SECTION G.1.7 �AIRCRAFT MISSION PLANNING �INITIALIZATION (AIT) ADA BINDINGS
�
�

This page intentionally left blank.
�
FUNCTION: � tc " AIT_ATTACHMPMGRAPHICS" \l 3 �AIT_ATTACHMPMGRAPHICS�IFA16178��CALLING SEQUENCE:
STATUS := AIT_ATTACHMPMGRAPHICS (ROUTE, COMPOSITE_LIST)
PARAMETERS:
Name	I/O	Type	Description
ROUTE	I	APT_ROUTE_	Pointer to the mission route
		HDR_T_PTR	structure.
COMPOSITE_LIST	I	LIST_PTR	List of MT_COMPOSITE_OBJs.
"RETURN"	O	ST_STATUS	Returns ST_SUCCESS if all is okay.
DESCRIPTION:
This function will attach the graphics list to the route so it can be displayed later.
EXAMPLE:
with APT_ROUTE;
with ULT_STRUCTS;
with ST_SYSDEFS;

ROUTE	: APT_ROUTE.APT_ROUTE_HDR_T_PTR;
COMPOSITE_LIST	: ULT_STRUCTS.LIST_PTR;
STATUS 	: ST_SYSDEFS.ST_STATUS;

STATUS := AIT_ATTACHMPMGRAPHICS(ROUTE,
				 COMPOSITE_LIST) ;

�
function: � tc " AIT_CLEARMPMGRAPHICS" \l 3 �AIT_CLEARMPMGRAPHICS�IFA16106��CALLING SEQUENCE:
STATUS := AIT_CLEARMPMGRAPHICS('LAYER_NAME, 'GRAPHIC_LIST, BUFFERFLAG)
PARAMETERS:
Name	I/O	Type	Description
LAYER_NAME	I	ADDRESS	Name of layer to clear.
BUCKET_NAME 	I	ADDRESS	Name of bucket to clear.
GRAPHIC_LIST	I	LIST_PTR	List of MT_COMPOSITE OBJs.
BUFFERFLAG	I	INTEGER	Flag indicating whether or not the buffer should be displayed.
"RETURN"	O	ST_STATUS	Returns ST_SUCCESS if all is okay.
DESCRIPTION:
This function will clear/destroy the named layers and buckets. If a NULL is passed in for a bucket name then all associated buckets with the named layer will be cleared/destroyed.
EXAMPLE:
with ULT_STRUCTS;
with ST_SYSDEFS;
with SYSTEM ;

LAYER_NAME	: STRING(1..X);
BUCKET_NAME	: STRING(1..Y);
GRAPHIC_LIST	: ULT_STRUCTS.LIST_PTR;
STATUS 	: ST_SYSDEFS.ST_STATUS;
BUFFERFLAG	: INTEGER ;

STATUS := AIT_CLEARMPMGRAPHICS(LAYER_NAME'ADDRESS,
				 BUCKET_NAME'ADDRESS,
				 GRAPHIC_LIST,
				 BUFFERFLAG) ;

�
FUNCTION: � tc " AIT_DETACHMPMGRAPHICS" \1 3 �AIT_DETACHMPMGRAPHICS�IFA16179��CALLING SEQUENCE:
STATUS := AIT_DETACHMPMGRAPHICS(ROUTE)
PARAMETERS:
Name	I/O	Type	Description
ROUTE	I	APT_ROUTE_HDR_T_PTR	Pointer to the mission route structure.
"RETURN"	O	ST_STATUS	Returns ST_SUCCESS if all is okay.
DESCRIPTION:
This function will detach the graphics list from the route.
EXAMPLE:
with APT_ROUTE;
with ST_SYSDEFS;

ROUTE : APT_ROUTE.APT_ROUTE_HDR_T_PTR;
STATUS : ST_SYSDEFS.ST_STATUS;

STATUS := AIT_DETACHMPMGRAPHICS(ROUTE) ;
�
function: � tc " AIT_DRAWMPMGRAPHICS" \l 3 �AIT_DRAWMPMGRAPHICS�IFA16105��CALLING SEQUENCE:
STATUS := AIT_DRAWMPMGRAPHICS('LAYER_NAME, COMPOSITE, BUFFERFLAG)
PARAMETERS:
Name	I/O	Type	Description
LAYER_NAME	I	ADDRESS	Name of layer to place the graphics.
COMPOSITE	I	LIST _PTR	List of MT_COMPOSITE_OBJs.
BUFFERFLAG	I	INTEGER	Flag indicating whether or not the buffer should be displayed.
"RETURN"	O	ST_STATUS	Set to ST_SUCCESS if all is okay.
DESCRIPTION:
This function will take the given layer name, create it if it does not exist, and place the graphics objects provided in the list of MT_COMPOSITE_OBJs.
EXAMPLE:
with ULT_STRUCTS;
with ST_SYSDEFS;

LAYER_NAME	: STRING(1..X);
COMPOSITE	: ULT_STRUCTS.LIST_PTR;
BUFFERFLAG	: INTEGER;
STATUS 	: ST_SYSDEFS.ST_STATUS;

STATUS := AIT_DRAWMPMGRAPHICS(LAYER_NAME'ADDRESS,
				 COMPOSITE,
				 BUFFERFLAG) ;

�
FUNCTION: � tc " AIT_FREEMPMCOMPOSITE" \l 3 �AIT_FREEMPMCOMPOSITE�IFA16180��CALLING SEQUENCE:
STATUS := AIT_FREEMPMCOMPOSITE(COMPOSITE_LIST)
PARAMETERS:
Name	I/O	Type	Description
COMPOSITE_LIST	I	LIST_PTR	List of MT_COMPOSITE_OBJs.
"RETURN"	O	ST_STATUS	Returns ST_SUCCESS if all is okay.
DESCRIPTION:
This function will free the memory that was allocated for the list of composite objects.
EXAMPLE:
with ULT_STRUCTS;
with ST_SYSDEFS;

COMPOSITE_LIST	: ULT_STRUCTS.LIST_PTR;
STATUS 	: ST_SYSDEFS.ST_STATUS;

STATUS := AIT_FREEMPMCOMPOSITE(COMPOSITE_LIST);
�
FUNCTION: � tc " AIT_GETFLIGHTMODENAME" \l 3 �AIT_GETFLIGHTMODENAME�IFA16186��CALLING SEQUENCE:
NAME = AIT_GETFLIGHTMODENAME(C_TYPE)
PARAMETERS:
Name	I/O	Type	Description
C_TYPE	I	SHORT_INTEGER	Flight mode type.
"RETURN"	O	SYSTEM.ADDRESS	Flight mode name.
DESCRIPTION:
This function returns the flight mode name matching the input flight mode type.
EXAMPLE:
with SYSTEM;
with UNSIGNED ;

ADDRESS_OF_NAME	: SYSTEM.ADDRESS;
FLTMODE		: UNSIGNED.SHORT_INTEGER;

ADDRESS_OF_NAME := AIT_GETFLIGHTMODENAME(FLTMODE);

�
FUNCTION: � tc " AIT_GETMPMDIRREF" \l 3 �AIT_GETMPMDIRREF�IFA16087��CALLING SEQUENCE:
DIRSTR := AIT_GETMPMDIRREF();
PARAMETERS:
Name	I/O	Type	Description
"RETURN"	O	SYSTEM.ADDRESS	Function return value.
DESCRIPTION:
This function returns a character string that represents the directory reference used for locating MPM file locations. For example, the F/A-18 MPM might use "f18". The string will be a valid UNIX directory reference.
EXAMPLE:
with AIT;
use AIT;

DIRSTR : SYSTEM.ADDRESS;

DIRSTR := AIT_GETMPMDIRREF();

�
FUNCTION: � tc " AIT_GETMSNDEFMMISTATUS" \l 3 �AIT_GETMSNDEFMMISTATUS�IFA16197��CALLING SEQUENCE
MISSION_STATUS := AIT_GETMSNDEFMMISTATUS
Parameters:
Name	I/O	Type	Description
MISSION_STATUS	O	APT_MISSION_STATUS	The current value of the 			AIT_MSN_Status 				variable.
Description:
This function will return the current value of the AIT_ mIsSIOn_status variable. When called at the proper time it will let the MPM know if the mission is new or one being edited. Calling this function without the Mission Defaults HMI active will return APT_NOT_SET.
EXAMPLE:
with SYSTEM;
with APT_ENUM;

MISSION_STATUS	: APT_ENUM.APT_MISSION_STATUS;

MISSION_STATUS	:= AIT_GETMSNDEFMMISTATUS;

�
FUNCTION: � tc " AIT_GETMSNPLAN" \1 3 �AIT_GETMSNPLAN�IFA16207��CALLING SEQUENCE:
MSN_PLAN := AIT_GETMSNPLAN
Parameters:
Name	I/O	Type	Description
MSN_PLAN	O	ADDRESS	This is the address to either a APT_MSNPLN_AIRCRAFT_T, or a APT_MSNPLN_WEAPON_T structure.
Description:
This function is used to reference the global pointer to the current mission plan data structure (AT_MSNPLAN).
EXAMPLE:
with SYSTEM;
with ART_STRUCTS;
with ST_SYSDEFS;
with ULT_STRUCTS;
with UNSIGNED;

MNS_PLAN	: SYSTEM.ADDRESS ;

MNS_PLAN := AIT_GETMSNPLAN;
�
FUNCTION: � tc " ait_getVehicleName" \1 3 �ait_getVehicleName�IFA16085��CALLING SEQUENCE:
X := ait_getVehicleName()
PARAMETERS:
Name	I/O	Type	Description
"RETURN"	O	SYSTEM.ADDRESS	Vehicle name.
DESCRIPTION:
This function returns the static variable mission_planning_name which is set by the main MPM.
EXAMPLE:
with AIT;
use AIT;

X : SYSTEM.ADDRESS;

X := AIR_GETVEHICLENAME ();

�
function: � tc " AIT_GETVEHICLEVARIANT" \l 3 �AIT_GETVEHICLEVARIANT�IFA16108��CALLING SEQUENCE:
VEHICLEVARIANT := AIT_GETVEHICLEVARIANT()
PARAMETERS:
Name	I/O	Type	Description
"RETURN"	O	SYSTEM.ADDRESS	Vehicle variant name.
DESCRIPTION:
This function returns the vehicle variant specified by a call to AIT_SETVEHICLEVARIANT. The VEHICLEVARIANT is used by the Core products software to put this information into kneeboard cards, Load and Drop reports, and platform performance reports.
EXAMPLE:
with SYSTEM;

ADDRESS_OF_VARIANT : SYSTEM.ADDRESS;

ADDRESS_OF_VARIANT := AIT_GETVEHICLEVARIANT;

�
function: � tc " ait_OpAreaDialog " \l 3 � ait_OpAreaDialog�IFA16236��CALLING SEQUENCE :
w = ait_OpAreaDialog(parent, cbFunc’ADDRESS, cbClient)
PARAMETERS :
Name	I/O	Type	Description
parent	I	Widget	Widget to use as parent of new dialog.
cbFunc 	I	SYSTEM.ADDRESS	Function to call after changing to selected Op Area.
cbClient 	I	XtPointer	Client data parameter to pass to callback function.
w	O	Widget	Returned widget attached to dialog.
DESCRIPTION:
This function creates and manages a dialog that contains a list of all available Op Areas. The current Op Area will be selected. The user will be able to select a different Op Area from the list. When the user clicks on the OK button, or double clicks on an Op Area in the list, then the MPM map display will display that Op Area. No mission data, or searched database data, will be removed or changed. All queries will operate against the Op Area defined in the input parameter.

