

function: � tc " bdt_computeChecksum " \l 3 � bdt_computeChecksum�
IFA22015�
�
CALLING SEQUENCE:

checksum := bdt_computeChecksum (BUF'ADDRESS,SIZE)

PARAMETERS:

Name	I/O	Type	Description

BUF	I	ADDRESS	This is the address of the input buffer.

SIZE	I	INTEGER	This is the size in bytes of the buffer.

CHECKSUM	O	UNSIGNED_FLOAT	The checksum results.

DESCRIPTION:

This function computes the checksum of a block of words by counting and adding the bytes in the block.

The input argument “buf” contains the data to be checksum’d. It is of type “ADDRESS” so that any block of data can be passed as the buffer. The “size” argument is the size of the block of data returned by a sizeof() function call.

EXAMPLE:

with SYSTEM;

with ST_STATUS;

with UNSIGNED ;

BUF 	: ??. BUFFER_TYPE ;

SIZE	: INTEGER ;

CHECKSUM	: FLOAT;

SIZE	: BUF'SIZE ;

CHECKSUM := BDT_COMPUTECHECKSUM(BUF'ADDRESS, SIZE);

�

function: � tc " bdt_convertFreqToMDLFreq " \l 3 � bdt_convertFreqToMDLFreq�
IFA22016�
�
CALLING SEQUENCE:

RETURN_FREQ := BDT_CONVERTFREQTOMDLFREQ(NAVAIDVALUE, NAVAIDTYPE)

PARAMETERS:

Name	I/O	Type	Description

NAVAIDVALUE	I	ADDRESS	Input NAVAID frequency.

NAVAIDTYPE	I	APT_ENUM.APT_	Type of NAVAID.

		DAFID_NAVAIDS_

		TYPES

RETURN_FREQ	O	ADDRESS	Address of the returned string.

DESCRIPTION:

This function converts a NAVAID frequency/channel string into the format expected by the Common MDL Format Specification.

The calling function should set the input argument “navaidValue” to the frequency or channel to be converted. This function will allocate the memory for the return value. The calling function is responsible for freeing the returned data once it is finished.

EXAMPLE:

with SYSTEM;

with APT_ENUM;

NAVAIDVALUE	: SYSTEM.ADDRESS ;

NAVAIDTYPE	: APT_ENUM.APT_DAFID_NAVAIDS_TYPES;

RETURN_FREQ	: SYSTEM.ADDRESS ;

RETURN_FREQ := BDT_CONVERTFREQTOMDLFREQ(NAVAIDVALUE, NAVAIDTYPE);

�

function: � tc " bdt_getFirstMDLEntry " \l 3 � bdt_getFirstMDLEntry�
IFA22017�
�
CALLING SEQUENCE:

MDL := BDT_GETFIRSTMDLENTRY

PARAMETERS:-

Name	I/O	Type	Description

MDL	O	BDT_MDL_INTERFACE_T_PTR	The returned MDL Pointer.

DESCRIPTION:

This function returns the first entry registered in the MDL Data Table initialized by the Core bdt_init MDL initialization function.

The data returned is a pointer of type BDT_MDL_INTERFACE_T. This pointer is a copy of the entry in the Core data table. It is the MPM’s responsibility to release the memory allocated to return this entry when the MPM is finished with it.

EXAMPLE:

with SYSTEM;

with BDT_TYPES;

MDL	: BDT_TYPES.BDT_MDL_INTERFACE_T_PTR ;

MDL := BDT_GETFIRSTMDLENTRY ;

�

function: � tc " bdt_getJTIDSData " \l 3 � bdt_getJTIDSData�
IFA22018�
�
CALLING SEQUENCE:

jtids := bdt_getJTIDSData(mission_name’ADDRESS, planner_name’ADDRESS, acft_type’ADDRESS, jtids_num)

PARAMETERS:-

Name	I/O	Type	Description

mission_name	I	ADDRESS	Name of mission.

planner_name	I	ADDRESS	Name of planner.

acft_type	I	ADDRESS	Name of aircraft.

jtids_num	I	INTEGER	JTIDS record number in mission. (1-3)

jtids	O	APV_JLOAD_T_PTR	Pointer to block of JTIDS data.

DESCRIPTION:

This function is used by an MPM that requires the JTIDS network data for an MDL data load.

EXAMPLE:

with SYSTEM;

with APV_STRUCTS;

mission_name	: STRING(1..X);

planner_name	: STRING(1..Y);

acft_type	: STRING(1..Z);

jtids_num 	: INTEGER;

jtids 	: APV_STRUCTS.APV_JLOAD_T_PTR;

JTIDS := BDT_GETJTIDSDATA(MISSION_NAME’ADDRESS, PLANNER_NAME’ADDRESS, ACFT_TYPE’ADDRESS, JTIDS_NUM);�

function: � tc " bdt_getMDLAlmanacData " \l 3 � bdt_getMDLAlmanacData�
IFA22019�
�
CALLING SEQUENCE:

ALMANACLIST := BDT_GETMDLALMANACDATA

PARAMETERS:

Name	I/O	Type	Description

ALMANACLIST	O	ULT_LIST_PTR	The list of all the almanac records.

DESCRIPTION:

This function is used by an MPM that requires MDL Almanac data to process and format that data for a unique format on the MDL.

This function does not retrieve data from the source data; it gets the data from the MDL class that has already retrieved and preprocessed the data. The MPM will be returned ALL of the almanac records for the currently defined MDL download loadset. The LIST * returned is a list of type DFT_GPS_ALMANAC. It is the MPM’s responsibility to release this list when it is finished processing the data.

EXAMPLE:

with SYSTEM;

with ULT_STRUCTS ;

ALMANACLIST : ULT_STRUCST.LIST_PTR ;

ALMANACLIST := BDT_GETMDLALMANACDATA;

�

function: � tc " bdt_getMDLWaypoints " \l 3 � bdt_getMDLWaypoints�
IFA22020�
�
CALLING SEQUENCE:

WAYPOINTLIST := BDT_GETMDLWAYPOINTS(WAYPTTYPE)

PARAMETERS:

Name	I/O	Type	Description

WAYPTTYPE	I	BDT_WAYPT_TYPE	The waypoint type.

WAYPOINTLIST	O	ULT_LIST_PTR	The list of waypoints that are of type WAYPTTYPE.

DESCRIPTION:

This function is used by an MPM that requires MDL waypoint data to process and format that data for a unique format on the MDL.

This function does not retrieve data from the source data; it gets the data from the MDL class that has already retrieved and preprocessed the data. The MPM will be returned ALL of the waypoints for all of the files of the specified type in the currently defined MDL download loadset (i.e., for 12 flight plans of 50 waypoints, there will be 600 waypoints returned in the LIST (if a flight plan doesn’t have 50 points, it will be NULL filled)). The LIST* returned is a list of type BDT_MDL_WAYPOINT_T. It is the MPM’s responsibility to release this list when it is finished processing the data.

EXAMPLE:

with SYSTEM;

with ULT_STRUCTS ;

WAYPTTYPE	: BDT_WAYPT_TYPE ;

WAYPOINTLIST	: ULT_STRUCST.LIST_PTR ;

WAYPOINTLIST := BDT_GETMDLWAYPOINTS(WAYPTTYPE);

�

function: � tc " bdt_getNewMDLEntry " \l 3 � bdt_getNewMDLEntry�
IFA22021�
�
CALLING SEQUENCE:

MDL := BDT_GETNEWMDLENTRY(MDL)

PARAMETERS:-

Name	I/O	Type	Description

MDL	O	BDT_MDL_INTERFACE_T_PTR	The returned MDL Point.

DESCRIPTION:

This function allocates a new entry in the MDL Data Table initialized by the Core bdt_init MDL initialization function. The MPM fills in the appropriate data and returns the entry through a call to bdt_registerMDLEntry.

The data returned is a pointer of type BDT_MDL_INTERFACE_T. It is the MPM’s responsibility to release the memory allocated to return this entry when the MPM is finished with it. The pointer value returned should not be used by an MPM as an access to this data once the MPM has called ìbdt_registerMDLEntryî. The MPM should call the ìbdt_getFirstMDLEntryî and loop through the elements with calls to ìbdt_getNextMDLEntryî to find the entry required based upon the ìdataTypeî or ìmpmDataTypeî field.

EXAMPLE:

with SYSTEM;

with BDT_TYPES;

MDL : BDT_TYPES.BDT_MDL_INTERFACE_T_PTR ;

MDL := BDT_GETNEWENTRY ;

�

function: � tc " bdt_getNextMDLEntry " \l 3 � bdt_getNextMDLEntry�
IFA22022�
�
CALLING SEQUENCE:

MDL := BDT_GETNEXTMDLENTRY(MDL)

PARAMETERS:

Name	I/O	Type	Description

MDL	I/O	BDT_MDL_INTERFACE_	The returned MDL Point.

		T_PTR	

DESCRIPTION:

This function returns the next entry registered in the MDL Data Table initialized by the Core bdt_init MDL initialization function, based upon the passed in table element.

The data returned is a pointer of type BDT_MDL_INTERFACE_T. This pointer is a copy of the entry in the Core data table. It is the MPM’s responsibility to release the memory allocated to return this entry when the MPM is finished with it.

EXAMPLE:

with SYSTEM;

with BDT_TYPES;

MDL : BDT_TYPES.BDT_MDL_INTERFACE_T_PTR ;

MDL := BDT_GETNEXTENTRY(MDL) ;

�

function: � tc " bdt_latitudeToSemiCircle " \l 3 � bdt_latitudeToSemiCircle�
IFA22023�
�
CALLING SEQUENCE:

SEMI_C := BDT_LATITUDETOSEMICIRCLE(LATITUDE)

PARAMETERS:

Name	I/O	Type	Description

LATITUDE	I	FLOAT	Input latitude in float.

SEMI_C	O	FLOAT	Latitude in semicircle measurements.

DESCRIPTION:

This function converts an input latitude (in radians) to a latitude in semicircle measurements.

EXAMPLE:

with SYSTEM;

LATITUDE	: FLOAT;

SEMI_C		: FLOAT;

SEMI_C := BDT_LATITUDETOSEMICIRCLE(LATITUDE);

�

function: � tc " bdt_longitudeToSemiCircle " \l 3 � bdt_longitudeToSemiCircle�
IFA22024�
�
CALLING SEQUENCE:

SEMI_C := BDT_LONGITUDETOSEMICIRCLE(LONGITUDE)

PARAMETERS:

Name	I/O	Type	Description

LONGITUDE	I	FLOAT	Input longitude in float.

SEMI_C	O	FLOAT	Longitude in semicircle measurements.

DESCRIPTION:

This function converts an input longitude (in radians) to a longitude in semicircle measurements.

EXAMPLE:

with SYSTEM;

LONGITUDE	: FLOAT;

SEMI_C	: FLOAT;

SEMI_C := BDT_LONGITUDETOSEMICIRCLE(LONGITUDE);

�

function: � tc " bdt_registerMDLEntry " \l 3 � bdt_registerMDLEntry�
IFA22025�
�
CALLING SEQUENCE:

STATUS := BDT_REGISTERMDLENTRY(MDL)

PARAMETERS:-

Name	I/O	Type	Description

MDL	I	BDT_MDL_INTERFACE_T_PTR	The returned MDL Point.

STATUS	O	ST_STATUS	Returns pass or failure.

DESCRIPTION:

This function registers the data passed in with the Core MDL Data Table to keep track of the callbacks for the specified data type within the table.

This function returns a status of ST_FAILURE if the data could not be added to the table due to memory allocation, or if the element is already in the table. It will return ST_SUCCESS if there was no problem adding the data to the table.

EXAMPLE:

with SYSTEM;

with BDT_TYPES;

with ST_SYSDEFS ;

MDL	: BDT_TYPES.BDT_MDL_INTERFACE_T_PTR ;

STATUS	: ST_SYSDEFS.ST_STATUS;

STATUS := BDT_REGISTERMDLENTRY(MDL);

�

function: � tc " bdt_removeMDLEntry " \l 3 � bdt_removeMDLEntry�
IFA22026�
�
CALLING SEQUENCE:

STATUS := BDT_REMOVEMDLENTRY(MDL)

PARAMETERS:

Name	I/O	Type	Description

MDL	I	BDT_MDL_INTERFACE_T_PTR	The returned MDL Point.

STATUS	O	ST_STATUS	Returns pass or failure.

DESCRIPTION:

This function removes the data passed in from the Core MDL Data Table.

This function returns a status of ST_FAILURE if the data could not be removed from the table, or if the element was not found in the table. It will return ST_SUCCESS if there was no problem removing the data from the table. This function can be used to remove the support of a data type that is not used by the executing MPM.

EXAMPLE:

with SYSTEM;

with BDT_TYPES;

with ST_SYSDEFS ;

MDL	: BDT_TYPES.BDT_MDL_INTERFACE_T_PTR ;

STATUS	: ST_SYSDEFS.ST_STATUS;

STATUS := BDT_REMOVEMDLENTRY(MDL);

�

function: � tc " bdt_swapWord " \l 3 � bdt_swapWord�
IFA22027�
�
CALLING SEQUENCE:

RESULT := BDT_SWAPWORD(WORD1)

PARAMETERS:-

Name	I/O	Type	Description

WORD1	I	INTEGER	Input data to be word swapped.

RESULT	O	INTEGER	Results of the swap.

DESCRIPTION:

This function swaps the Most Significant Word (MSW) and the Least Significant Word (LSW) of a 32-bit word. This function is used by the MDL software to support the word ordering of 32-bit words on the MDL cartridge.

EXAMPLE:

with SYSTEM;

WORD1	: INTEGER ;

RESULT	: INTEGER ;

RESULT := BDT_SWAPWORD(WORD1);

Document No. 160008-IDD-6.1 - July 1996

(G.2)		132_C_6;12/20/96

