Prologue

Rules
Successful manipulation of the MS-DOS file system via the following API will require adherence to a few rules.
PC-Card access must be serialized for all operations which will modify media contents and as a general rule should be serial for all file system accesses. Some functions will exclusively allocate the medium (i.e. upl_Format and upl_ScrubCard), while upl_Write and upl_Remove will block others from concurrent write operations only. Any operations that read from the media (e.g., upl_ListFiles, upl_CardIn) will not reflect the current state of the file system until any write operation completes.
Operation
The medium must not be removed from the device while it is performing any I/O operations. If the medium is removed while logically “opened,” the next attempted operation will report an error to the caller. If the medium is removed while “open,” the file system will be left in an unknown state.
Status
The status of each operation should be judiciously monitored by checking the completion code of each function call. The 32-bit status values returned from these functions are composed of two (2) segments. The lower 16-bits will contain “upl”-specific codes which are defined in upl_defines.h. The upper 16-bits will be SunOS 5.5 “errno” values as described in errno.h. Any non-zero value returned will indicate an abnormal condition.
Configuration
Physical device slot to drive designation mapping may be determined by consulting the system configuration file /tamps/static/data/defaults/uplmap.tab.
Note
The current implementation supports 16-bit File Allocation Tables (FATs) only. This means that any card less than 32 MB in capacity cannot be interchanged with MS-DOS/Windows 3.1, Windows 95 or MacOS. However, PC-Cards of 32 MB or greater capacity are interoperable.
�
function: �tc "upl_CardInfo" \l 3�upl_CardInfo�IFA8180��Calling Sequence:
iStatus = upl_CardInfo(pcDrive, paCardInfo)
Parameters:
Name	I/O	Type	Description
pcDrive	I	char *	A NULL-terminated string that specifies a drive designation. The drive specified must correspond to a valid PC-card device. This argument will accept the drive designator character with, or without the ":" (colon) delimiter.
paCardInfo	I	upl_CardInfo_t *	The address of a card information data structure.
iStatus	O	int	Function return status.
Description:
Purpose. This function will provide MPMs and Core Extensions with a means of determining an MS�DOS partition’s total formatted capacity, amount of free space available, number of free and failed clusters, serial number and volume label from an ATA memory card.
The members of the upl_CardInfo_t data structure are listed below:
iCapacity	Size of entire Files Area, in bytes.
iFree	Quantity still free on medium, in bytes.
iTotalClusters	Total number of clusters in Files Area.
iBadClusters	Number of clusters marked as failed.
lSerial	The volume serial number.
cLabel	The Volume Label, a NULL-terminated string.
This function will verify that the drive designator specified maps to a valid PC-card device, and open the designated valid PC-card device. If an invalid drive designation is passed or if an error occurs, an error status will be returned.
This function will read the FAT table from the PC-card medium. This function will calculate the amount of space free and the amount of space used on the PC-card device; place the values into a structure passed by the user of the function; close the PC-card device; and return status to the user upon completion of the function.
Limitations. This function works only with a valid formatted PC-card device. This function works with unallocated media only. A drive designator must correspond to a valid PC-card slot.
Example:
#include "util/upl_defines.h"
#include "util/upl_structs.h"
#include "util/upl_proto.h"
.
.
.
int	iStatus;
float	fPerCentFull;
float	fPerCentLeft;
upl_CardInfo_t 	aInfo;

if(UPL_ISSUCC((iStatus = upl_CardInfo("c", &aInfo))))
{
 fPerCentFull = (float)aInfo.iFree / (float)aInfo.iCapacity;
 fPerCentLeft = 100.00 - (fPerCentFull * 100.00);

 (void)printf(" Kilobytes Clusters Volume\n");
 (void)printf(" Drive Total Used Capacity Total Failed Label\n");
 (void)printf(" %c: %8d%8d %8.0f%% %6d %6d \"%s\"\n\n",
	 	 pcDrive,
	 	 aInfo.iCapacity / 1024,
	 	 (aInfo.iCapacity - aInfo.iFree) / 1024,
	 	 fPerCentLeft,
	 	 aInfo.iTotalClusters,
	 	 aInfo.iBadClusters,
	 	 aInfo.cLabel);
}

�
function: �tc "upl_Close" \l 3�upl_Close�IFA8181��Calling Sequence:
iStatus = upl_Close(fd)
Parameters:
Name	I/O	Type	Description
fd	I	upl_File_t *	Pointer to a valid file control structure.
iStatus	O	int	Function return status.
Description:
Purpose. This function provides MPMs and Core Extensions with a method of closing a previously opened MS�DOS file on an ATA memory card.
This function will verify that the contents of the file control structure passed are valid, update the memory images of the FATs and directory structures, and write copies of the FATs and directory structures to the PC-card device. If the write fails, a status flag will be set; otherwise, the status flag will be set to success. Any allocated memory held by the file control structures will be freed, and the value of the status flag will be returned.
Limitations. This function works only with valid file control structures returned from the upl_Open function.
Example:
#include "util/upl_defines.h"
#include "util/upl_structs.h"
#include "util/upl_proto.h"
.
.
.
int	iStatus;
upl_File_t	*paFD;

if(!(paFD = upl_Open(“c:\\example.dat”, “w”, &iStatus)))
{
 (void)fprintf(stderr, “upl_Open() failed, iStatus = %d\n”, iStatus);
}

iStatus = upl_Close(paFD);
printf(“upl_Close(): iStatus = %d\n”, iStatus);

�
function: �tc "upl_Format" \l 3�upl_Format�IFA8182��Calling Sequence:
iStatus = upl_Format(pcDrive, iSectPerCluster, iDirEntries, pcLabel)
Parameters:
Name	I/O	Type	Description
pcDrive	I	char *	A NULL-terminated string that specifies a drive designation. The drive specified must correspond to a valid PC-card device.
iSectPerCluster	I	int	The number of sectors per cluster that is to be used in the format. Must be a power of two (2) between two (2) and 128.
iDirEntries	I	int	The number of directory entries to create in the format. Must be between 512 and 65535.
pcLabel	I	char*	An 11-character null-terminated string to be written into the volume label field of the boot record. May be zero (0) length.
iStatus	O	int	Function return status.
Description:
Purpose. This function will provide MPMs and Core Extensions with a method of formatting an ATA memory card with an MS�DOS file system.
This function will verify that the drive designator specified maps to a valid PC-card device, and that the sectors-per-cluster argument passed is valid for the PC-card device. If an invalid drive designation is passed, or if an invalid value is passed, an error status will be returned. This function will open the designated valid PC-card device, and if an error occurs, then return an error status.
This function will write a fixed pattern to all clusters, read the clusters, and compare with the pattern previously written. If the pattern is not the same, the cluster will be marked as bad. This function will write a new boot sector to the PC-card device, write a root directory to the device, write the FAT tables to the device, and close the PC-card device. A good status will be returned to the user upon successful completion of the function. If the medium contains a file system and is congruent with the new parameters specified, the failed cluster history from the previous format will be merged with the new format.
Limitations. This function works only with a valid PC-card device. This function will create 16-bit FATs regardless of capacity. A valid drive designator must be specified that maps to a PC-card drive. The number of sectors per cluster must be a legal value for the capacity of the card being used in accordance with MS�DOS file system specifications. The parameter iSectPerCluster must be a power of two (2), between two (2) and 128. The parameter iDirEntries must be between 512 and 65535.
Example:
#include "util/upl_defines.h"
#include "util/upl_structs.h"
#include "util/upl_proto.h"
.
.
.
int	iStatus, iSPC, iNFiles;
char	*pcDrive;

pcDrive	= “c:”;
iSPC	= 8;
iNFiles 	= 512;

iStatus = upl_Format(pcDrive, iSPC, iNFiles, "");

printf(" %#07x) \"%s\"\t%d\t%d\t\n", iStatus, pcDrive, iSPC, iNFiles);

�
function: �tc "upl_ListFiles" \l 3�upl_ListFiles�IFA8183��Calling Sequence:
iStatus = upl_ListFiles(pcPath, ppListAddr, iFlag)
Parameters:
Name	I/O	Type	Description
pcPath	I	char *	A pointer to a valid drive. Valid characters are those that conform with the MS-DOS file specifications for directory and filenames. The use of wild cards will also be permitted in the spirit of MS-DOS functionality.
ppListAddr	I	upl_DirList_t **	The address of a pointer to a directory list.
iFlag	I	int	A bitmask which may be used as a filter to retrieve files with specific attributes. The following predefined macros from upl_defines.h may be OR'ed together to select files with those attributes. The macros are UPL_ATTREG for regular files, or UPL_ATTHID to add hidden files.
iStatus	O	int	Function return status.
Description:
Purpose. This function will provide MPMs and Core Extensions with a method of obtaining file information from an MS�DOS file structured ATA memory card.
This function will build a linked list of directory entries that conform with the query; return a pointer to the first entry of the directory list; and return a search status. If the file path in pcPath does not match any files in the root directory, ppListAddr will be set to NULL. The last element of the linked list is marked with a NULL pNext element.
Each directory entry (upl_DirList_t) will consist of the following members:
sAttributes	File attributes as defined by MS-DOS.
sTime	Creation/Modification time in MS-DOS format.
sDate	Creation/Modification date in MS-DOS format.
iBytes	Size of file in bytes.
cExt	File extension, a NULL-terminated string.
cFile	The file name, a NULL-terminated string.

Limitations. This function works only with valid PC-cards. This function works with unallocated media only. This function sets an address of dynamically allocated memory into a passed argument. It is the user's responsibility to call the upl_ListFree function to free the allocated memory and avoid memory leaks.
Example:
#include "util/upl_defines.h"
#include "util/upl_structs.h"
#include "util/upl_proto.h"
.
.
.
register	iI;
static char	*pcSet[]={ "R", "H", "S", "L", "D", "A"};
int	iStatus=-1;
int 	iHour,iMin;
int 	iDay,iMonth,iYear;
char	*pcPath;
upl_DirList_t	*paSave;
upl_DirList_t	*paList;

pcPath = “c:*.dat”;

if(UPL_ISSUCC((iStatus=upl_ListFiles(pcPath, &paList, UPL_ATTREG)))){ paSave = paList;
 while(paList) {
 iMin	= (paList->sTime>>5) & 0x003f;
 iHour	= paList->sTime>>11;
 iDay	= paList->sDate & 0x001f;
 iMonth	= (paList->sDate>>5) & 0x000f;
 iYear	= (paList->sDate>>9) + 1980;

/*
 * Show the file stats
 */
 (void)printf(" \"%s.%s\" %6d bytes %02d/%02d/%04d %02d:%02d %s ",
		 paList->cFile, paList->cExt, paList->iBytes,
		 iMonth, iDay, iYear, (iHour>12)?iHour-12:iHour?iHour:12,
		 iMin, (iHour<12)?"AM":"PM");

/*
 * Show the attributes in a readable format
 */
 iI = 6;
 while(iI--)
 {
 (void)printf("%s", (paList->sAttributes&(1<<iI))?pcSet[iI]:"-");
 }

 (void)printf(" (%d)\n", paList->iSequence);

 paList = (upl_DirList_t*)paList->pvNext;
 }

 upl_ListFree(paSave);

}
�
function: �tc "upl_ListFree" \l 3�upl_ListFree�IFA8184��Calling Sequence:
upl_ListFree(paListAddr)
Parameters:
Name	I/O	Type	Description
paListAddr	I	upl_DirList_t *	The address of a directory list head.
Description:
Purpose. This function will provide MPMs and Core Extensions with a method of freeing the allocated memory used to obtain a listing of files held on an ATA memory card.
This function will verify that the address passed is non-NULL and free any allocated space held in the list of directory entries. This function must be called after any successful calls to upl_ListFiles to prevent memory leaks.
Limitations. This function works only with a list created by the upl_ListFiles function.
Example:
#include "util/upl_defines.h"
#include "util/upl_structs.h"
#include "util/upl_proto.h"
.
.
.
int	 iStatus;
char	*pcPath;
upl_DirList_t 	*paSave;
upl_DirList_t 	*paList;

pcPath = “c:”;

if(UPL_ISSUCC((iStatus=upl_ListFiles(pcPath, &paList, UPL_ATTREG)))){ paSave = paList;
 while(paList) {
 .
 .
 . (void)printf(" (%d)\n", paList->iSequence);

 paList = (upl_DirList_t*)paList->pvNext;
 }

 upl_ListFree(paSave);

}
�
function: �tc "upl_Open" \l 3�upl_Open�IFA8185��Calling Sequence:
fd = upl_Open(pcFilePath, pcAccess, piStatus)
Parameters:
Name	I/O	Type	Description
pcFilePath	I		char *	A NULL-terminated string that specifies a complete file specification. A file specification consists of a single letter, colon and back slash (i.e., c:\, C:\, d:\, or D:\), a filename of eight (8) characters or less, an optional period and an optional three (3)-character extension. If the extension is supplied, it must be preceded by a period. Filename parsing will not be case sensitive. A valid filename example would be: “c:\filename.ext”.
pcAccess	I		char *	A NULL-terminated string that specifies the type of access desired on the file. The allowable access characters are: “r” (read), “w” (write) and “a” (append). The “w” and “a” access designators imply “r” as well. All file access will be binary, meaning no translation of escape sequences will be performed.
piStatus	O	int *	A pointer to a status variable for returning function execution status to the calling application.
fd	O	upl_File_t*	A pointer to the file control structure is returned indicating success, or a NULL is returned indicating failure.
Description:
Purpose. This function will provide MPMs and Core Extensions with a method of opening an MS�DOS file on an ATA memory card.
This function will verify that the filename passed contains a valid drive designator, that the PC-card slot associated with the drive designator is valid, and that the access flags specified are valid for the designated file and PC-card slot. This function will then open the PC-card that the file is on, or will be created on; read the directory and FAT tables from the device; and check to see if the file exists. If the file does not exist, a new file control structure will be created, depending upon the type of access specified. If the file does exist, the file control structure will be created describing the file. A pointer to the file control structure will be returned to the caller indicating success, or NULL will be returned indicating failure.
Limitations. This function opens PC-card based files on MS-DOS file systems only. This function opens the file for access without translation of escape sequences. PC-card access is single threaded only, meaning file access must be sequential.
Example:
#include "util/upl_defines.h"
#include "util/upl_structs.h"
#include "util/upl_proto.h"
.
.
.
int	iStatus;
char	cFileName[30], *pcAccess;
upl_File_t	*paFD;

strcpy(cFileName, “c:\\example.dat”);
pcAccess = “r”;
iAllocation = 0;

if(!(paFD = upl_Open(cFileName, pcAccess, &iStatus)))
{
 printf(“cFileName %s has upl_Open pStatus %d\n”, cFileName, iStatus);
}
.
.
.
iStatus = upl_Close(paFD);
printf(“cFileName %s has upl_Close iStatus %d\n”, cFileName, iStatus);

�
function: �tc "upl_Read" \l 3�upl_Read�IFA8186��Calling Sequence:
iStatus = upl_Read(fd, pvBuffer, iBytes)
Parameters:
Name	I/O	Type	Description
fd	I	upl_File_t *	Pointer to a valid file control structure.
pvBuffer	I	void *	The address of a buffer to receive the data read from the opened file.
iBytes	I	int	The number of bytes to transfer from the file on the PC-card device to pvBuffer. Negative values are invalid.
iStatus	O	int	Function return status.
Description:
Purpose. This function will provide MPMs and Core Extensions with a method of transferring data from a MS-DOS file on an ATA memory card to the caller’s buffer in memory.
This function will verify that the contents of the file control structure passed are valid, and that the number of bytes to be read is valid for the file being accessed. If an invalid control structure is passed, or an invalid value is stated for the number of bytes, an error status will be returned. This function will compute the number of clusters to be read; determine the starting cluster address, using the current file position and the FAT; and transfer data from the file. If data cannot be transferred, an error status will be returned. This function will update the file logical pointer to point at the next byte following the last byte transferred, and copy data from the internal cache to the user buffer. This function will return status to the user upon completion of the function.
Limitations. This function works only with valid file control structures returned from the upl_Open function. This function cannot read past the EOF, and does not support negative values for the iBytes argument.
Example:
#include "util/upl_defines.h"
#include "util/upl_structs.h"
#include "util/upl_proto.h"
.
.
.
u_char	cBuffer[10];
u_int	iBytes,iTail;
int 	iStatus,iSize;
char 	cFileName[30], *pcAccess;
upl_File_t 	*paFD;
upl_DirList_t	*paList;

strcpy(cFileName, “c:\\example.dat”);
pcAccess = “r”;
iAllocation = 0;
iBytes = sizeof(cBuffer);

if(UPL_ISSUCC((iStatus = upl_ListFiles(cFileName, &paList, UPL_ATTREG))))
{

 paFD = upl_Open(cFileName, "r", &iStatus);
 if(paFD && UPL_ISSUCC(iStatus))
 {

 iTail = paList->iBytes % iBytes;

 while(iStatus != UPL_EOF)
 {
 iStatus = upl_Read(paFD, cBuffer, iBytes);

 if(iStatus == UPL_EOF)
	 iSize = iTail;

 (void)fwrite(cBuf, iSize, (size_t)1, stdout);
 }

 iStatus = upl_Close(paFD);
 }

 if(paList)
 upl_ListFree(paList);
 }
.
.
.

�
function: �tc "upl_Remove" \l 3�upl_Remove�IFA8187��Calling Sequence:
iStatus = upl_Remove(pcPath, iFlag)
Parameters:
Name	I/O	Type	Description
pcPath	I	char *	A NULL-terminated string that specifies a complete file specification. A file specification consists of a single letter drive designator, a filename of eight (8) characters or less, an optional period, and an optional three (3)-character extension. If the extension is supplied, it must be preceded by a period. An example would be: “c:\filename.ext”. This function will also support wildcards in the spirit of the MS-DOS filename specification. Valid characters for file systems, filenames and file extensions are in accordance with MS-DOS filename specifications.
iFlag	I	int	Optional processing indicator. (Current implementation supports the UPL DECLASSIFY constant.)
iStatus	O	int	Function return status.
Description:
Purpose. This function will provide MPMs and Core Extensions with a method of removing a file (or group of files) from the root directory of an MS�DOS-formatted ATA memory card. Callers can optionally direct all clusters occupied to be declassified.
This function will verify that the filename passed contains a valid drive designator, verify that the PC-card associated with the drive designator is valid, and open that PC-card device. If an error occurs, an error status will be returned.
This function will read the directory and FAT Table from the PC-card device, and search the directory table for the file specified. If unable to remove, or if the file is not found, then an error status will be returned.
This function will modify the directory and FAT to remove the file, write the directory and FAT to the PC-card device, and close the PC-card device. If unable to write, an error status will be returned. A good status will be returned to the user upon successful completion of the function.
Limitations. This function works only with a valid PC-card device. This function works with unallocated media only. A valid drive designator must be specified that maps to a PC-Card drive. This function will remove files from the selected media’s root directory only.
Example:
#include "util/upl_defines.h"
#include "util/upl_structs.h"
#include "util/upl_proto.h"
.
.
.
int	iStatus, iFlag;
char	cFileName[30];

strcpy(cFileName, “c:\\example.dat”);
iFlag = UPL_DECLASSIFY;

iStatus = upl_Remove(cFileName, iFlag);

printf(" %#07x) \"%s\"\t%d\t%d\n", iStatus, cFileName, iFlag);

�
function: �tc "upl_ScrubCard" \l 3�upl_ScrubCard�IFA8188��Calling Sequence:
iStatus = upl_ScrubCard(pcDrive)
Parameters:
Name	I/O	Type	Description
pcDrive	I	char *	A NULL-terminated string that specifies a drive designation. iStatus	O	int	Function return status.
Description:
Purpose. This function will provide MPMs and Core Extensions with a method of declassifying an ATA memory card.
This function will verify that the drive designator specified maps to a valid PC-card device, and open the designated valid PC-card device. If an invalid drive designation is passed, or if an error occurs, an error status will be returned.
This function will write a pseudo�random pattern to all the blocks on the device, and read and verify that the pattern exists in all blocks. If the pattern does not match that written, the device will be closed, and an error status will be returned to the user.
This function will write another pseudo�random pattern to all the blocks on the device again, and read and verify that the pattern exists in all blocks. If the pattern does not match that written, the device will be closed and an error status will be returned to the user.
This function will write the complement of the second pseudo�random pattern to all the blocks on the device, and read and verify that the pattern exists in all blocks. If the pattern does not match that written, the device will be closed, and an error status will be returned to the user.
This function will close the PC-card device, and return a good status to the user upon successful completion of the function.
Limitations. This function works only with a valid PC-card device. This function works with unallocated media only. A valid drive designator must be specified that maps to a PC-card drive. True declassification will potentially fail if the card invokes wear-leveling or sector-remapping logic.
Example:
#include "util/upl_defines.h"
#include "util/upl_structs.h"
#include "util/upl_proto.h"
.
.
.
int	 iStatus;
char	*pcDrive;

pcDrive = “c:”;

iStatus = upl_ScrubCard(pcDrive);

printf(" %#07x) \"%s\"\n", iStatus, pcDrive);
.
.
.
�
function: �tc "upl_Seek" \l 3�upl_Seek�IFA8189��Calling Sequence:
iStatus = upl_Seek(fd, iOffset)
Parameters:
Name	I/O	Type	Description
fd	I	upl_File_t*	Pointer to a valid file control structure.
iOffset	I	int	The byte, relative to the beginning of the file, to which the logical file pointer will be set.
iStatus	O	int	Function return status.
Description:
Purpose. This function will provide MPMs and Core Extensions with a method of positioning to a byte location within an MS�DOS file on an ATA memory card.
This function will verify that the contents of the file control structure passed are valid, and that the offset passed is valid for the file being accessed. If an invalid control structure is passed, or if an invalid offset is passed, an error status will be returned. If an invalid offset is requested, the logical file pointer will remain unchanged. If successful, this function will update the logical file pointer for the file, and return status to the user.
Limitations. This function works only with valid file control structures returned from the upl_Open function. This function cannot seek to a location past the end of file (EOF). This function does not support offsets of negative values.
Example:
#include "util/upl_defines.h"
#include "util/upl_structs.h"
#include "util/upl_proto.h"
.
.
.
upl_File_t 	*paFD;
u_int	iOffset;
int 	iStatus;
char	cFileName[30], *pcAccess;

strcpy(cFileName, “c:\\example.dat”);
pcAccess = “r”;
iOffset = 10;

if((paFD = upl_Open(cFileName, pcAccess, &iStatus)))
{
 if(!UPL_ISSUCC((iStatus = upl_Seek(paFD, iOffset))))
 {
 printf(“ %#07x), failed to offset %d\n”, iStatus, iOffset);
 }
}

�
function: �tc "upl_Write" \l 3�upl_Write�IFA8190��Calling Sequence:
iStatus = upl_Write(fd, pvBuffer, iBytes)
Parameters:
Name	I/O	Type	Description
fd	I	upl_File_t *	Pointer to a valid file control structure.
pvBuffer	I	void*	The address of a buffer where data will be taken from and transferred to the PC-card device.
iBytes	I	int	The number of bytes to transfer to the opened file on the PC-card device from pvBuffer. The value in this argument cannot be a negative value.
iStatus	O	int	Function return status.
Description:
Purpose. This function will provide MPMs and Core Extensions with a method of transferring data to an MS�DOS file on an ATA memory card.
This function will verify that the contents of the file control structure passed are valid; determine if the file has been opened for write or append access; and verify that the number of bytes to be written is valid. If an invalid value is stated for the number of bytes, an error status will be returned.
This function will compute the starting cluster address, compute the number of clusters needed, and allocate those clusters; copy the data that was passed into an internal cache; copy data from the internal cache to the PC-card device; update the file logical pointer to the next byte following the last byte written; and return status to the user.
Limitations. This function works only with valid file control structures returned from the upl_Open function. This function cannot write past the capacity of the PC-card device, and does not support negative values for the iBytes argument. PC-card access is single threaded only, meaning file access must be sequential.

Example:
#include "util/upl_defines.h"
#include "util/upl_structs.h"
#include "util/upl_proto.h"
.
.
.
upl_File_t	*paFD;
u_char	cBuffer[10];
u_int	iBytes;
int	iStatus;
char	cFileName[30], *pcAccess;

strcpy(cFileName, “c:\\example.dat”);
pcAccess = “r”;
iAllocation = 0;
iBytes = sizeof(cBuffer);

if((paFD = upl_Open(cFileName, pcAccess, &iStatus)))
{
 if(UPL_ISFAIL((iStatus = upl_Write(paFD, cBuffer, iBytes))))
 {
 printf(“ %#07x), failed to write %d bytes from buffer %s\n”,
 iStatus, iBytes, cBuffer);
 }
}
.
.
.

Document No. 160008-IDD-6.1 - April 1997

(C.15)		183_D_1, 11/12/97	