The dialog created by this function is unmanaged when the “OK” button is selected, the “cancel” button is selected, or double clicking of an op area occurs. Subsequent calls to this function will re-manage the dialog and pre-select the active op area. It is highly recommended that this function be called every time the op area dialog is required.

After the map display has been updated, the function specified by the cbFunc parameter (if not NULL) will be called with two (2) parameters: the cbClient parameter passed to ait_OpAreaDialog, and a flag (an INTEGER) indicating which action was taken by the user. The flag must be one (1) of the following values, indicating which action was taken by the user: AIT_OPAREA_OK if the user clicked on the OK button, AIT_OPAREA_CANCEL if the user clicked on the Cancel button, or AIT_OPAREA_DBLCLK if the user double clicked on an op area within the list.

EXAMPLE:
with SYSTEM:
with XT;

PARENT		: XT.WIDGET;
TOPLEVEL	: XT.WIDGET;
CBCLIENT	: XT.XT_POINTER;
W			: XT.WIDGET;

.
.
.

CBCLIENT := XT.XT_POINTER (TOPLEVEL);

W := AIT_OPAREADIALOG (TOPLEVEL, CALLBACKFUNC’ADDRESS, CBCLIENT)	
�
FUNCTION: � tc " AIT_REGISTERDEFAULTHELP" \l 3 �AIT_REGISTERDEFAULTHELP�IFA16218��CALLING SEQUENCE:
AIT_REGISTERDEFAULTHELP(MPMHELP'ADDRESS)
PARAMETERS
Name	I/O	Type	Description
MPMHELP	I	SYSTEM.ADDRESS	String representing the specific dialog the MPM wishes to attach to the aircraft mission defaults HMI for specific MPM help.
DESCRIPTION:
This function attaches the MPM-specified help screen to the existing help screen for the aircraft mission defaults HMI. This function should only be invoked by the MPM when the MPM has registered specific default data.

NOTE: When the planner selects the 'Help' button on the mission defaults dialog, Core’s default help screen will appear. The MPM-specific help will appear on top of Core’s default help.
EXAMPLE:
with SYSTEM;

MPMHELP	: STRING(1..X);

AIT_REGISTERDEFAULTHELP(MPMHELP'ADDRESS);

�
FUNCTION: � tc " AIT_REGISTERDEFAULTMMI" \l 3 �AIT_REGISTERDEFAULTMMI�IFA16195��CALLING SEQUENCE:
STATUS := AIT_REGISTERDEFAULTMMI(MPMHELP)
Parameters:
Name	I/O	Type	Description
MPMHELP	I	ADDRESS	Address to input function.
STATUS	O	ST_STATUS	Return Pass or Fail.
Description:
This function registers an MPM-supplied function that will handle the modes for the MPM-specific default HMI. (For a description of the MPM-supplied function’s parameters, refer to the function description for ait_RegisterDefaultMMI (IFA9211) in Appendix C, Section C.1.) The APT_CREATE mode would be responsible for creating a widget using the bulletin board widget parameter as its parent. The APT_FILL mode would use the data found in the APT_AIRCRAFT_T structure and fill in the MPM-specific HMI fields. The APT_EXTRACT mode would read the data from the MPM-specific HMI fields and update the APT_AIRCRAFT_T structure with the current data. The APT_APPLY mode would handle any special actions required when the User selects the OK or APPLY buttons from the Core Mission Defaults HMI. The APT_APPLY request will be made prior to Core performing any route validation.
EXAMPLE:
with SYSTEM;
with ART_STRUCTS;
with ST_SYSDEFS;
with ULT_STRUCTS;
with UNSIGNED;

MPMHELP	: SYSTEM.ADDRESS;
STATUS		: ST_SYSDEFS.ST_STATUS;

STATUS	:= AIT_REGISTERDEFAULTMMI(FUNC_PTR);
�
FUNCTION: � tc " AIT_REGISTERDIVERTCALCS" \l 3 �AIT_REGISTERDIVERTCALCS�IFA16089��CALLING SEQUENCE:
AIT_REGISTERDIVERTCALCS(CALC_DIVERT_FUEL'ADDRESS)
PARAMETERS:
Name	I/O	Type	Description
CALC_DIVERT_FUEL	I	ADDRESS	Function pointer to MPM-provided function for calculating diverts. (See Description below for parameters.)
DESCRIPTION:
This function is called by an MPM to register a function to calculate the bingo course for divert fields during routing.

The CALC_DIVERT_FUEL parameter is a pointer to an MPM function with the following parameters. (Note: parameter names will be assigned by the MPM.)

Name	I/O	Type		Description
PACTION	 I	APT_ACTION_POINT_	Current action point.
		T_PTR 	
PDIVERT 	 I	APT_DIVERT_T_PTR	Divert field data.
MPM_ERRNUM	O	INTEGER_PTR	Error number (0 = OK).
"RETURN" 	O 	ST_STATUS 	Return status.
EXAMPLE:
with AIT;
use AIT;

AIT_REGISTERDIVERTCALCS(CALC_DIVERT_FUEL'ADDRESS);

(where CLAC_DIVERT_FUEL is the name of the MPM function)

�
FUNCTION: � tc " AIT_REGISTERFLIGHTMODES" \l 3 �AIT_REGISTERFLIGHTMODES�IFA16092��CALLING SEQUENCE:
AIT_REGISTERFLIGHTMODES(MODES, COUNT, SET_FLT_MODE'ADDRESS, GET_FLT_MODE'ADDRESS, DEFAULT_FLT_MODE'ADDRESS)
PARAMETERS:
Name	I/O	Type	Description
MODES	I	APT_FLTMODE_	Array of pointers to flight
		T_PTR	modes.
COUNT	I	INTEGER	Flight mode count.
SET_FLT_MODE	I	ADDRESS	Function pointer to MPM function to set flight modes. (See Description below for parameters.)
GET_FLT_MODE	I	ADDRESS	Function pointer to MPM function to get flight modes. (See Description below for parameters.)
DEFAULT_FLT_MODE	I	ADDRESS	Function pointer to MPM function to set default flight mode. (See Description below for parameters.)
DESCRIPTION:
This function is called by an MPM to register its flight modes and the associated functions to control and set those flight modes.

The SET_FLT_MODE parameter is a pointer to an MPM function with the following parameters. (Note: parameter names will be assigned by the MPM.)

Name	I/O	Type	Description
PROUTE	I	LIST_PTR	Pointer to route.
CURRACTION	I	SHORT_INTEGER	Current action point.
SPEEDCHG	O	ADDRESS	Speed change.
ALTITUDECHG	O	ADDRESS	Altitude change flag.
MPM_ERRNUM	O	INTEGER_PTR	Error number (0 = ok).
"RETURN" 	O	INTEGER	Return value.

The GET_FLT_MODE parameter is a pointer to an MPM function with the following parameters. (Note: parameter names will be assigned by the MPM.)

Name	I/O	Type	Description
PROUTE	I	LIST_PTR	Route pointer.
CURRACTION	I 	SHORT_INTEGER	Current action point.
MPM_ERRNUM	O	INTEGER_PTR	Error number (0=ok).
"RETURN" 	O 	INTEGER	Return value.

The DEFAULT_FLT_MODE parameter is a pointer to an MPM function with the following parameters. (Note: parameter names will be assigned by the MPM.)

Name	I/O	Type	Description
PCURRNAV	I/O	APT_NAVPT_T_PTR	Current navigation point.
"RETURN" 	O 	INTEGER	Return value.
EXAMPLE:
with AIT;
use AIT;

MODES : APT_FLTMODE_T_PTR;
COUNT : INTEGER;

AIT_REGISTERFLIGHTMODES(MODES, COUNT, SET_FLT_MODE'ADDRESS, GET_FLT_MODE'ADDRESS, DEFAULT_FLT_MODE'ADDRESS);

(where SET_FLT_MODE, GET_FLT_MODE, and DEFAULT_FLT_MODE are the names of the three (3) MPM functions)
�
FUNCTION: � tc " AIT_REGISTERINTDRAGCALCS" \l 3 �AIT_REGISTERINTDRAGCALCS�IFA16090��CALLING SEQUENCE:
AIT_REGISTERINTDRAGCALCS(CALC_INT_DRAG_IDX'ADDRESS)
PARAMETERS:
Name	I/O	Type	Description
CALC_INT_DRAG_IDX	I	ADDRESS	Function pointer to interference drag calc functions. (See Description below for parameters.)
DESCRIPTION:
This function is called by an MPM to register the functions to calculate interference drag for loadout on the aircraft.

The CALC_INT_DRAG_IDX parameter is a pointer to an MPM function with the following parameters. (Note: parameter names will be assigned by the MPM.)

Name	I/O	Type	Description
MACH 	I	FLOAT	Mach number.
DRAGCODE 	I	FLOAT	Interference drag code number.
DASHAOA 	O	FLOAT_PTR	Dash AOA interference drag.
AOA 	O	FLOAT_PTR	AOA interference drag.
MPM_ERRNUM	O	INTEGER_PTR	Error number.
"RETURN" 	O	ST_STATUS 	Return value.
EXAMPLE:
with AIT;
use AIT;

AIT_REGISTERINTDRAGCALCS(CALC_INT_DRAG_IDX'ADDRESS);

(where CALC_INT_DRAG_IDX is the MPM function name)

�
��function: ait_RegisterMpmAutoSave� TC " ait_RegisterMpmAutoSave " \l 3 ��IFA16237��CALLING SEQUENCE:
status := ait_RegisterMpmAutoSave (autoSave’ADDRESS, flag)
PARAMETERS:
Name	I/O	Type	Description
autoSave	I	SYSTEM.ADDRESS	MPM-registered autosave function.
flag	I	Boolean	If true, do not call Core autosave function.
status	O	ST_STATUS	ST_SUCCESS if function successfully populates custom menu, otherwise ST_FAILURE.
DESCRIPTION:
This function should be called by MPMs which have their own mission save function and do not require use of the Core’s mission save function. The initial state of the autosave mechanization is to save missions every 10 minutes with no confirmation.�
Since the MPM-registered autosave function will be called, it will be the responsibility of the MPM to handle any errors which may occur during the save operation. This is no different than the MPM overriding the callback on the File->Save button and the planner selecting that button.

When the Autosave timer expires, the MPM title bar is not affected.

The calling MPM function has four (4) options and resultant effects. Although option 1 is the configuration of Core, the MPMs may still invoke this function with the default case:

1) autoSave function not defined and the flag set to false (Default case)
	Core’s autosave function will be called only.

2) autoSave function defined and the flag set to false
	Core’s autosave function will be called only.

3) autoSave function defined and the flag set to true
	The MPM’s autosave function will be called only.

4) autoSave function not defined and the flag set to true
	Neither Core, nor MPM’s autosave functions will be called.

Calling this function will not turn off the autosave timer which resides on the Setup->Defaults->Autosave Human Machine Interface (HMI).

When a mission is opened, an acknowledge message will be displayed. The message will inform the planner that the autosave timer is active and suggest that the planner rename the mission using File->Save As.

MPMs which utilize ait_registerMpmFileFuncs to register a save function will have the save function automatically called when Core successfully completes its portion of the save. In this case, the autosave function provided by Core should NOT be deactivated by the MPM using the ait_registerMpmAutoSave function.

EXAMPLE #1:
with SYSTEM;
with ST_SYSDEFS;

STATUS	: ST_SYSDEFS.ST_STATUS;
FLAG	: BOOLEAN;
. . .

FLAG := TRUE;
STATUS := AIT_REGISTERMPMAUTOSAVE (MY_AUTOSAVE’ADDRESS, FLAG);

where MY_AUTOSAVE is the name of the MPM-defined autoSave procedure.
EXAMPLE #2:
with SYSTEM;
with ST_SYSDEFS;

STATUS	: ST_SYSDEFS.ST_STATUS;
FLAG	: BOOLEAN;
. . .

FLAG := FALSE;
STATUS := AIT_REGISTERMPMAUTOSAVE(MY_AUTOSAVE’ADDRESS,FLAG);
EXAMPLE #3:
with SYSTEM;
with ST_SYSDEFS;

STATUS	: ST_SYSDEFS.ST_STATUS;
FLAG	: BOOLEAN;
. . .

FLAG := TRUE;
STATUS := AIT_REGISTERMPMAUTOSAVE(SYSTEM.NO_ADDR, FLAG);

�
FUNCTION: � tc " AIT_REGISTERMPMBUTTONMANAGEMENT" \l 3 �AIT_REGISTERMPMBUTTONMANAGEMENT�IFA16177��CALLING SEQUENCE:
AIT_REGISTERMPMBUTTONMANAGEMENT(MPMMANAGEBUTTONS'ADDRESS)
PARAMETERS:
Name	I/O	Type	Description
MPMMANAGEBUTTONS	I	ADDRESS	Function pointer. (See Description below for parameters.)
DESCRIPTION:
This function sets up the MPM button management function for Core to call.

The MPMMANAGEBUTTONS parameter is a pointer to an MPM function with the following parameters. (Note: parameter names will be assigned by the MPM.)

Name	I/O	Type	Description
BUTTON_STATE	I	BOOLEAN	Button state.
“RETURN”	O	INTEGER	Return value.
EXAMPLE:
with SYSTEM ;

AIT_REGISTERMPMBUTTONMANAGEMENT(MPMMANAGEBUTTONS'ADDRESS) ;

(where MPMMANAGEBUTTONS is a MPM-specific function)

�
FUNCTION: � tc " AIT_REGISTERMPMEXIT" \l 3 �AIT_REGISTERMPMEXIT�IFA16091��CALLING SEQUENCE:
AIT_REGISTERMPMEXIT(MPM_EXIT'ADDRESS)
PARAMETERS:
Name	I/O	Type	Description
MPMEXIT	I	ADDRESS	Pointer to function to be called upon exit. (Note: this function does not have any parameters.)
DESCRIPTION:
This function is called by the MPM to register a function to be called on the exiting of the MPM.
EXAMPLE:
with AIT;
use AIT;

MPMEXIT : ADDRESS;

AIT_REGISTERMPMEXIT(MPM_EXIT'ADDRESS);

�
function: � TC " ait_RegisterMpmFileFuncs " \l 3 � ait_RegisterMpmFileFuncs�IFA16235��CALLING SEQUENCE:
STATUS := AIT_REGISTERMPMFILEFUNCS(MPMNOD'ADDRESS, MPMSAVE'ADDRESS, MPMIMPEXP'ADDRESS);
PARAMETERS:
Name	I/O	Type	Description
MPMNOD	I	ADDRESS	MPMnew/open/delete function.
MPMSAVE	I	ADDRESS	MPM save/save as function.
MPMIMPEXP	I	ADDRESS	MPM import/export function.
STATUS	O	ST_STATUS	ST_SUCCESS if function is successfully saved, ST_FAILURE otherwise.
DESCRIPTION:
This function should be called by MPMs which need to be called whenever Core creates, opens, saves, renames, deletes, imports or exports missions. These MPM functions will not override existing Core functions, but will be called after Core has completed its portion of the requested operation.

If Core fails to perform any of the requested operations, the MPM’s corresponding function will not be invoked. If the MPM’s portion of the operation fails, Core will abort its portion of the operation.

mpmNOD function
Core’s New, Open and Delete functions will pass UZT_HNDL_PTR (mission handle), an integer called FILEOP (file operation), and an address to a string (planner name) to this MPM function. The mission handle will be created for the MPMs to use to access data from internal Core data structures. The file operation parameter will inform the MPM what type of operation the planner has selected. For new, open and delete Core operations, only APT_NEW, APT_OPEN or APT_DELETE will be passed. MPMs should provide enough logic within their registered mpmNOD function to test for these conditions.

The planner argument will always contain the name of the planner who is logged into the system. The planner name that is in the mission handle will contain the name of the planner who owns the mission. This is particularly important when one planner opens another planner’s mission. Note: when saving a mission owned by a different planner, the mission is not duplicated in the database unless the planner uses the Save As function. If the protection on the mission does not allow modifications by the current planner, then an error message will be displayed (and the mpmSave function will not be called). Otherwise, the existing mission will be modified in the database, and the owner of the mission will still be the planner who created the mission.

The formal parameter list for MPMNOD is:

Name	I/O	Type	Description
MISSIONHANDLE	I	UZT_HNDL_PTR	Input Handle.
FILEOP	I	INTEGER	Type of operation.
PLANNER	I	ADDRESS	Address of string with Planner.
STATUS	O	ST_STATUS	Return value.

mpmSave function

The Save function will pass UZT_HNDL_PTR (mission handle), an INTEGER FILEOP, an address to the string old mission name, and an address to the string new mission name. If autosave is active and the timer expires, FILEOP will be set to APT_AUTOSAVE, otherwise, it will be set to APT_SAVE or APT_SAVE_AS. New mission name and old mission name will be the same, unless the user selects the “save as” operation.

The formal parameter list for MPMSAVE is:

Name	I/O	Type	Description
MISSIONHANDLE	I	UZT_HNDL_PTR	Input handle.
FILEOP	I	INTEGER	Type of operation.
OLDMISSIONNAME 	I	ADDRESS	Address of string with Old Mission.
NEWMISSIONNAME	I	ADDRESS	Address of string with New Mission.
STATUS	O	ST_STATUS	Return value.

mpmImpExp function

The Import/Export function will pass the file pointer of the open device (8mm tape, 1/4” tape, or 3.5” floppy), file operation (APT_IMPORT or APT_EXPORT), the owner of the mission and the mission name. The file pointer marks the point where the MPM data begins. MPMs must read and write from the point on the device. The first record written by the MPMs must be the number of bytes that follow (INTEGER). Although Core will not read the MPM’s data, it needs to know how much to skip in the event that an error occurs.

On the mission export processing, the MPM’s function may be invoked twice for each mission. On the first pass, Core creates a table of the valid missions to export. An entry is made only if Core and the MPM can successfully export the selected mission(s). If the MPM fails on the first pass of mission export, the mission is not added to the internal table. If the MPM is successful on the first pass, then the table is updated and the MPM will be called a second time to write the data to the output device.

Note that on mission import, all missions successfully imported into the system will be owned by the planner who initiates the operation. If a mission of the same name, type and planner already exists in the database, then the mission will not be imported. In this case, Core will skip over the MPM data by the number of bytes written by the MPM. This will synchronize Core/MPM so that there is no MPM data imported into the system, when Core’s import fails.

The formal parameter list for MPMIMPEXP is:

Name	I/O	Type	Description
FILE	I	STDIO.FILE_PTR 	File pointer.
FILEOP	I	INTEGER	Type of operation.
PLANNERNAME	I	ADDRESS	Address of string with Planner name.
MISSIONNAME	I	ADDRESS	Address of string with Mission name.

Error Handling

MPMs should be responsible for notifying and processing any MPM data errors. Core will enter a message in the WSE_LOGGER upon any failure status.

When a new or open mission fails, all of the pulldowns with the exception of File menu will be deactivated. The planner will only be allowed to select either New Mission, Open Mission, Delete Mission, Protect Missions, Strike Package or Exit.

When delete, save or save-as operations fail, Core will not commit any pending database operations.

On mission export, if the MPM fails to write its portion of the data, the entire mission will be removed from the export file. On mission import, if Core cannot successfully import the mission, the MPM’s portion of the file will be skipped. If the MPM cannot successfully import its portion of the mission, Core will not commit any pending database operations.

Handle Processing

MPMs will have the ability to access Core data from the input mission handle. The data in the handle will be treated as read only. The fields which will be available for MPMs to access and their respective definitions are as follows:

-- Name of Mission (APT_NAMELEN characters)
AXT_MISSION_NAME	: constant string := "axt_missionName" ;

-- Mission description (APT_TEXTLEN characters)
AXT_MISSION_DESC	: constant string := "axt_missionDesc" ;

-- Mission identifier (APT_TEXTLEN characters)
AXT_MISSION_ID	: constant string := "axt_missionID" ;

-- Owner of Mission (APT_NAMELEN characters)
AXT_MISSION_PLANNER	: constant string := "axt_missionPlanner" ;

-- Op Area where mission resides (APT_TEXTLEN characters)
AXT_MISSION_OP_AREA	: constant string := "axt_missionOpArea" ;

Access to this data occurs through use of the uzt_setArgs and uzt_getValues functions.
EXAMPLE:
with SYSTEM;
with ST_SYSDEFS;

STATUS	:= ST_SYSDEFS.ST_STATUS;

.
.
.

STATUS := AIT_REGISTERMPMFILEFUNCS (MPMNOD’ADDRESS, MPMSAVE’ADDRESS, MPMIMPEXP’ADDRESS);

where MPMNOD is the MPM function name for the New/Open/Delete callback,�MPMSAVE is the MPM function name for the Save/Save As callback, and�MPMIMPEXP is the MPM function name for the Import/Export callback.
SUPPORTING INFORMATION:
The following constants equate to the "C" APT_FILE_OPERATION enum typedef:

APT_NO_FILE_OP	: constant := 0 ;
APT_NEW	: constant := 1 ;
APT_OPEN 	: constant := 2 ;
APT_DELETE 	: constant := 3 ;
APT_SAVE 	: constant := 4 ;
APT_SAVE_AS 	: constant := 5 ;
APT_AUTOSAVE 	: constant := 6 ;
APT_EXPORT 	: constant := 7 ;
APT_IMPORT 	: constant := 8 ;

