece of the route.  This is accomplished using the Zoom button/form.  Upon pressing the Zoom button, a form is displayed which allows the user to specify the bounding box for the display.  This bounding box is made up of a starting and ending distance (x axis) and a starting and ending elevation (y axis).  The units displayed on the form are the current units displayed by the Flight Profile display.  If the units are changed while the Zoom form is displayed, the units will only be changed on the form by closing the form and hitting the Zoom button again.

Mark Route Waypoints.  Any route point which is designated as a waypoint is displayed with a vertical line running through it.

4.2.18	TARPS Support  (bat)

4.2.19	2D Preview Software  (bpt)

The 2D preview software provides the planner with an animated, time-oriented preview capability, which is effected by moving icons along a given set of routes in a time-relative manner.  The following is a list of the major features now provided by the 2D preview window:

a.	Time multiplier selection

b.	Selectable preview time window within a given set of routes

c.	Multi-route preview capability

d.	Time forward/backward play capability

e.	Ultra fast forward/rewind via time scroll bar

4.2.19.1	Design Considerations

Performance is perhaps the most important design consideration for the 2D preview software.  To this end, all of the drawing procedures use Xlib routines, vice Tactical Mapping System (TMS) layers and buckets.

Another important design consideration is the handling of external map events.  These events include actions such as zoom in/out, re-center and changing of the map background.  The 2D software prohibits these actions from occurring while a preview is in progress.  There are two (2) reasons for this.  First, the 2D software saves the map image under the preview icon before actually drawing the symbol.  If the map changes, this data becomes invalid making it a difficult proposition to restore the saved area.  Second, some of the map actions can take a considerable amount of time (e.g., reading in a large segment of DTED data).  In order to properly handle this type of action, the preview should be suspended until the action is complete.  Attempting to suspend the this type are performed is outside of the design scope.

4.2.19.2	Algorithm Overview

Initialization:  The 2D software performs a number of actions during the initialization phase of the process.  The initial action is the compilation of the missions.  During mission compilation, the currently active mission is compiled first, followed by all of the missions and routes contained within the strike package, providing a strike package is actually open at the time.  Basically, a "compiled" mission is one that has been processed by the parameterize route function.  The parameterized data is stored on a per route basis in a static data structure maintained by the 2D software.

The next initialization step, is the symbol creation phase.  During this phase, the symbols which will be used along the route are created and stored.  If an MPM has registered a symbol name, the 2D software will attempt to use that symbol.  The symbols are stored as bitmaps with a depth of one (1).  Each symbol set uses a number of files where there is an arbitrary number of symbol rotation files.  For example, if an MPM had a symbol named "A10Sym", there would be some corresponding number of files named "A10Sym.XXX"; where XXX is a heading value in degrees.  The 2D software reads all of the symbols in the set and stores the bitmaps and heading value in a static data structure.

Next, the 2D dialog is created using standard code generated by BuilderXcessory.

Finally, the initial values are computed and displayed in the dialog. All compiled routes are toggled to the "on" position and the initial starting and ending times are computed based upon the earliest/latest times contained in all of the routes.

Execution:  There are a number of user initiated events that affect preview execution:  selection of the stop button; selection of the pause button; selection of the forward/backward button; and dragging the slider bar.

Stop Selection.  When the stop button is selected, the following processing occurs (assuming a preview was running):

The timer is deactivated.

Widgets are sensitized.

Internal counters are zeroed.

Display labels are updated.

Preview symbols are cleared from the display.

Pause Selection.  When the pause button is selected, the following processing occurs (assuming a preview was running):

The timer is deactivated.

Forward/Backward Selection.  When the forward or backward button is selected, the following processing occurs:

An interval timer is used in the form of a call to XtAppAddTimeout. 

The timer interval is set to the #define UPDATES_PER_SEC (currently 8).

Timer goes off.

{

	Update the internal counters - timer tick count, elapsed time, and current preview time.

Update the current and elapsed time labels.

For each route being previewed

{

	Restore the saved pixmaps from the last draw.

}

For each route being previewed

{

	Calculate the new position via indexing into the parameterized route based on the elapsed time.

	Save the projected region.

}

For each route being previewed 

{

	Draw the route symbols in the new position.

}

}

The save/draw loop logic is written in such a way that the collocated symbols will not cause collision problems. 

Completion.  The 2D window is closed when the operator selects the close button. Upon completion, the 2D software performs the following actions:

Deactivate the timer.

Clear the symbols from the display.

Destroy the window.

Free the route list and associated data structures.

4.2.19.3	Global Usage

The 2D software depends upon the following global variables:

extern Widget SIT_topLevel.  SIT_topLevel is used for creation of the standalone preview control window.

extern APT_STRKPLN_T *BST_strike_package.  BST_strike_package is used for the compilation of all the routes contained in the currently opened strike package.

extern APT_MSNPLN_T *AT_msnplan.  AT_msnplan is used for the compilation of the current "aircraft" route.



DRAFT

Document No.  160047-SDD-6.1 - March 1997



	DRAFT



07-03 Para 4.2 SDD; �; &

	DRAFT





4.2-�

	DRAFT



4.2-�

	DRAFT








