Prologue



Rules

Successful manipulation of the MS-DOS file system via the following API will require adherence to a few rules.  

PC-Card access must be serialized for all operations which will modify media contents and as a general rule should be serial for all file system accesses.  Some functions will exclusively allocate the medium (i.e. upl_Format and upl_ScrubCard), while upl_Write and upl_Remove will block others from concurrent write operations only.  Any operations that read from the media (e.g., upl_ListFiles, upl_CardIn) will not reflect the current state of the file system until any write operation completes.

Operation

The medium must not be removed from the device while it is performing any I/O operations.  If the medium is removed while logically “opened,” the next attempted operation will report an error to the caller.  If the medium is removed while “open,” the file system will be left in an unknown state.

Status

The status of each operation should be judiciously monitored by checking the completion code of each function call.  The 32-bit status values returned from these functions are composed of two (2) segments.  The lower 16-bits will contain “upl”-specific codes which are defined in upl_defines.a.  The upper 16-bits will be SunOS 5.5 “errno” values as described in errno.a.  Any non-zero value returned will indicate an abnormal condition.

Configuration

Physical device slot to drive designation mapping may be determined by consulting the system configuration file STATIC_DATA/tamps/static/data/defaults/uplmap.tab.  

Note

The current implementation supports 16-bit File Allocation Tables (FATs) only.  This means that any card less than 32 MB in capacity cannot be interchanged with MS-DOS/Windows 3.1, Windows 95 or MacOS.  However, PC-Cards of 32 MB or greater capacity are interoperable.

�

function:   �TC "UPL_CARDINFO" \L 3�UPL_CARDINFO�IFA15181��Calling Sequence:

ISTATUS := UPL_CARDINFO( PDRIVE, PCARDINFO) 

Parameters:

Name	I/O	Type	Description

PDRIVE	I	SYSTEM.ADDRESS	A NULL-terminated string that specifies thea drive designation.  The drive specified must correspond to a valid PC-card device (see Prologue).  This argument will accept the drive designator character with, or without the ":" (colon) delimiter.

PCARDINFO	I	UPL_STRUCTS.UPL_	The address of a card information

		CARDINFO_T_PTR	data structure.

ISTATUS	O	BASE_TYPES.	Function return status.

		INT_32_TYPE	

Description:

Purpose.  This function will provide MPMs and Core Extensions with a means of determining an MS�DOS partition’s total formatted capacity, amount of free space available, number of free and failed clusters, serial number and volume label from an ATA memory card. 

The members of the upl_CardInfo_t data structure are listed below:

iCapacity	Size of entire Files Area, in bytes.

iFree	Quantity still free on medium, in bytes.

iTotalClusters	Total number of clusters in Files Area.

iBadClusters	Number of clusters marked as failed.

lSerial	The volume serial number.

cLabel	The Volume Label, a NULL-terminated string.



This function will verify that the drive designator specified maps to a valid PC-card device, and open the designated valid PC-card device.  If an invalid drive designation is passed or if an error occurs, an error status will be returned.

This function will read the FAT table from the PC-card medium.  This function will calculate the amount of space free and the amount of space used on the PC-card device; place the values into a structure passed by the user of the function; close the PC-card device; and return status to the user upon completion of the function.

Limitations.  This function works only with a valid formatted PC-card device.  This function works with unallocated media only.  A drive designator must correspond to a valid PC-card slot.

Example:

with  SYSTEM;

with  UPL_STRUCTS;

with  BASE_TYPES;

with  UPL;



PDRIVE		: STRING (1 . . 3);

PCARDINFO	: UPL_STRUCTS.UPL_CARDINFO_T_PTR;

ISTATUS		: BASE_TYPES.INT_32_TYPE;



ISTATUS := UPL_CARDINFO (PDRIVE, PCARDINFO);







�

function:   �TC "UPL_CLOSE" \L 3�UPL_CLOSE�IFA15182��Calling Sequence:

ISTATUS := UPL_CLOSE(FD) 

Parameters:

Name	I/O	Type	Description

FD	I	UPL_STRUCTS.UPL_	Pointer to a valid file control

		FILE_T_PTR	structure.

ISTATUS	O	BASE_TYPES.INT_	Function return status.

		32_TYPE	

Description:

Purpose.  This function provides MPMs and Core Extensions with a method of closing a previously opened MS�DOS file on an ATA memory card.

This function will verify that the contents of the file control structure passed are valid, update the memory images of the FATs and directory structures, and write copies of the FATs and directory structures to the PC-card device.  If the write fails, a status flag will be set; otherwise, the status flag will be set to success.  Any allocated memory held by the file control structures will be freed, and the value of the status flag will be returned.

Limitations.  This function works only with valid file control structures returned from the upl_Open function.

Example:

with  BASE_TYPES;

with  UPL_STRUCTS;

with  UPL;



FD	: UPL_STRUCTS.UPL_FILE_T_PTR;

ISTATUS	: BASE_TYPES.INT_32_TYPE;



ISTATUS := UPL_CLOSE (FD);



�

function:   �TC "UPL_FORMAT" \L 3�UPL_FORMAT�IFA15183��Calling Sequence:

ISTATUS := UPL_FORMAT( PDRIVE, ISECTPERCLUSTER, IDIRENTRIES, IFLAGS, PCLABEL) 

Parameters:

Name	I/O	Type	Description

PDRIVE	I	SYSTEM.	A NULL-terminated string that specifies

		ADDRESS	a drive designation.  The drive specified must correspond to a valid PC-card device (see Prologue).

ISECTPERCLUSTER	I	BASE_TYPES.	The number of sectors per cluster that is

		INT_32_TYPE	to be used in the format.  Must be a power of two (2) between two (2) and 128.

IDIRENTRIES	I	BASE_TYPES.	The number of directory entries to create

		INT_32_TYPE	in the format.  Must be between 512 and 65535.

IFLAGS	I	BASE_TYPES.	Processing flags may be one (1) of the

		INT_32_TYPE	following: UPL_CONFIRMFMT or  UPL_NO_VERIFY, as defined in upl_defines.h.

PCLABEL	I	SYSTEM.	An 11-character null-terminated string

		ADDRESS	to be written into the volume label field of the boot record. May be a NULL stringzero (0) length.

iStatus	O	BASE_TYPES.	Function return status.

		INT_32_TYPE	

Description:

Purpose.  This function will provide MPMs and Core Extensions with a method of formatting an ATA memory card with an MS�DOS file system.  

This function will verify that the drive designator specified maps to a valid PC-card device, and that the sectors-per-cluster argument passed is valid for the PC-card device.  If an invalid drive designation is passed, or if an invalid value is passed, an error status will be returned.  This function will open the designated valid PC-card device, and if an error occurs, then return an error status.

This function will write a fixed pattern to all clusters, read the clusters, and compare with the pattern previously written.  If the pattern is not the same, the cluster will be marked as bad.  This function will write a new boot sector to the PC-card device, write a root directory to the device, write the FAT tables to the device, and close the PC-card device.  A good status will be returned to the user upon successful completion of the function.  If the medium contains a file system and is congruent with the new parameters specified, the failed cluster history from the previous format will be merged with the new format.  If the UPL_QUICKFMT constant is specified, cluster write/verify processing will be disabled.  Bypassing the cluster validation process will significantly decrease formatting duration, however, data integrity may be compromised.

Limitations.  This function works only with a valid PC-card device.  This function will create 16-bit FATs regardless of capacity.  A valid drive designator must be specified that maps to a PC-card drive.  The number of sectors per cluster must be a legal value for the capacity of the card being used in accordance with MS�DOS file system specifications.  The parameter ISECTPERCLUSTER must be a power of two (2), between two (2) and 128.  The parameter iDirEntries must be between 512 and 65535.

Example:

with  SYSTEM;

with  BASE_TYPES;

with  UPL;



PDRIVE	: STRING (1 . . 3);

ISECTPERCLUSTER	: BASE_TYPES.INT_32_TYPE;

IDIRENTRIES	: BASE_TYPES.INT_32_TYPE;

PCLABEL	: STRING(1 . . 12);

ISTATUS	: BASE_TYPES.INT_32_TYPE;



ISTATUS := UPL_FORMAT (PDRIVE’ADDRESS, ISECTPERCLUSTER, IDIRENTRIES, PCLABEL’ADDRESS);

�

function:   � tc " UPL_GETERRNO" \l 3 � UPL_GETERRNO�IFA15194��Calling Sequence:

ERRNO := UPL_GETERRNO (ISTATUS) 

Parameters:

Name	I/O	Type	Description

ISTATUS	I	BASE_TYPES.	The composite SunOS 5.5 “errno”

		INT_32_TYPE	value and “upl”-specific error code.

ERRNO	O	BASE_TYPES.	The SunOS 5.5 “errno” value.

		INT_32_TYPE

DESCRIPTION:

This function will extract the UNIX error number from the ISTATUS that is returned from the UPL_ functions.  ERRNO will be zero (0) when a UNIX error has not occurred.  This function corresponds to the C macro UPL_GETERRNO.

EXAMPLE:

with  upl;

with  upl_defines;

with  base_types;



ISTATUS	: BASE_TYPES.INT_32_TYPE;

ERRNO	: BASE_TYPES.INT_32_TYPE;



ERRNO := UPL_GETERRNO (ISTATUS);

�

function:   � tc " UPL_GETSTATUS" \l 3 � UPL_GETSTATUS�IFA15195��Calling Sequence:

Ustatus := UPL_GETSTATUS (ISTATUS) 

Parameters:

Name	I/O	Type	Description

ISTATUS	I	BASE_TYPES.	The composite SunOS 5.5 “errno” 

		INT_32_TYPE	value and “upl”-specific error code.

USTATUS	O	BASE_TYPES.	The “upl”-specific error code.

		INT_32_TYPE

DESCRIPTION:

This function will extract the UPL_STATUS from the ISTATUS that is returned from the UPL_ functions.  This function corresponds to the C macro UPL_GETSTATUS.

EXAMPLE:

with  upl;

with  upl_defines;

with  base_types;



ISTATUS	: BASE_TYPES.INT_32_TYPE;

USTATUS	: BASE_TYPES.INT_32_TYPE;



USTATUS := UPL_GETSTATUS (ISTATUS);

�

function:   �TC "UPL_LISTFILES" \L 3�UPL_LISTFILES�IFA15184��Calling Sequence:

ISTATUS := UPL_LISTFILES( PCPATH, PPLISTADDR, IFLAGS) 

Parameters:

Name	I/O	Type	Description

PCPATH	I	SYSTEM.	A NULL-terminated string that specifies a 

		ADDRESS	drive and optional filename.pointer to a valid drive.  Valid characters are those that conform with the MS-DOS file specifications for directory and filenames.  The use of wild cards will also be permitted in the spirit of MS-DOS functionality.

PPLISTADDR	I	UPL_STRUCTS.	The address of a pointer to a directory list.

		UPL_DIRLIST_

		T_PTR2

IFLAGS	I	BASE_TYPES.	A bitmask which may be used as a filter to

		INT_32_TYPE	retrieve files with specific attributes.  The following predefined macros from upl_defines.h may be OR'ed together to select files with those attributes.  The macros are UPL_ATTREG for regular files, or UPL_ATTHID to add hidden files.

ISTATUS	O	BASE_TYPES.	Function return status.

		INT_32_TYPE	

Description:

Purpose.  This function will provide MPMs and Core Extensions with a method of obtaining file information from an MS�DOS file structured ATA memory card.  

This function will build a linked list of directory entries that conform with the query; return a pointer to the first entry of the directory list; and return a search status.  If the file path in pcPath does not match any files in the root directory, ppListAddr will be set to NULL.  The last element of the linked list is marked with a NULL pNext element.

Each directory entry (upl_DirList_t) will consist of the following members:

sAttributes	File attributes as defined by MS-DOS.

sTime	Creation/Modification time in MS-DOS format.  

sDate	Creation/Modification date in MS-DOS format. 

iBytes	Size of file in bytes.

cExt	File extension, a NULL-terminated string.

cFile	The filename, a NULL-terminated string.



Limitations.  This function works only with valid PC-cards.  This function works with unallocated media only.  This function sets an address of dynamically allocated memory into a passed argument.  It is the user's responsibility to call the upl_ListFree function to free the allocated memory and avoid memory leaks.

Example:

with  SYSTEM;

with  UPL_STRUCTS;

with  BASE_TYPES;

with  UPL;



PCPATH	: SYSTEM.ADDRESS;

PPLISTADDR	: UPL_STRUCTS.UPL_DIRLIST_T_PTR2;

IFLAGS	: BASE_TYPES.INT_32_TYPE;

ISTATUS	: BASE_TYPES.INT_32_TYPE;



ISTATUS := UPL_LISTFILES (PCPATH, PPLISTADDR, IFLAGS);







�

function:   �TC "UPL_LISTFREE" \L 3�UPL_LISTFREE�IFA15185��Calling Sequence:

UPL_LISTFREE( PDRIVE) 

Parameters:

Name	I/O	Type	Description

PDRIVE	I	UPL_STRUCTS.	The address of a directory list head.

		UPL_DIRLIST_T_PTR

Description:

Purpose.  This function will provide MPMs and Core Extensions with a method of freeing the allocated memory used to obtain a listing of files held on an ATA memory card.

This function will verify that the address passed is non-NULL and free any allocated space held in the list of directory entries.  This function must be called after any successful calls to upl_ListFiles to prevent memory leaks.  

Limitations.  This function works only with a list created by the upl_ListFiles function.

Example:

with  UPL_STRUCTS;

with  BASE_TYPES;



PDRIVE	: UPL_STRUCTS.UPL_DIRLIST_T_PTR;



UPL_LISTFREE (PDRIVE);

�

function:   �TC "UPL_OPEN" \L 3�UPL_OPEN�IFA15186��Calling Sequence:

FD := UPL_OPEN( PCFILENAME, PACCESS, PSTATUS) 

Parameters:

Name	I/O	Type	Description

PCFILENAME	I	SYSTEM.	A NULL-terminated string that specifies

		ADDRESS	a complete file specification.  A file specification consists of a single letter, colon and back slash (i.e., c:\, C:\, d:\, or D:\), a filename of eight (8) characters or less, an optional period and an optional three (3)-character extension.  If the extension is supplied, it must be preceded by a period.  Filename parsing will not be case sensitive.  A valid filename example would be: “c:\filename.ext”.

PACCESS	I	SYSTEM.	A NULL-terminated string that specifies

		ADDRESS	the type of access desired on the file.  The allowable access characters are:  “r” (read), “w” (write) and “a” (append).  The “w” and “a” access designators imply “r” as well.  All file access will be binary, meaning no translation of escape sequences will be performed.

PSTATUS	O	BASE_TYPES.	A pointer to a status variable for returning

		INT_32_PTR	function execution status to the calling application.

FD	O	UPL_STRUCTS.	A pointer to the file control structure is or

		UPL_FILE_T_PTR	a NULL is returned indicating failure.

Description:

Purpose.  This function will provide MPMs and Core Extensions with a method of opening an MS�DOS file on an ATA memory card.  

This function will verify that the filename passed contains a valid drive designator, that the PC-card slot associated with the drive designator is valid, and that the access flags specified are valid for the designated file and PC-card slot.  This function will then open the PC-card that the file is on, or will be created on; read the directory and FAT tables from the device; and check to see if the file exists.  If the file does not exist, a new file control structure will be created, depending upon the type of access specified.  If the file does exist, the file control structure will be created describing the file.  A pointer to the file control structure will be returned to the caller indicating success, or NULL will be returned indicating failure.

Limitations.  This function opens PC-card based files on MS-DOS file systems only.  This function opens the file for access without translation of escape sequences.  PC-card access is single threaded only, meaning file access must be sequential.

Example:

with  SYSTEM;

with  BASE_TYPES;

with  UPL_STRUCTS;

with  UPL;



PCFILENAME	: STRING (1 . . 16);

PACCESS		: STRING (1 . . 2);

PSTATUS		: BASE_TYPES.INT_32_PTR;

FD			: UPL_STRUCTS.UPL_FILE_T_PTR;



FD := UPL_OPEN(PCFILENAME’ADDRESS, PACCESS’ADDRESS, PSTATUS);



�

function:   �TC "UPL_READ" \L 3�UPL_READ�IFA15187��Calling Sequence:

ISTATUS := UPL_READ(FD, PBUFFER, IBYTES) 

Parameters:

Name	I/O	Type	Description

FD	I	UPL_STRUCTS.	Pointer to a valid file control structure.

		UPL_FILE_T_PTR	

PBUFFER	I	SYSTEM.	The address of a buffer to receive the 

		ADDRESS	data read from the opened file.

IBYTES	I	BASE_TYPES.	The number of bytes to transfer from 

		INT_32_TYPE	the file on the PC-card device to pvBuffer.  Negative values are invalid.

ISTATUS	O	BASE_TYPES.	Function return status.

		INT_32_TYPE	

Description:

Purpose.  This function will provide MPMs and Core Extensions with a method of transferring data from a MS-DOS file on an ATA memory card to the caller’s buffer in memory.

This function will verify that the contents of the file control structure passed are valid, and that the number of bytes to be read is valid for the file being accessed.  If an invalid control structure is passed, or an invalid value is stated for the number of bytes, an error status will be returned.  This function will compute the number of clusters to be read; determine the starting cluster address, using the current file position and the FAT; and transfer data from the file.  If data cannot be transferred, an error status will be returned.  This function will update the file logical pointer to point at the next byte following the last byte transferred, and copy data from the internal cache to the user buffer.  This function will return status to the user upon completion of the function.

Limitations.  This function works only with valid file control structures returned from the upl_Open function.  This function cannot read past the EOF, and does not support negative values for the iBytes argument.

Example:

with  UPL_STRUCTS

with  SYSTEM;

with  BASE_TYPES;

with  UPL;



FD	: UPL_STRUCTS.UPL_FILE_T_PTR;

PBUFFER	: SYSTEM.ADDRESS;

IBYTES	: BASE_TYPES.INT_32_TYPE;

ISTATUS	: BASE_TYPES.INT_32_TYPE;



ISTATUS := UPL_READ (FD, PBUFFER, IBYTES);



�

function:   �TC "UPL_REMOVE" \L 3�UPL_REMOVE�IFA15188��Calling Sequence:

ISTATUS := UPL_REMOVE( PCPATH, IFLAG) 

Parameters:

Name	I/O	Type	Description

PCPATH	I	SYSTEM.	A NULL-terminated string that specifies a

		ADDRESS	complete file specification.  A file specification consists of a single letter drive designator (see Prologue), a filename of eight (8) characters or less, an optional period, and an optional three (3)-character extension.  If the extension is supplied, it must be preceded by a period.  An example would be:  “c:\filename.ext”.  This function will also support wildcards in the spirit of the MS-DOS filename specification.  Valid characters for file systems, filenames and file extensions are in accordance with MS-DOS filename specifications.

IFLAG	I	BASE_TYPES.	Optional processing indicator.  (Current

		INT_32_TYPE	implementation supports the UPL DECLASSIFY constant.)

ISTATUS	O	BASE_TYPES.	Function return status.

		INT_32_TYPE	

Description:

Purpose.  This function will provide MPMs and Core Extensions with a method of removing a file (or group of files) from the root directory of an MS�DOS-formatted ATA memory card.  Callers can optionally direct all clusters occupied to be declassified.

This function will verify that the filename passed contains a valid drive designator, verify that the PC-card associated with the drive designator is valid, and open that PC-card device.  If an error occurs, an error status will be returned.  

This function will read the directory and FAT Table from the PC-card device, and search the directory table for the file specified.  If unable to remove, or if the file is not found, then an error status will be returned.  

This function will modify the directory and FAT to remove the file, write the directory and FAT to the PC-card device, and close the PC-card device.  If unable to write, an error status will be returned.  A good status will be returned to the user upon successful completion of the function.

Limitations.  This function works only with a valid PC-card device.  This function works with unallocated media only.  A valid drive designator must be specified that maps to a PC-Card drive.  This function will remove files from the selected media’s root directory only.

Example:

with  SYSTEM;

with  BASE_TYPES;

with  UPL;

	 

PCPATH	: STRING (1 . . 16);

IFLAG	: BASE_TYPES.INT_32_TYPE;

ISTATUS	: BASE_TYPES.INT_32_TYPE;



ISTATUS := UPL_REMOVE (PCPATH’ADDRESS, IFLAG);



�

function:   �TC "UPL_SCRUBCARD" \L 3�UPL_SCRUBCARD�IFA15189��Calling Sequence:

ISTATUS := UPL_SCRUBCARD(PDRIVE) 

Parameters:

Name	I/O	Type	Description

PDRIVE	I	SYSTEM.	A NULL-terminated string that

		ADDRESS	specifies a drive designation (see Prologue). 

ISTATUS	O	BASE_TYPES.	Function return status.

		INT_32_TYPE	

Description:

Purpose.  This function will provide MPMs and Core Extensions with a method of declassifying an ATA memory card. 

This function will verify that the drive designator specified maps to a valid PC-card device, and open the designated valid PC-card device.  If an invalid drive designation is passed, or if an error occurs, an error status will be returned.

This function will write a pseudo�random pattern to all the blocks on the device, and read and verify that the pattern exists in all blocks.  If the pattern does not match that written, the device will be closed, and an error status will be returned to the user.

This function will write another pseudo�random pattern to all the blocks on the device again, and read and verify that the pattern exists in all blocks.  If the pattern does not match that written, the device will be closed and an error status will be returned to the user.

This function will write the complement of the second pseudo�random pattern to all the blocks on the device, and read and verify that the pattern exists in all blocks.  If the pattern does not match that written, the device will be closed, and an error status will be returned to the user.

This function will close the PC-card device, and return a good status to the user upon successful completion of the function.

Invocation of this function will completely destroy any existing file system.  All files will be irrecoverably overwritten upon successful completion.  Future use of the medium will require that a new file system be installed via UPL_FORMAT().

Limitations.  This function works only with a valid PC-card device.  This function works with unallocated media only.  A valid drive designator must be specified that maps to a PC-card drive.  True declassification will potentially fail if the card invokes wear-leveling or sector-remapping logic.

Example:

with  SYSTEM;

with  BASE_TYPES;

with  UPL;



PDRIVE	: STRING (1 . . 3);

ISTATUS	: BASE_TYPES.INT_32_TYPE;



ISTATUS := UPL_SCRUBCARD (PDRIVE’ADDRESS);

�

function:   �TC "UPL_SEEK" \L 3�UPL_SEEK�IFA15190��Calling Sequence:

ISTATUS := UPL_SEEK( FD, IOFFSET) 

Parameters:

Name	I/O	Type	Description

FD	I	UPL_STRUCTS.	Pointer to a valid file control structure.

		UPL_FILE_T_PTR	

IOFFSET	I	BASE_TYPES.	The byte, relative to the beginning of

		INT_32_TYPE	the file, to which the logical file pointer will be set.

ISTATUS	O	BASE_TYPES.	Function return status.

		INT_32_TYPE	

Description:

Purpose.  This function will provide MPMs and Core Extensions with a method of positioning to a byte location within an MS�DOS file on an ATA memory card.

This function will verify that the contents of the file control structure passed are valid, and that the offset passed is valid for the file being accessed.  If an invalid control structure is passed, or if an invalid offset is passed, an error status will be returned.  If an invalid offset is requested, the logical file pointer will remain unchanged.  If successful, this function will update the logical file pointer for the file, and return status to the user.

Limitations.  This function works only with valid file control structures returned from the upl_Open function.  This function cannot seek to a location past the end of file (EOF).  This function does not support offsets of negative values.

Example:

with  UPL_STRUCTS;

with  BASE_TYPES;

with  UPL;



FD	: UPL_STRUCTS.UPL_FILE_T_PTR;

IOFFSET	: BASE_TYPES.INT_32_TYPE;

ISTATUS	: BASE_TYPES.INT_32_TYPE;



ISTATUS := UPL_SEEK (FD, IOFFSET);



�

function:   �TC "UPL_WRITE" \L 3�UPL_WRITE�IFA15191��Calling Sequence:

ISTATUS := UPL_WRITE( FD, PBUFFER, IBYTES) 

Parameters:

Name	I/O	Type	Description

FD	I	UPL_STRUCTS.	Pointer to a valid file control structure.

		UPL_FILE_T_PTR	

PBUFFER	I	SYSTEM.ADDRESS	The address of a buffer where data will be taken from and transferred to the PC-card device.

IBYTES	I	BASE_TYPES.	The number of bytes to transfer to the

		INT_32_TYPE	opened file on the PC-card device from pvBuffer.  The value in this argument cannot be a negative value.

ISTATUS	O	BASE_TYPES.	Function return status.

		INT_32_TYPE	

Description:

Purpose.  This function will provide MPMs and Core Extensions with a method of transferring data to an MS�DOS file on an ATA memory card.

This function will verify that the contents of the file control structure passed are valid; determine if the file has been opened for write or append access; and verify that the number of bytes to be written is valid.  If an invalid value is stated for the number of bytes, an error status will be returned.  

This function will compute the starting cluster address, compute the number of clusters needed, and allocate those clusters; copy the data that was passed into an internal cache; copy data from the internal cache to the PC-card device; update the file logical pointer to the next byte following the last byte written; and return status to the user.

Limitations.  This function works only with valid file control structures returned from the upl_Open function.  This function cannot write past the capacity of the PC-card device, and does not support negative values for the iBytes argument.  PC-card  access is single threaded only, meaning file access must be sequential.



Example:

with  UPL_STRUCTS;

with  SYSTEM;

with  BASE_TYPES;

with  UPL;



FD	: UPL_STRUCTS.UPL_FILE_T_PTR;

PBUFFER	: SYSTEM.ADDRESS;

IBYTES	: BASE_TYPES.INT_32_TYPE;

ISTATUS	: BASE_TYPES.INT_32_TYPE;



ISTATUS := UPL_WRITE (FD, PBUFFER, IBYTES);

Document No.  160008-IDD-6.1 - April 1997



(G.15)		183_E_2;12/5/97