�
FUNCTION: � tc " AIT_REGISTERMPMGRAPHICSCLEANUP" \l 3 �AIT_REGISTERMPMGRAPHICSCLEANUP�IFA16181��CALLING SEQUENCE:
AIT_REGISTERMPMGRAPHICSCLEANUP(MPM_FUNC'ADDRESS)
PARAMETERS:
Name	I/O	Type	Description
MPM_FUNC	I	SYSTEM.ADDRESS	Address of function that will be called when the MPM is finished with the graphics and wants to clean up after itself. (See Description below for parameters.)
DESCRIPTION:
This function registers with Core the MPM function that will get called when a mission is closed. The MPM can use this function to do any necessary cleanup when a mission is closed. Typically, it will clear the graphics associated with the mission and free the allocated memory. Note: the cleanup function is required to accept one (1) parameter: APT_MSNPLN_T *

The FUNC_PTR parameter is a pointer to an MPM function with the following parameters. (Note: parameter names will be assigned by the MPM.)

Name	I/O	Type	Description
MSN_PLN	I 	APT_MSNPLN_T_PTR 	-
"RETURN" 	O 	int 	Return value.
EXAMPLE:
with SYSTEM ;

AIT_REGISTERMPMGRAPHICSCLEANUP(MPM_FUNC'ADDRESS);

(where MPM_FUNC is a MPM- specific function)

�
FUNCTION: � tc " AIT_REGISTERMPMOFPS" \l 3 �AIT_REGISTERMPMOFPS�IFA16187��CALLING SEQUENCE:
AIT_REGISTERMPMOFPS(OFPS, NUM)
PARAMETERS:
Name	I/O	Type	Description
OFPS	I	SYSTEM.ADDRESS	Array of OFPs.
NUM	I	SHORT_INTEGER	Number of OFPs.
DESCRIPTION:
This function is called by an MPM to register its supported OFPs.
EXAMPLE:
with SYSTEM ;
with UNSIGNED ;

OFPS	: SYSTEM.ADDRESS;
NUM	: UNSIGNED.SHORT_INTEGER;

AIT_REGISTERMPMOFPS(OFPS,
			NUM) ;

�
function: � tc " AIT_REGISTERMPMOPTIMUMCRUISE" \l 3 �AIT_REGISTERMPMOPTIMUMCRUISE�IFA16176��CALLING SEQUENCE:
AIT_REGISTERMPMOPTIMUMCRUISE (OPTIMUMCRUISEALTITUDE'ADDRESS)
PARAMETERS:
Name	I/O	Type	Description
OPTIMUMCRUISEALTITUDE	I	SYSTEM.ADDRESS	Address of MPM optimum cruise altitude and speed. (See Description below for parameters.)
DESCRIPTION:
This function is called by each MPM for retrieving the optimum cruise altitude and speed.

The OPTIMUMCRUISEALTITUDE parameter is a pointer to an MPM function with the following parameters. (Note: parameter names will be assigned by the MPM.)

Name	I/O	Type	Description
PACTION 	I	APT_ACTION_POINT_T_PTR 	Current action point .
ALTITUDE 	O	FLOAT_PTR 	Optimum cruise altitude.
SPEED 	O	FLOAT_PTR	Optimum cruise speed.
"RETURN" 	O 	ST_STATUS 	Return value.
EXAMPLE:
AIT_REGISTERMPMOPTIMUMCRUISE(OPTIMUMCRUISEALTITUDE'ADDRESS) ;

(where OPTIMUMCRUISEALTITUDE is the MPM’s function for computing optimum cruise altitude)�
function: � tc " AIT_REGISTERMPMSPECIFICDATA" \l 3 �AIT_REGISTERMPMSPECIFICDATA�IFA16185��CALLING SEQUENCE:
AIT_REGISTERMPMSPECIFICDATA(MPM_DATA)
PARAMETERS:
Name 	I/O	Type	Description
MPM_DATA	I	APT_MPM_DATA_T_PTR	MPM-defined structure of function pointers that define the Core-MPM interface for MPM-specific data.
DESCRIPTION:
This function takes a pointer to a structure that the MPM would fill in with its required set of callback functions and registers this pointer to a structure of functions with the Core structure of MPM function pointers (APT_MPM_SPEC_FUNCS_T).
EXAMPLE:
with APT_ROUTE;

MPM_DATA	: APT_ROUTE.APT_MPM_DATA_T_PTR;

AIT_REGISTERMPMSPECIFICDATA(MPM_DATA);
�
FUNCTION: � tc " AIT_REGISTERMPMVALIDATION" \l 3 �AIT_REGISTERMPMVALIDATION�IFA16093��CALLING SEQUENCE:
AIT_REGISTERMPMVALIDATION(MPM_FUNC'ADDRESS)
PARAMETERS:
Name	I/O	Type	Description
MPM_FUNC	I	ADDRESS	Address of MPM function to validate route. (See Description below for parameters.)
DESCRIPTION:
This function is called by the MPM to register the validation function for a route. The Core will then use this registered function to validate the route.

The FUNC_PTR parameter is a pointer to an MPM function with the following parameters. (Note: parameter names will be assigned by the MPM.)

Name	I/O	Type	Description
PROUTE	 I	LIST_PTR	Pointer to the route list.
CURRACTION	 I	SHORT_INTEGER	Current active action point.
"RETURN"	O 	INTEGER	Return value.
EXAMPLE:
with AIT;
use AIT;

AIT_REGISTERMPMVALIDATION(MPM_FUNC'ADDRESS);

(where FUNC_PTR is the name of the MPM function)
�
function: � tc " AIT_SETMAXACTPT" \l 3 �AIT_SETMAXACTPT�IFa16102��CALLING SEQUENCE:
STATUS := AIT_SETMAXACTPT (MAX_ACT_PT_FROM_MPM)
PARAMETERS:
Name	I/O	Type	Description
MAX_ACT_PT_FROM_MPM	I	INTEGER	Maximum number of action points allowed.
"RETURN"	O	ST_STATUS	Returned status of setting action point maximum.
DESCRIPTION:
This function allows an MPM to set the maximum allowable action points in a route. This number must be greater than two (2) and less than the maximum size of 9999. An error status of ST_FAILURE will be returned for a maximum specification outside of the defined bounds.
If this function is not called by an MPM, then the Core will use the default of 50 action points as the maximum value.
EXAMPLE:
with ST_SYSDEFS ;

MAX_ACT_PT_FROM_MPM	: INTEGER ;
STATUS	: ST_SYSDEFS.ST_STATUS;

STATUS := AIT_SETMAXACTPT(MAX_ACT_PT_FROM_MPM) ;
�
FUNCTION: � tc " AIT_SETVEHICLENAME" \l 3 �AIT_SETVEHICLENAME�IFA16088��CALLING SEQUENCE:
AIT_SETVEHICLENAME(VEHICLENAME, MPMDIRREF, MPMTYPE)
PARAMETERS:
Name	I/O	Type	Description
VEHICLENAME	I	ADDRESS	Vehicle name.
MPMDIRREF	I	ADDRESS	Directory reference for MPM data area.
MPMTYPE	I	INTEGER	Type of MPM (aircraft/weapon).
DESCRIPTION:
This function sets the static variables MISSION_PLANNING_NAME, MISSION_PLANNING_DIRREF and PLATFORMTYPE with the values passed in by the main MPM calling module.
EXAMPLE:
with AIT;
use AIT;

VEHICLENAME : ADDRESS;
MPMDIRREF : ADDRESS;
MPMTYPE : INTEGER;

AIT_SETVEHICLENAME(VEHICLENAME, MPMDIRREF, MPMTYPE);

�
function: � tc " AIT_SETVEHICLEVARIANT" \l 3 �AIT_SETVEHICLEVARIANT�IFA16109��CALLING SEQUENCE:
STATUS := AIT_SETVEHICLEVARIANT(VEHICLE_VARIANTNAME'ADDRESS)
PARAMETERS:
Name	I/O	Type	Description
VEHICLE_VARIANTNAME	I	SYSTEM.ADDRESS	Vehicle Variant name.
"RETURN"	O	ST_STATUS	Function return status.
DESCRIPTION:
This function sets the vehicle variant name when called by the MPM. To retrieve the variant name, use the AIT_GETVEHICLEVARIANT function. The VEHICLEVARIANT is used by the Core products software to put this information into kneeboard cards, Load and Drop reports, and platform performance reports.
EXAMPLE:
with ST_SYSDEFS ;

VEHICLE_VARIANTNAME	: STRING(1..X);
STATUS 	: ST_SYSDEFS.ST_STATUS;

STATUS := AIT_SETVEHICLEVARIANT(VEHICLE_VARIANTNAME'ADDRESS);
�
FUNCTION: � tc " AIT_UPDATEDEFAULTMMI" \l 3 �AIT_UPDATEDEFAULTMMI�IFA16196��CALLING SEQUENCE:
STATUS := AIT_UPDATEDEFAULTMMI(PACDEFS)
Parameters:
Name	I/O	Type	Description
PACDEFS	I	APT_AIRCRAFT_T_PTR	Pointer to the APT_AIRCRAFT_T record. This record will contain the new data to be displayed in the Aircraft Default HMI and stored in the current mission’s APT_AIRCRAFT_T record.
STATUS	O	ST_STATUS	Return Pass or Fail.
Description:
This function will update the internal APT_AIRCRAFT_T data record with the data found in the input parameter “pACdef.” The “Aircraft Defaults” dialog may, or may not, be managed at the time this function is invoked. If the “Aircraft Defaults” dialog is managed, it will also be updated with the same data written to the record. Populating the input parameter “pACdef” is typically accomplished by calling adt_ReadDefaultData.
EXAMPLE:
with SYSTEM;
with ART_STRUCTS;
with ST_SYSDEFS;
with ULT_STRUCTS;
with UNSIGNED;
with APT_ROUTE;

PACDEFS	: APT_ROUTE.APT_AIRCRAFT_T_PTR;
STATUS		: ST_SYSDEFS.ST_STATUS;

STATUS	:= AIT_UPDATEDEFAULTMMI(PACDEFS);

�
FUNCTION: � tc " ait_validateRoute " \l 3 �ait_validateRoute�IFA16238��CALLING SEQUENCE:
status := ait_validateRoute
PARAMETERS:
Name	I/O	Type	Description
status	O	ST_STATUS	ST_SUCCESS if route validates,
			ST_FAILURE otherwise.
DESCRIPTION:
This function will attempt to validate the active route. If there is an active route which successfully validates, or when called from a new mission function and there is no route to validate, the function will return ST_SUCCESS. When the route fails to validate, a status of ST_FAILURE will be returned.

Whenever the aircraft variant is selected, the MPM must invoke adt_ReadDefaultData, otherwise the route validation will operate against the last known data in the APT_AIRCRAFT_T data structure.
EXAMPLE:
with SYSTEM;
with ST_SYSDEFS;

STATUS	: ST_SYSDEFS.ST_STATUS;
.
.
.
STATUS := AIT_VALIDATEROUTE;

�

This page intentionally left blank.
Document No. 160008-IDD-6.1 - April 1997

G.1.7-� PAGE �35�

