APPENDIX J �DEVICE-SPECIFIC �IOCTL() COMMANDS

�

�

This page intentionally left blank.

�SECTION J.1 �DEVICE-SPECIFIC �IOCTL() COMMANDS

�

The TAMPS 6.1 ioctl() commands that allow device-specific configuration, control and I/O operations for the GPS MDL DTD, the F/A-18 MU DTD, and the F-14 DSU are described in Section J.1. Detailed information is provided for each ioctl() command, including the calling sequence, a definition of the parameters, a function description, and an example written in the C programming language that utilizes the calling sequence. The header file associated with the ioctl () commands is cml.ioctl.h.

�

This page intentionally left blank.�

IOCTL COMMAND: � tc " CML_MODEGET" \l 3 �CML_MODEGET���CALLING SEQUENCE:

status = ioctl(fd, CML_MODEGET, &mode)

PARAMETERS:

Name	I/O	Type	Description

fd	I	int	File descriptor returned by open().

mode	I/O	CML_MODEBLOCK	Mode code, data and status block.

status	O	int	Returns SUCCESS or FAILURE.

DESCRIPTION:

This function transmits a specified mode code to an MU or MDL and retrieves the device's status word and corresponding data word (if any). The valid mode code range is from 0 to 31, though not all mode codes are supported by the MU and/or MDL devices. A 16-bit data word will be returned only for those mode codes supported by the MU and MDL devices for which MIL-STD-1553B requires a one word remote terminal data transmital.

EXAMPLE:

#include "devices/cml_ioctl.h"

int fd, status;

const char mu[] = "/dev/mu/0";

CML_MODEBLOCK mode;

fd = open(mu, O_RDWR);

if (fd == FAILURE) {

	perror(mu);

	close(fd);

	return(FAILURE);

}

mode.code = 2;	/* transmit 1553 status word */

status = ioctl(fd, CML_MODEGET, &mode);

if (status == FAILURE) {

	perror(mu);

}

(void) printf("1553 status word is 0x%04x\n", (int) mode.status & 0xffff);

�

IOCTL COMMAND: � tc " CML_MODESET" \l 3 �CML_MODESET���CALLING SEQUENCE:

status = ioctl(fd, CML_MODESET, &mode)

PARAMETERS:

Name	I/O	Type	Description

fd	I	int	File descriptor returned by open().

mode	I/O	CML_MODEBLOCK	Mode code, data and status block.

status	O	int	Returns SUCCESS or FAILURE.

DESCRIPTION:

This function transmits a specified mode code and corresponding data word (if any) to an MU or MDL and retrieves the device's status word. The valid mode code range is from 0 to 31, though not all mode codes are supported by the MU and/or MDL devices. A 16-bit data word will be sent only for those mode codes supported by the MU and MDL devices for which MIL-STD-1553B requires a one word bus controller data transmital.

EXAMPLE:

#include "devices/cml_ioctl.h"

int fd, status;

const char mu[] = "/dev/mu/0";

CML_MODEBLOCK mode;

fd = open(mu, O_RDWR);

if (fd == FAILURE) {

	perror(mu);

	close(fd);

	return(FAILURE);

}

mode.code = 2;	/* transmit 1553 status word */

status = ioctl(fd, CML_MODESET, &mode);

if (status == FAILURE) {

	perror(mu);

}

(void) printf("1553 status word is 0x%04x\n", (int) mode.status & 0xffff);

�

IOCTL COMMAND: � tc " CML_SWAGET" \l 3 �CML_SWAGET���CALLING SEQUENCE:

status = ioctl(fd, CML_SWAGET, &addr)

PARAMETERS:

Name	I/O	Type	Description

fd	I	int	File descriptor returned by open().

addr	O	CML_ADDRESS	Current sequential write address.

status	O	int	Returns SUCCESS or FAILURE.

DESCRIPTION:

This function retrieves the current 32-bit sequential write address from an MU or MDL. The valid address range is from 0 to the size of the device's configured data space - 1. The returned address will be equal to the size of the device's configured data space when a sequential write address outside the valid address range has been previously transmitted.

EXAMPLE:

#include "devices/cml_ioctl.h"

int fd, status;

const char mu[] = "/dev/mu/0";

CML_ADDRESS addr;

.

.

fd = open(mu, O_RDWR);

if (fd == FAILURE) {

	perror(mu);

	close(fd);

	return(FAILURE);

}

status = ioctl(fd, CML_SWAGET, &addr);

if (status == FAILURE) {

	perror(mu);

}

�

IOCTL COMMAND: � tc " CML_SWASET" \l 3 �CML_SWASET���CALLING SEQUENCE:

status = ioctl(fd, CML_SWASET, &addr)

PARAMETERS:

Name	I/O	Type	Description

fd	I	int	File descriptor returned by open().

addr	I	CML_ADDRESS	New sequential write address.

status	O	int	Returns SUCCESS or FAILURE.

DESCRIPTION:

This function transmits a new 32-bit sequential write address to an MU or MDL. The valid address range is from 0 to the size of the device's configured data space - 1. If an invalid address is specified, the device will set its internal sequential write address to be equal to the size of its configured data space. No commanded sequential writes will be performed by the device until its sequential write address is reset to a valid value via this function.

EXAMPLE:

#include "devices/cml_ioctl.h"

int fd, status;

const char mu[] = "/dev/mu/0";

CML_ADDRESS addr = (CML_ADDRESS) 12006;

fd = open(mu, O_RDWR);

if (fd == FAILURE) {

	perror(mu);

	return(FAILURE);

}

status = ioctl(fd, CML_SWASET, &addr);

if (status == FAILURE) {

	perror(mu);

}

�

IOCTL COMMAND: � tc " CML_SRAGET" \l 3 � CML_SRAGET���CALLING SEQUENCE:

status = ioctl(fd, CML_SRAGET, &addr)

PARAMETERS:

Name	I/O	Type	Description

fd	I	int	File descriptor returned by open().

addr	O	CML_ADDRESS	Current sequential read address.

status	O	int	Returns SUCCESS or FAILURE.

DESCRIPTION:

This function retrieves the current 32-bit sequential read address from an MU or MDL. The valid address range is from 0 to the size of the device's configured data space - 1. The returned address will be equal to the size of the device's configured data space when a sequential read address outside the valid address range has been previously transmitted.

EXAMPLE:

#include "devices/cml_ioctl.h"

int fd, status;

const char mu[] = "/dev/mu/0";

CML_ADDRESS addr;

fd = open(mu, O_RDWR);

if (fd == FAILURE) {

	perror(mu);

	return(FAILURE);

}

status = ioctl(fd, CML_SRAGET, &addr);

if (status == FAILURE) {

	perror(mu);

}

�

IOCTL COMMAND: � tc " CML_SRASET" \l 3 � CML_SRASET���CALLING SEQUENCE:

status = ioctl(fd, CML_SRASET, &addr)

PARAMETERS:

Name	I/O	Type	Description

fd	I	int	File descriptor returned by open().

addr	I	CML_ADDRESS	New sequential read address.

status	O	int	Returns SUCCESS or FAILURE.

DESCRIPTION:

This function transmits a new 32-bit sequential read address to an MU or MDL. The valid address range is from 0 to the size of the device's configured data space - 1. If an invalid address is specified, the device will set its internal sequential read address to be equal to the size of the its configured data space. No commanded sequential reads will be performed by the device until its sequential read address is reset to a valid value via this function.

EXAMPLE:

#include "devices/cml_ioctl.h"

int fd, status;

const char mu[] = "/dev/mu/0";

CML_ADDRESS addr = (CML_ADDRESS) 12006;

fd = open(mu, O_RDWR);

if (fd == FAILURE) {

	perror(mu);

	return(FAILURE);

}

status = ioctl(fd, CML_SRASET, &addr);

if (status == FAILURE) {

	perror(mu);

}

�

IOCTL COMMAND: � tc " CML_RRAGET" \l 3 � CML_RRAGET���CALLING SEQUENCE:

status = ioctl(fd, CML_RRAGET, &addr)

PARAMETERS:

Name	I/O	Type	Description

fd	I	int	File descriptor returned by open().

addr	O	CML_ADDRESS	Current sequential read address.

status	O	int	Returns SUCCESS or FAILURE.

DESCRIPTION:

This function retrieves the current 32-bit random read address from an MU or MDL. The valid address range is from 0 to the size of the device's configured data space - 1. The returned address will be equal to the size of the device's configured data space when a random read address outside the valid address range has been previously transmitted.

EXAMPLE:

#include "devices/cml_ioctl.h"

int fd, status;

const char mu[] = "/dev/mu/0";

CML_ADDRESS addr;

fd = open(mu, O_RDWR);

if (fd == FAILURE) {

	perror(mu);

	return(FAILURE);

}

status = ioctl(fd, CML_RRAGET, &addr);

if (status == FAILURE) {

	perror(mu);

}

�

IOCTL COMMAND: � tc " CML_RRASET" \l 3 � CML_RRASET���CALLING SEQUENCE:

status = ioctl(fd, CML_RRASET, &addr)

PARAMETERS:

Name	I/O	Type	Description

fd	I	int	File descriptor returned by open().

addr	I	CML_ADDRESS	New sequential read address.

status	O	int	Returns SUCCESS or FAILURE.

DESCRIPTION:

This function transmits a new 32-bit random read address to an MU or MDL. The valid address range is from 0 to the size of the device's configured data space - 1. If an invalid address is specified, the device will set its internal random read address to be equal to the size of its configured data space. No commanded random reads will be performed by the device until its random read address is reset to a valid value via this function.

EXAMPLE:

#include "devices/cml_ioctl.h"

int fd, status;

const char mu[] = "/dev/mu/0";

CML_ADDRESS addr = (CML_ADDRESS) 12006;

fd = open(mu, O_RDWR);

if (fd == FAILURE) {

	perror(mu);

	return(FAILURE);

}

status = ioctl(fd, CML_RRASET, &addr);

if (status == FAILURE) {

	perror(mu);

}

�

IOCTL COMMAND: � tc " CML_SEQWRITE" \l 3 � CML_SEQWRITE���CALLING SEQUENCE:

status = ioctl(fd, CML_SEQWRITE, &buf)

PARAMETERS:

Name	I/O	Type	Description

fd	I	int	File descriptor returned by open().

buf	I	CML_DATABLOCK	Data block (with length included).

status	O	int	Returns SUCCESS or FAILURE.

DESCRIPTION:

This function transmits a variable length data block to the bulk memory of an MU or MDL. The valid block size is from 1 to 32 16-bit words, which must be set by the caller in the CML_DATABLOCK structure. The data will be loaded into bulk memory starting at the current sequential write address.

EXAMPLE:

#include "devices/cml_ioctl.h"

int fd, status;

const char mu[] = "/dev/mu/0";

CML_DATABLOCK buf;

fd = open(mu, O_RDWR);

if (fd == FAILURE) {

	perror(mu);

	return(FAILURE);

}

buf.data[0] = 13028;

buf.data[1]=10222;

buf.blklen=2;

status = ioctl(fd, CML_SEQWRITE, &buf);

if (status == FAILURE) {

	perror(mu);

}

�

IOCTL COMMAND: � tc " CML_ADDRINSP" \l 3 � CML_ADDRINSP���CALLING SEQUENCE:

status = ioctl(fd, CML_ADDRINSP, &buf)

PARAMETERS:

Name	I/O	Type	Description

fd	I	int	File descriptor returned by open().

buf	O	CML_ADDRBLOCK	Memory address inspection block.

status	O	int	Returns SUCCESS or FAILURE.

DESCRIPTION:

This function retrieves a set of current memory addresses from an MU or MDL. These addresses include: sequential write address, sequential read address, random write address, random read address, memory erase start address, and memory erase stop address.

EXAMPLE:

#include "devices/cml_ioctl.h"

int fd, status;

const char mu[] = "/dev/mu/0";

CML_ADDRBLOCK buf;

fd = open(mu, O_RDWR);

if (fd == FAILURE) {

	perror(mu);

	return(FAILURE);

}

status = ioctl(fd, CML_ADDRINSP, &buf);

if (status == FAILURE) {

	perror(mu);

}

�

IOCTL COMMAND: � tc " CML_RNDWRITE" \l 3 � CML_RNDWRITE���CALLING SEQUENCE:

status=ioctl(fd, CML_RNDWRITE, &buf)

PARAMETERS:

Name	I/O	Type	Description

fd	I	int	File descriptor returned by open().

buf	I	CML_DATABLOCK	Data block (length and addr included).

status	O	int	Returns SUCCESS or FAILURE.

DESCRIPTION:

This function transmits a variable length data block to the bulk memory of an MU or MDL. The valid block size is from 1 to 30 16-bit words, which must be set by the caller in the CML_DATABLOCK structure. Data will be loaded into bulk memory starting at the random write address which must be set by the caller in the first two data words.

EXAMPLE:

#include "devices/cml_ioctl.h"

int fd, status;

const char mu[] = "/dev/mu/0";

CML_DATABLOCK buf;

fd = open(mu, O_RDWR);

if (fd == FAILURE) {

	perror(mu);

	return(FAILURE);

}

buf.data[0] = 0;		/* MSB of random write address */

buf.data[1]=12000;		/* LSB of random write address */

bus.data[2]=26;		/* 1st word of actual data */

bus.data[3]=365;		/* 2nd word of actual data */

buf.blklen=4;		/* length of blk to be xmitted */

status = ioctl(fd, CML_RNDWRITE, &buf);

if (status == FAILURE) {

	perror(mu);

}

�

IOCTL COMMAND: � tc " CML_SEQREAD" \l 3 � CML_SEQREAD���CALLING SEQUENCE:

status = ioctl(fd, CML_SEQREAD, &buf)

PARAMETERS:

Name	I/O	Type	Description

fd	I	int	File descriptor returned by open().

buf	I/O	CML_DATABLOCK	Data block (with length included).

status	O	int	Returns SUCCESS or FAILURE.

DESCRIPTION:

This function retrieves a variable length data block from the bulk memory of an MU or MDL. The valid block size is from 1 to 32 16-bit words, which must be set by the caller in the CML_DATABLOCK structure. The data will be retrieved from bulk memory starting at the current sequential read address.

EXAMPLE:

#include "devices/cml_ioctl.h"

int fd, status;

const char mu[] = "/dev/mu/0";

CML_DATABLOCK buf;

fd = open(mu, O_RDWR);

if (fd == FAILURE) {

	perror(mu);

	return(FAILURE);

}

buf.blklen=32;

status = ioctl(fd, CML_SEQREAD, &buf);

if (status == 0) {

	perror(mu);

}

�

IOCTL COMMAND: � tc " CML_RNDREAD" \l 3 � CML_RNDREAD���CALLING SEQUENCE:

status = ioctl(fd, CML_RNDREAD, &buf)

PARAMETERS:

Name	I/O	Type	Description

fd	I	int	File descriptor returned by open().

buf	I/O	CML_DATABLOCK	Data block (with length included).

status	O	int	Returns SUCCESS or FAILURE.

DESCRIPTION:

This function retrieves a variable length data block from the bulk memory of an MU or MDL. The valid block size is from 1 to 32 16-bit words, which must be set by the caller in the CML_DATABLOCK structure. The data will be retrieved from bulk memory starting at the current random read address.

EXAMPLE:

#include "devices/cml_ioctl.h"

int fd, status;

const char mu[] = "/dev/mu/0";

CML_DATABLOCK buf;

fd = open(mu, O_RDWR);

if (fd == FAILURE) {

	perror(mu);

	return(FAILURE);

}

buf.blklen=32;

status = ioctl(fd, CML_RNDREAD, &buf);

if (status == FAILURE) {

	perror(mu);

}

�

IOCTL COMMAND: � tc " CML_ERASE" \l 3 � CML_ERASE���CALLING SEQUENCE:

status = ioctl(fd, CML_ERASE, &buf)

PARAMETERS:

Name	I/O	Type	Description

fd	I	int	File descriptor returned by open().

buf	I	CML_ERASEBLOCK	Erasure range and control parameters.

status	O	int	Returns SUCCESS or FAILURE.

DESCRIPTION:

This function transmits new erasure range and control parameters to an MU or MDL. The memory erase start and stop addresses, as well as the erase cycle count (1 to 15) and the erase control words, must be set by the caller. The valid address range is from 0 to the size of the device's configured data space - 1.

EXAMPLE:

#include "devices/cml_ioctl.h"

int fd, status;

const char mu[] = "/dev/mu/0";

CML_ERASEBLOCK buf;

fd = open(mu, O_RDWR);

if (fd == FAILURE) {

	perror(mu);

	return(FAILURE);

}

buf.addr.start = 12000;

buf.addr.stop = 65536;

buf.cycles = 5;

buf.control = CML_ERASENOW;

status = ioctl(fd, CML_ERASE, &buf);

if (status == FAILURE) {

	perror(mu);

}

�

IOCTL COMMAND: � tc " CML_ELAPSEDTIME" \l 3 � CML_ELAPSEDTIME���CALLING SEQUENCE:

status = ioctl(fd, CML_ELAPSEDTIME, &time)

PARAMETERS:

Name	I/O	Type	Description

fd	I	int	File descriptor returned by open().

time	O	CML_DATAWORD	Elapsed service time (in BCD format).

status	O	int	Returns SUCCESS or FAILURE.

DESCRIPTION:

This function retrieves the cummulative use time from an MU or MDL. The time retrieved represents the total number of hours that the device has been in service across all loading and unloading sessions.

EXAMPLE:

#include "devices/cml_ioctl.h"

int fd, status;

const char mu[] = "/dev/mu/0";

CML_DATAWORD time;

fd = open(mu, O_RDWR);

if (fd == FAILURE) {

	perror(mu);

	close(fd);

	return(FAILURE);

}

status = ioctl(fd, CML_ELAPSEDTIME, &time);

if (status == FAILURE) {

	perror(mu);

}

(void) printf("Elapsed time is %d%d%d%d hours\n",

 (time & 0xf000) >> 12, (time & 0xf00) >> 8, (time & 0xf0) >> 4, time & 0xf);

�

IOCTL COMMAND: � tc " CML_BITRESULTS" \l 3 � CML_BITRESULTS���CALLING SEQUENCE:

status = ioctl(fd, CML_BITRESULTS, &results)

PARAMETERS:

Name	I/O	Type	Description

fd	I	int	File descriptor returned by open().

results	O	CML_DATABLOCK	Results of host-initiated BIT.

status	O	int	Returns SUCCESS or FAILURE.

DESCRIPTION:

This function retrieves the results of a host-initiated Built-In Test (BIT) from an MU or MDL. The results are returned in a general-purpose data block, since the formats for MU and MDL BIT results are different.

EXAMPLE:

#include "devices/cml_ioctl.h"

int fd, status;

const char mu[] = "/dev/mu/0";

CML_DATABLOCK results;

fd = open(mu, O_RDWR);

if (fd == FAILURE) {

	perror(mu);

	close(fd);

	return(FAILURE);

}

results.blklen = (CML_BLOCKSIZE) 13;	/* legal values are 1 to 32 for MDL */

do {

	status = ioctl(fd, CML_BITRESULTS, &results);

	if (status == SUCCESS) {

		(void) printf("test pattern retrieved is 0x%4x\n", results.data[1]);

		break;

	}

	sleep(1);

} while (errno == EBUSY);

�

IOCTL COMMAND: � tc " CML_BITINIT" \l 3 � CML_BITINIT���CALLING SEQUENCE:

status = ioctl(fd, CML_BITINIT, &test)

PARAMETERS:

Name	I/O	Type	Description

fd	I	int	File descriptor returned by open().

test	I	CML_DATABLOCK	Initiate/terminate BIT command block.

status	O	int	Returns SUCCESS or FAILURE.

DESCRIPTION:

This function transmits an initiate/terminate BIT command block to an MU or MDL. The BIT initialization parameters are stored in a general-purpose data block, since the formats for MU and MDL initiate/terminate BIT command blocks are different.

EXAMPLE:

#include "devices/cml_ioctl.h"

int fd, status;

const char mu[] = "/dev/mu/0";

CML_DATABLOCK test;

fd = open(mu, O_RDWR);

if (fd == FAILURE) {

	perror(mu);

	close(fd);

	return(FAILURE);

}

test.blklen = (CML_BLOCKSIZE) 14;	/* must be set to 32 for MDL	 */

test.data[0] = (CML_DATAWORD) 1;	/* initiate BIT command (0 to stop) */

test.data[1] = (CML_DATAWORD) 0xaaaa;	/* test pattern -- can be retrieved via */

				/* CML_BITRESULTS ioctl cmd */

status = ioctl(fd, CML_BITINIT, &test);

if (status == FAILURE) {

	perror(mu);

}

�

IOCTL COMMAND: � tc " CML_CONFGET" \l 3 � CML_CONFGET���CALLING SEQUENCE:

status = ioctl(fd, CML_CONFGET, &size)

PARAMETERS:

Name	I/O	Type	Description

fd	I	int	File descriptor returned by open().

size	O	CML_MEMORYSIZE	Bulk memory size (in K 16-bit words).

status	O	int	Returns SUCCESS or FAILURE.

DESCRIPTION:

This function retrieves the current bulk memory configuration size from an MU or MDL. The size returned represents the total amount of bulk memory available for data storage.

EXAMPLE:

#include "devices/cml_ioctl.h"

int fd, status;

const char mu[] = "/dev/mu/0";

CML_MEMORYSIZE size;

fd = open(mu, O_RDWR);

if (fd == FAILURE) {

	perror(mu);

	close(fd);

	return(FAILURE);

}

status = ioctl(fd, CML_CONFGET, &size);

if (status == FAILURE) {

	perror(mu);

}

�

IOCTL COMMAND: � tc " CML_CONFSET" \l 3 � CML_CONFSET���CALLING SEQUENCE:

status = ioctl(fd, CML_CONFSET, &size)

PARAMETERS:

Name	I/O	Type	Description

fd	I	int	File descriptor returned by open().

size	I	CML_MEMORYSIZE	Bulk memory size (in K 16-bit words).

status	O	int	Returns SUCCESS or FAILURE.

DESCRIPTION:

This function transmits the current bulk memory configuration size to an MU or MDL. The size sent represents the total amount of bulk memory to be allocated for user programs. The valid size range is from 0 to the size of the device's built-in bulk memory. Issuance of this command effectively deletes all user programs previously loaded.

EXAMPLE:

#include "devices/cml_ioctl.h"

int fd, status;

const char mu[] = "/dev/mu/0";

CML_MEMORYSIZE size = 32;	/* Save 32K 16-bit words for pgms */

fd = open(mu, O_RDWR);

if (fd == FAILURE) {

	perror(mu);

	close(fd);

	return(FAILURE);

}

status = ioctl(fd, CML_CONFSET, &size);

if (status == FAILURE) {

	perror(mu);

}

�

IOCTL COMMAND: � tc " CML_DATAINSP" \l 3 � CML_DATAINSP���CALLING SEQUENCE:

status = ioctl(fd, CML_DATAINSP, &buf)

PARAMETERS:

Name	I/O	Type	Description

fd	I	int	File descriptor returned by open().

buf	I/O	CML_DATABLOCK	Data block (length and addr included).

status	O	int	Returns SUCCESS or FAILURE.

DESCRIPTION:

This function retrieves a variable length data block from non-bulk storage for an MU or MDL. The valid block size is from 1 to 32 16-bit words, which must be set by the caller in the CML_DATABLOCK structure. The data will be retrieved from OFP RAM, OFP EEPROM or NOVRAM starting at the address which must be set by the caller in the first two data words. The valid address range is from 0 to A1FF(H). The starting address will be overwritten with data upon return from this function.

EXAMPLE:

#include "devices/cml_ioctl.h"

int fd, status;

const char mu[] = "/dev/mu/0";

CML_DATABLOCK buf;

fd = open(mu, O_RDWR);

if (fd == FAILURE) {

	perror(mu);

	close(fd);

	return(FAILURE);

}

buf.data[0] = 0;		/* MSB of starting address */

buf.data[1]=256;		/* LSB of starting address */

buf.blklen=32;		/* length of block to be retrieved */

status = ioctl(fd, CML_DATAINSP, &buf);

if (status == FAILURE) {

	perror(mu);

}

�

IOCTL COMMAND: � tc " CML_MDLDATAINSP" \l 3 � CML_MDLDATAINSP���CALLING SEQUENCE:

status = ioctl(fd, CML_MDLDATAINSP, &buf)

PARAMETERS:

Name	I/O	Type	Description

fd	I	int	File descriptor returned by open().

buf	I/O	CML_DATABLOCK	Data block (length and addr included).

status	O	int	Returns SUCCESS or FAILURE.

DESCRIPTION:

This function retrieves a variable length data block from non-bulk storage for an MDL only. The valid block size is from 1 to 32 16-bit words, which must be set by the caller in the CML_DATABLOCK structure. The data will be retrieved from OFP RAM, OFP EEPROM or NOVRAM starting at the address which must be set by the caller in the first two data words. The valid address range is from 0 to A1FF(H). The starting address will be overwritten with data upon return from this function.

EXAMPLE:

#include "devices/cml_ioctl.h"

int fd, status;

const char mu[] = "/dev/mu/0";

CML_DATABLOCK buf;

fd = open(mu, O_RDWR);

if (fd == FAILURE) {

	perror(mu);

	close(fd);

	return(FAILURE);

}

buf.data[0] = 0;		/* MSB of starting address */

buf.data[1]=256;		/* LSB of starting address */

buf.blklen=32;		/* length of block to be retrieved */

status = ioctl(fd, CML_MDLDATAINSP, &buf);

if (status == FAILURE) {

	perror(mu);

}

�

This page intentionally left blank.

Document No. 160008-IDD-6.1 - April 1997

J.1-� PAGE �24�

