SECTION M.5

ENGINEERING NOTES

�

The engineering notes presented in Section M.5 are included to provide further information on the TAMPS Core C header files, structures and constants, as needed.

�
M.5.1	apt_mpm_data_struct.h (IFA29108)

The APT_MPM_DATA_T structure is used to define an interface for Core to process data associated with an action point that is defined, controlled and modified only by the MPM through its own interface (HMI and API). The data that is operated on by the APT_MPM_DATA_T function pointers is defined as a void pointer in the APT_ACTION_POINT_T data structure called "mpm_data". By using the void pointer data & function pointer mechanism, only the MPM needs to know anything about the internal representation of the data pointed to by the allocated pointer. In all places that the function pointers are referenced, the developer should always check for their existence prior to use.

The functions are defined as an element of the APT_MPM_SPEC_FUNCS_T data structure and can be referenced by calling the function ait_GetMpmSpecificFunctions which returns a copy of the structure of function pointers.

The function definitions for function pointers within the APT_MPM_DATA_T data structure are provided below. The function pointers are merely hooks for MPM-supported functions; therefore, they must be defined by the MPM developer and instantiated through a call to ait_RegisterMpmSpecificData.

The functions defined within this structure can only be referenced through the structure; therefore, these functions have ST_PRIVATE scope by definition. It would be good practice to reference the passed in function pointers only through the structure reference, as well, but this is left up to the MPM developer, since the functions passed in through a call to ait_RegisterMpmSpecificData (refer to Appendix C, Section C.7.5) can be defined as ST_PRIVATE, ST_PROTECTED, or ST_PUBLIC, since there is no way to restrict the scope definitions at present.

Function prototypes are defined in the above structure of function pointers. Nominally, the void* pointers are cast by the MPM code to either an APT_ACTION_POINT_T * pointer, or to the MPM-specific data structure supported by the MPM and pointed to by the void* mpm_data pointer contained within the APT_ACTION_POINT_T pointer.

Since these functions are defined by the MPM developer, the following will only provide a description of what these functions should accomplish to provide support for MPM-specific data within the current TAMPS Core-MPM interface.

�

function pointer: � tc " ST_STATUS (*FltDataLoadFunc) " \l 3 �ST_STATUS (*FltDataLoadFunc) (void **data,

	short msn_id,

	short number,

	short route_id)�
�
CALLING SEQUENCE:

status = mpmFuncs.mpmDataFuncs->FltDataLoadFunc(&(act_ptr->mpm_data),

	msn_id,

	act_ptr->number,

	act_ptr->route_id)

PARAMETERS:

Name 	I/O	Type	Description

data	I/O	void **	Void data pointer that will contain MPM-specific data.

msn_id	I	short	Mission ID number.

number	I	short	Action point number.

route_id	I	short	Route ID number.

DESCRIPTION:

This function pointer will refer to the MPM-specific function that will retrieve the MPM-specific data from the MPM-defined database tables and insert that data into the action point with the associated action point number. Note that this function must allocate the memory for the data object.

�

function POINTER: � tc " ST_STATUS (*FltDataSaveFunc) " \l 3 �ST_STATUS (*FltDataSaveFunc) (void *data,

	short msn_id,

	short number,

	short route_id)�
�
CALLING SEQUENCE:

status = mpmFuncs.mpmDataFuncs->FltDataLoadFunc(act_ptr->mpm_data,

	msn_id,

	act_ptr->number,

	act_ptr->route_id)

PARAMETERS:

Name 	I/O	Type	Description

data	I	void *	Void data pointer that will contain MPM-specific data.

msn_id	I	short	Mission ID number.

number	I	short	Action point number.

route_id	I	short	Route ID number.

DESCRIPTION:

This function pointer will refer to the MPM-specific function that will store the MPM-specific data from the action point with the associated action point number and insert that data into the MPM-defined database tables.

�

function pointer: � tc " void (*FltDataCallbackFunc) " \l 3 �void (*FltDataCallbackFunc) (Widget parent,

	XtPointer client,

	XtPointer call)�
�
CALLING SEQUENCE:

mpmFuncs.mpmDataFuncs->FltDataCallbackFunc(parent, client, call)

PARAMETERS:

Name 	I/O	Type	Description

parent	I	Widget	Widget that invoked the callback.

client	I	XtPointer	Client data passed to callback. (Nominally, this will be an action point pointer.)

call	I	XtPointer	Callback structure.

DESCRIPTION:

This function pointer will refer to the MPM-specific function that will be executed by Core to hand-off the HMI to the MPM-developed HMI. This function is currently invoked by the "Edit Flight Parameters" dialog's "MPM SPECIFIC DATA..." pushbutton. When this button is pressed, this callback is invoked.

�

function pointer: � tc " ST_STATUS (*FltDataDefaultFunc)(void *data)" \l 3 �ST_STATUS (*FltDataDefaultFunc)(void *data)�
�
CALLING SEQUENCE:

mpmFuncs.mpmDataFuncs->FltDataDefaultFunc(data)

PARAMETERS:

Name 	I/O	Type	Description

data	I/O	void *	Void pointer to data. This will be cast to APT_ACTION_POINT_T * by the MPM function.

DESCRIPTION:

This function pointer will refer to the MPM-specific function that will initialize the default data with the default conditions for the MPM-specific data.

�

function pointer: � tc " ST_STATUS (*FltDataValidateFunc)(void *data)" \l 3 �ST_STATUS (*FltDataValidateFunc)(void *data)�
�
CALLING SEQUENCE:

mpmFuncs.mpmDataFuncs->FltDataValidateFunc(data)

PARAMETERS:

Name 	I/O	Type	Description

data	I/O	void *	Void pointer to data. This will be cast to APT_ACTION_POINT_T * by the MPM function.

DESCRIPTION:

This function pointer will refer to the MPM-specific function that will validate the MPM-specific data.

�

function pointer: � tc " void * (*FltDataCreateFunc)(void)" \l 3 �void * (*FltDataCreateFunc)(void)�
�
CALLING SEQUENCE:

act_ptr->mpm_data = mpmFuncs.mpmDataFuncs->FltDataValidateFunc()

PARAMETERS:

Name 	I/O	Type	Description

"return"	O	void *	Void pointer to data created by the MPM function. (Will be the MPM-defined data type.)

DESCRIPTION:

This function pointer will refer to the MPM-specific function that will create an instance of the MPM-specific data.

�

function pointer: � tc " void * (*FltDataCopyFunc)(void *data)" \l 3 �void * (*FltDataCopyFunc)(void *data)�
�
CALLING SEQUENCE:

act_ptr->mpm_data = mpmFuncs.mpmDataFuncs->FltDataCopyFunc(prev_act->mpm_data)

PARAMETERS:

Name 	I/O	Type	Description

data	I	void *	Void pointer to data (MPM-defined data type) that will be copied to next point.

"return"	O	void *	Void pointer to data copied by the MPM function. (Will be the MPM-defined data type.)

DESCRIPTION:

This function pointer will refer to the MPM-specific function that will copy the MPM data from one action point to the next action point.

�

function pointer: � tc " void * (*FltDataDeleteFunc)(void *data)" \l 3 �void * (*FltDataDeleteFunc)(void *data)�
�
CALLING SEQUENCE:

act_ptr->mpm_data =

(mpmFuncs.mpmDataFuncs->FltDataDeleteFunc(act_ptr->mpm_data)

PARAMETERS:

Name 	I/O	Type	Description

data	I	void *	Void pointer to data (MPM-defined data type) that will be deleted from the given point.

"return"	O	void *	Void pointer assigned back to action point (should be NULL).

DESCRIPTION:

This function pointer will refer to the MPM-specific function that will delete the MPM data from an action point. Note that it returns a void * pointer that is assigned back to the action point's "mpm_data." At the completion of this function, this should be a NULL pointer.

�
M.5.2	aft_event_defs.h (IFA29033)

The PUBLIC #defines for the Core-supported flight events are as follows:

#define	 AFT_ATTACK_EVENT	1

#define	 AFT _WEAPON_EVENT	2

#define	 AFT_REFUEL_EVENT	3

#define	 AFT _HOLD_EVENT	4

#define	 AFT _HACK_EVENT	5

#define	 AFL_GRND_EVENT	6

#define	 AFT_NASP_EVENT	7

#define	 AFL_LZ_EVENT	8

#define	 AFL_FARP_EVENT	9

#define	 AFL_HOVER_EVENT	10

#define	 AFL_EAF_EVENT	11

�

This page intentionally left blank.

Document No. 160008-IDD-6.1 - April 1997

M.5-�

Document No. 160008-IDD-6.1 - April 1997

M.5-�

