

function: � TC " ait_RegisterMpmFileFuncs " \l 3 � ait_RegisterMpmFileFuncs�IFA16235��CALLING SEQUENCE:

STATUS := AIT_REGISTERMPMFILEFUNCS(MPMNOD'ADDRESS, MPMSAVE'ADDRESS, MPMIMPEXP'ADDRESS);

PARAMETERS:

Name	I/O	Type	Description

MPMNOD	I	ADDRESS	MPMnew/open/delete function.

MPMSAVE	I	ADDRESS	MPM save/save as function.

MPMIMPEXP	I	ADDRESS	MPM import/export function.

STATUS	O	ST_STATUS	ST_SUCCESS if function is successfully saved, ST_FAILURE otherwise.

DESCRIPTION:

This function should be called by MPMs which need to be called whenever Core creates, opens, saves, renames, deletes, imports or exports missions. These MPM functions will not override existing Core functions, but will be called after Core has completed its portion of the requested operation.

If C
ore
 fails to perform
any of
the requested operation
s
, the MPM’s corresponding function will not be invoked. If the MPM’s portion of the operation fails, Core will abort its portion of the operation.

mpm
NOD function

Core’s New
,

O
pen and
D
elete functions will pass UZT_
HNDL_PTR
 (mission handle)
,

an
integer
 called FILEOP
 (file operation)
,
 and
an
address
 to a string
 (planner name)
to this MPM function
.
The
 mission handle will be created for the MPMs to use to access data from internal Core
data
structures.
The f
ile
operation parameter
 will inform the MPM what type of operation the planner has selected.

For new, open and delete C
ore
 operations, only APT_NEW, APT_OPEN or APT_DELETE will be passed. MPMs should provide enough logic within their registered
mpmNOD
 function to test for these conditions.

The planner argument will always contain the name of the planner who is logged into the system. The planner name that is in the mission handle will contain the name of the planner who owns the mission. This is particularly important when one planner opens another planner
’
s mission. Note:

when saving a mission owned by a different planner, the mission

is
not duplicated in the database unless the planner uses the Save As function. If the protection on the mission does not allow modifications by the current planner, then an error message will be displayed (and the mpmSave function will not be called). Otherwise, the existing mission will be modified in the database, and the owner of the mission will still be the planner who created the mission.

The formal parameter list for MPMNOD is:

Name	I/O	Type	Description

MISSIONHANDLE	I	UZT_HNDL_PTR	Input Handle.

FILEOP	I	INTEGER	Type of operation.

PLANNER	I	ADDRESS	Address of string with Planner
.

STATUS	O	ST_STATUS	Return value.

mpmSave
 function

The Save function will pass UZT_
HNDL_PTR
 (mission handle),
an

INTEGER FILEOP
,

an
address
 to
the
string

old mission name
,
 and
an
address
 to
the
string

new mission name
. If autosave is active and the timer expires,
FILEOP
 will be set to APT_AUTOSAVE, otherwise, it will be set to APT_SAVE or APT_SAVE_AS. New mission name and old mission name will be the same, unless the user selects the “save as” operation.

The formal parameter list for MPMSAVE is:

Name	I/O	Type	Description

MISSIONHANDLE	
I
	UZT_HNDL_PTR	Input handle.

FILEOP	
I	
INTEGER	Type of operation.

OLDMISSIONNAME 	
I	
ADDRESS	Address of string with Old Mission.

NEWMISSIONNAME	
I	
ADDRESS	Address of string with New Mission.

STATUS	O
	
ST_STATUS	Return value.

mpmImpExp
 function

The I
mport/Export function will pass the file pointer of the open device (8mm tape, 1/4” tape, or 3.5” floppy), file operation (APT_IMPORT or APT_EXPORT), the owner of the mission and the mission name. The file pointer marks the point where the MPM data begins. MPMs must read and write from the point on the device. The first record written by the MPMs
must
 be the number of bytes that follow (
INTEGER
). Although C
ore
 will not read the MPM
’
s data, it needs to know how much to skip in the event that an error occurs.

On the mission export processing, the MPM’s function may be invoked twice for each mission. On the first pass, Core creates a table of the valid missions to export. An entry is made only if Core and the MPM can successfully export the selected mission(s). If the MPM fails on the first pass of mission export, the mission is not added to the internal table. If the MPM is successful on the first pass, then the table is updated and the MPM will be called a second time to write the data to the output device.

Note that on mission import, all missions successfully imported into the system will be owned by the planner who initiates the operation. If a mission of the same name, type and planner already exi
s
ts in the database, then the mission will not be imported. In this case, C
ore
 will skip over the MPM data by the number of bytes written by the MPM. This will synchronize C
ore
/MPM so that there is no MPM data imported into the system, when C
ore’
s import fails.

The formal parameter list for MPMIMPEXP is:

Name	I/O	Type	Description

FILE	I	STDIO.FILE_PTR 	File pointer
.

FILEOP	I	INTEGER	Type of operation.

PLANNERNAME	I	ADDRESS	Address of string with Planner name
.

MISSIONNAME	I	ADDRESS	Address of string with Mission name.

Error Handling

MPMs should be responsible for notifying and processing any MPM data errors. Core will enter a message in the WSE_LOGGER upon any failure status.

When
a
new or open mission fails, all of the pulldowns with the exception of File menu will be deactivated. The planner will only be allowed to select either New Mission, Open Mission, Delete Mission, Protect Missions, Strike Package or Exit.

When delete, save or save-as operations fail, C
ore
 will not commit any pending database operations.

On mission export, if the MPM fails to write its portion of the data, the entire mission will be removed from the export file. On mission import, if C
ore
 cannot successfully import the mission, the MPM
’
s portion of the file will be skipped. If the MPM cannot successfully import its portion of the mission, C
ore
 will not commit any pending database operations.

Handle Processing

MPMs will have the ability to access C
ore
 data from the input mission handle. The data in the handle will be treated as
read only
. The fields which will be available for MPMs to access and their respective definitions are as follows:

-- Name of Mission (APT_NAMELEN characters)

AXT_MISSION_NAME
	
: constant string := "axt_missionName" ;

-- Mission description (APT_TEXTLEN characters)

AXT_MISSION_DESC
	
: constant string := "axt_missionDesc" ;

-- Mission
identifier
 (APT_TEXTLEN characters
)

AXT_MISSION_ID
	
: constant string := "axt_missionID"

;

-- Owner of Mission (APT_NAMELEN characters)

AXT_MISSION_PLANNER
	
: constant string := "axt_missionPlanner" ;

--
Op

Area where mission resides
 (APT_TEXTLEN characters)

AXT_MISSION_OP_AREA
	
: constant string := "axt_missionOpArea" ;

Access to this data occurs through use of the
uzt_setArgs
 and
uzt_getValues
 functions.

EXAMPLE :

with SYSTEM;

with ST_SYSDEFS;

STATUS	:=

ST_SYSDEFS.ST_STATUS;

.

.

.

STATUS

:=

AIT_REGISTERMPMFILEFUNCS

(MPMNOD’ADDRESS, MPMSAVE’ADDRESS, MPMIMPEXP’ADDRESS);

where MPMNOD is
the
MPM function name for
the
New/Open/Delete callback
,
�
MPMSAVE is
the
MPM function
name
for
the
Save/Save As callback
, and
�MPMIMPEXP is
the
MPM function name for
the
Import/Export callback.

SUPPORTING INFORMATION:

The following constants equate to the "C" APT_FILE_OPERATION enum typedef
:

APT_NEW	: constant := 0 ;

APT_OPEN 	: constant := 1 ;

APT_DELETE 	: constant := 2 ;

APT_SAVE 	: constant := 3 ;

APT_SAVE_AS 	: constant := 4 ;

APT_AUTOSAVE 	: constant := 5 ;

APT_EXPORT 	: constant := 6 ;

APT_IMPORT 	: constant := 7 ;

Document No. 160008-IDD-6.1 - July 1996

(G.1.7)		145_F_5;1/2/97

