

function: � TC " ait_RegisterMpmFileFuncs " \l 3 � ait_RegisterMpmFileFuncs�
IFA9233�
�
CALLING SEQUENCE:

status = ait_RegisterMpmFileFuncs(mpmNOD, mpmSave, mpmImpExp)

PARAMETERS:

Name	I/O	Type	Description

mpmNOD	I	ST_STATUS (*) 	MPM New/Open/

		(UZT_HANDLE handle,	Delete function.

		APT_FILE_OPERATION fileOp,

		char *planner)	

mpmSave	I	ST_STATUS (*) 	MPM Save/Save As

		(UZT_HANDLE handle,	function.

		APT_FILE_OPERATION fileOp,

		char *oldMission,

		char *newMission)	

mpmImpExp	I	ST_STATUS (*) (FILE *fp,	MPM Import/Export

		APT_FILE_OPERATION fileOp, 	function.

		char *planner, char *mission)	

status	O	ST_STATUS	ST_SUCCESS if function is successfully saved, ST_FAILURE otherwise.

DESCRIPTION:

This function should be called by MPMs which need to be called whenever Core creates, opens, saves, renames, deletes, imports or exports missions. These MPM functions will not override existing Core functions, but will be called after Core has completed its portion of the requested operation.

If Core fails to perform any of the requested operations, the MPM’s corresponding function will not be invoked. If the MPM’s portion of the operation fails, Core will abort its portion of the operation.

mpmNOD function

Core’s New,Create, Oopen and Ddelete functions will pass UZT_HANDLE (mission handle), and APT_FILE_OPERATION (file operation), and a character pointer (planner name) to this MPM function. The A mission handle will be created for the MPMs to use to access data from internal Core data structures. The fFile operation parameterprocessing type will inform the MPM what type of operation the planner has selected. For new, open and delete Core operations, only APT_NEW, APT_OPEN or APT_DELETE will be passed. MPMs should provide enough logic within their registered mpmNOD function to test for these conditions.

The planner argument will always contain the name of the planner who is logged into the system. The planner name that is in the mission handle will contain the name of the planner who owns the mission. This is particularly important when one planner opens another planner’s mission. Note: when saving a mission owned by a different planner, the mission is duplicated in the database and owned by both planners. If one mission is modified the other is not modified.

 These types include create, open, save, save as, auto save, import and export. MPMs which register their own buttons on the dynamic menu bar should perform the required button management in these callbacks.

mpmSave function

The Save function will pass UZT_HANDLE (mission handle), APT_FILE_OPERATION, char * (old mission name) and char * (new mission name). If autosave is active and the timer expires, APT_FILE_OPERATION will be set to APT_AUTOSAVE, otherwise, it will be set to APT_SAVE or APT_SAVE_AS. New mission name and old mission name will be the same, unless the user selects the “save as” operation.

mpmImpExp function

The Import/Export function will pass the file pointer of the open device (8mm tape, 1/4” tape, or 3.5” floppy), file operation (APT_IMPORT or APT_EXPORT), the owner of the mission and the mission name. The file pointer marks the point where the MPM data begins. MPMs must read and write from the point on the device. The first record written by the MPMs must be the number of bytes that follow (long int). Although Core will not read the MPM’s data, it needs to know how much to skip in the event that an error occurs. This is required since multiple missions (not necessarily from the same MPM) may be located in the file.

Note that on mission import, all missions successfully imported into the system will be owned by the planner who initiates the operation. If a mission of the same name, type and planner already exists in the database, then the mission will not be imported. In this case, Core will skip over the MPM data by the number of bytes written by the MPM. This will synchronize Core/MPM so that there is no MPM data imported into the system, when Core’s import fails.The MPM import/export function will be invoked during Core mission import/export. Core will import/export all required data from/to TAMPS and if the MPM has registered an import/export function, it will be called. All MPM data must be appended to the end of Core mission data. A file pointer will be passed to the MPM marking the point where MPM data begins. Core will pass APT_EXPORT for Mission Export and APT_IMPORT for Mission Import.

Error Handling

MPMs should be responsible for notifying and processing any MPM data errors. Core will enter a message in the WSE_LOGGER upon any failure status.

When a new or open mission fails, all of the pulldowns with the exception of File menu will be deactivated. The planner will only be allowed to select either New Mission, Open Mission, Delete Mission, Protect Missions, Strike Package or Exit.

When delete, save or save-as operations fail, Core will not commit any pending database operations.

On mission export, if the MPM fails to write its portion of the data, the entire mission will be removed from the export file. On mission import, if Core cannot successfully import the mission, the MPM’s portion of the file will be skipped. If the MPM cannot successfully import its portion of the mission, Core will not commit any pending database operations.

Handle Processing

MPMs will have the ability to access Core data from the input mission handle. The data in the handle will be treated as read only. The fields which will be available for MPMs to access and their respective definitions are as follows:

	// Name of Mission (APT_NAMELEN characters)

	#define AXT_MISSION_NAME	“axt_missionName”

	// Owner of mission (APT_NAMELEN characters)

	#define AXT_MISSION_PLANNER	“axt_missionPlanner”

	// Mission description (APT_TEXTLEN characters)

	#define AXT_MISSION_DESC	“axt_missionDesc”

	// Mission Identifier (short int)

	#define AXT_MISSION_ID	“axt_missionId”

	// Op Area where mission resides (APT_TEXTLEN characters)

	#define AXT_MISSION_OP_AREA	“axt_missionOpArea”

Access to this data occurs through use of the uzt_setArgs and uzt_getValues functions.

EXAMPLE :

#include <stdio.h>

#include “system/st_sysdefs.h”

#include “"a_msn_plan/apt_enum.h”

#include “"a_msn_plan/ait_proto.h”

#include “util/uzt_structs.h”"

ST_PRIVATE ST_STATUS

my_NewOpenDelFunc	(UZT_HANDLE missionHandle,

				APT_FILE_OPERATION fileOp,

				char *planner);

ST_PRIVATE ST_STATUS

my_Save Func		(UZT_HANDLE missionHandle,

				APT_FILE_OPERATION fileOp,

				char *oldMissionName,

				char			 *newMissionName);

ST_PRIVATE ST_STATUS

my_ImpExpFunc	(FILE				*fp

				 APT_FILE_OPERATION fileOp,

				char *plannerName

				char *missionName);

		

void mpm_initFunc()

{

	status = ait_RegisterMpmFileFuncs(my_NewOpenDelFunc,

						my_SaveFunc,

						my_ImpExpFunc);

	return;

}

ST_PRIVATE my_NewOpenDelFunc(UZT_HANDLE missionHandle,

						APT_FILE_OPERATION fileOp,

						char *planner)

{

	ST_STATUS status = ST_SUCCESS;

	uzt_Arg args[5];

	uzt_Cardinal argcnt = 0;

	char name[APT_NAMELEN];

	char desc[APT_TEXTLEN];

	char msnPlnr[APT_NAMELEN];

	char opArea[APT_TEXTLEN];

	short int id;

	switch (fileOp) {

	 case APT_NEW:

	 printf(“ Perform my new mission processing \n”);

		 break;

	 case APT_OPEN:

	 printf(“ Perform my open mission processing \n”);

		 break;

	 case APT_DELETE:

	 printf(“ Perform my delete mission processing \n”);

		 break;

	 default:

		 printf(“ Invalid file operation received \n”);

 }

	uzt_setArgs(args[argcnt], AXT_MISSION_NAME, name); argcnt++;

	uzt_setArgs(args[argcnt], AXT_MISSION_DESC, desc); argcnt++;

	uzt_setArgs(args[argcnt], AXT_MISSION_ID, &id); argcnt++;

	uzt_setArgs(args[argcnt], AXT_MISSION_PLANNER, msnPlnr); argcnt++;

	uzt_setArgs(args[argcnt], AXT_MISSION_OP_AREA, opArea); argcnt++;

	uzt_getValues(missionHandle, args, argcnt);

	return (status);

}

Note: my_SaveFunc and myImpExpFunc would be analogous to my_NewOpenDelFunc.void mpm_initFunc()

{

	status = ait_RegisterMpmFileFuncs(

		ST_STATUS (*) (UZT_HANDLE, APT_FILE_OPERATION)									mpm_newOpenDelFunc,

		ST_STATUS (*) (UZT_HANDLE, APT_FILE_OPERATION, char *, 							char *) mpm_saveFunc,

		ST_STATUS (*) (FILE *, APT_FILE_OPERATION)										mpm_ImpExpFunc,

	return;

}

SUPPORTING INFORMATION:

The typedef declaration for APT_FILE_OPERATION (in a_msn_plan/apt_enum.h) is:

typedef enum {APT_NEW, 	/* New Mission	 Operation */

	APT_OPEN,	/* Open Mission Operation */

	APT_DELETE,	/* Delete Mission Operation */

	APT_SAVE,	/* Save Mission Operation */

	APT_SAVE_AS,	/* Save As Mission Operation */

	APT_AUTOSAVE,	/* Auto Save Mission Operation */

	APT_EXPORT,	/* Export Mission Operation */

	APT_IMPORT	/* Import Mission Operation */

} APT_FILE_OPERATION;

Document No. 160008-IDD-6.1 - July 1996

(C.1.7)		145_D_2;10/28/96

