

FUNCTION: � tc " OHT_ADDGEOGRAPHIC" \l 3 �OHT_ADDGEOGRAPHIC�
IFA11021�
�
CALLING SEQUENCE:

STATUS := OHT_ADDGEOGRAPHIC (OBJPTR, SYMFILE, SYMID, SYMCLR, PLOTCLR, PICKFIELD)

PARAMETERS:

Name	I/O	Type	Description

OBJPTR	I	OBJECT_CLASS_	Pointer to a Object Class Data

		DATA_PTR	structure allocated from oht_createObjectClassData().

SYMFILE	I	ADDRESS	String containing the symbol set file name for "In Memory" Object.

SYMID	I	INT_32_TYPEINTEGER	"In Memory" Object symbol ID.

SYMCLR	I	INT_32_TYPEINTEGER	"In Memory" Object symbol color.

PLOTCLR	I	INT_32_TYPEINTEGER	"In Memory" Object plot color.

PICKFIELD	I	ADDRESS	String containing the TABLE.COLUMN for the pick resolution field for the "In Memory" Object.

STATUS	O	ST_STATUS	Returns SUCCESS or FAILURE.

DESCRIPTION:

This function adds the appropriate geographic display data to the specified Object Class Data structure. This function is intended to work with the OHT_CREATEOBJECTCLASSDATA function to build "In Memory" Object more easily.

EXAMPLE:

with OHT;

use OHT;

with ST_SYSDEFS;

use ST_SYSDEFS;

with BASE_TYPES;

OBJPTR 	: OBJECT_CLASS_DATA_PTR;

SYMFILE 	: ADDRESS;

SYMID 	: BASE_TYPES.INT_32_TYPEINTEGER;

SYMCLR 	: BASE_TYPES.INT_32_TYPEINTEGER;

PLOTCLR 	: BASE_TYPES.INT_32_TYPEINTEGER;

PICKFIELD 	: ADDRESS;

STATUS 	: ST_STATUS;

STATUS := OHT_ADDGEOGRAPHIC (OBJPTR, SYMFILE, SYMID, SYMCLR, PLOTCLR PICKFIELD);�

FUNCTION: � tc " OHT_BROWSER" \l 3 �OHT_BROWSER�
IFA11001�
�
CALLING SEQUENCE:

BROWSER_LIST := OHT_BROWSER(OBJECT_ID)

PARAMETERS:

Name	I/O	Type	Description

OBJECT_ID	I	INT_32_TYPEINTEGER	Object ID.

BROWSER_LIST	O	LIST_PTR 	Pointer to the root node of a linked list of pointers to structures containing the name and ID for each of the object's children.

DESCRIPTION:

This function receives as input an object ID and returns a list of pointers to the names of the object's children along with the associated IDs. If an object ID of 0 is received as input, the names of root's children are returned in the list. If no children exist, NULL is returned. If the ID input is invalid, NULL is returned and the global oht_errno is set. Note: after data in list structure is no longer needed, the caller needs to call ult_lst_free to free the space allocated by oht_browser.

EXAMPLE:

with OHT;

use OHT;

with OT_DEFINES;

use OT_DEFINES;

with ULT_LIST;

use ULT_LIST;

with BASE_TYPES;

OBJECT_ID 	: BASE_TYPES.INT_32_TYPEINTEGER;

BROWSER_LIST 	: LIST_PTR;

BROWSER_LIST := OHT_BROWSER (OBJECT_ID);

�

FUNCTION: � tc " OHT_CREATEOBJECTCLASSDATA" \l 3 �OHT_CREATEOBJECTCLASSDATA�
IFA11020�
�
CALLING SEQUENCE:

OBJCLSDATA := OHT_CREATEOBJECTCLASSDATA (OBJID, OBJNAME)

PARAMETERS:

Name	I/O	Type	Description

OBJID	I	INT_32_TYPEINTEGER 	ID for the new "In Memory" Object.

OBJNAME	I	ADDRESS 	Name for the new "In Memory" Object.

OBJCLSDATA	O	OBJECT_CLASS_	Pointer to the new "In Memory"

		DATA_PTR	Object Class data structure.

DESCRIPTION:

This function creates and initializes a new "In Memory" Object Class Data structure. This function returns a pointer to the allocated structure and provides default values for certain required object fields. This function should be used in conjunction with OHT_ADDGEOGRAPHIC, OHT_ADDOBJECTACTION, and OHT_ADDACTIONATTR.

EXAMPLE:

with OHT;

use OHT;

with ST_SYSDEFS;

use ST_SYSDEFS;

with BASE_TYPES;

OBJID 	: BASE_TYPES.INT_32_TYPEINTEGER;

OBJNAME 	: ADDRESS;

OBJCLSDATA 	: OBJECT_CLASS_DATA_PTR;

OBJCLSDATA := OHT_CREATEOBJECTCLASSDATA (OBJID, OBJNAME);

�

FUNCTION: � tc " OHT_GETANCESTORS" \l 3 �OHT_GETANCESTORS�
IFA11003�
�
CALLING SEQUENCE:

ANCESTORS := OHT_GETANCESTORS (OBJECT_ID)

PARAMETERS:

Name	I/O	Type	Description

OBJECT_ID	I	INT_32_TYPEINTEGER	Object ID.

ANCESTORS	O 	LIST_PTR	Pointer to the root node of the linked list of pointers to the ancestors' object IDs.

DESCRIPTION:

This function receives as input an object ID and returns a list of pointers to the IDs of its ancestors. If the ID input is invalid or a malloc error occurred, a NULL pointer is returned. The closest ancestor is the first entry in the list; root (ID 0) will always be the last entry in the list. Note: after data in the list structure is no longer needed, the caller needs to call ult_lst_free to free the space allocated by oht_getAncestors.

EXAMPLE:

with OHT;

use OHT;

with ULT_LIST;

use ULT_LIST;

with BASE_TYPES;

OBJECT_ID 	: BASE_TYPES.INT_32_TYPEINTEGER ;

ANCESTORS 	: LIST_PTR ;

ANCESTORS := OHT_GETANCESTORS (OBJECT_ID);

�

FUNCTION: � tc " OHT_GETCHILDREN" \l 3 �OHT_GETCHILDREN�
IFA11004�
�
CALLING SEQUENCE:

CHILDREN := OHT_GETCHILDREN (OBJECT_ID)

PARAMETERS:

Name	I/O	Type	Description

OBJECT_ID	I	INT_32_TYPEINTEGER	Object ID.

CHILDREN	O	LIST_PTR	Pointer to the root node of the linked list of pointers to the children's object IDs.

DESCRIPTION:

This function receives as input an object ID and returns a list of pointers to the IDs of its children. If no children exist for the object ID input, a NULL pointer is returned. If the ID input is invalid or in the event of failure, NULL is returned. Note: after data in the list structure is no longer needed, the caller needs to call ult_lst_free to free the space allocated by oht_getChildren.

EXAMPLE:

with OHT;

use OHT;

with ULT_LIST;

use ULT_LIST;

with BASE_TYPES;

NAME 	: Type;

OBJECT_ID 	: BASE_TYPES.INT_32_TYPEINTEGER;

CHILDREN	: LIST_PTR;

CHILDREN := OHT_GETCHILDREN (OBJECT_ID);

�

FUNCTION: � tc " OHT_GETNAME" \l 3 �OHT_GETNAME�
IFA11005�
�
CALLING SEQUENCE:

STATUS := OHT_GETNAME (OBJECT_ID, NAME)

PARAMETERS:

Name	I/O	Type	Description

OBJECT_ID	I	INT_32_TYPEINTEGER	Object ID for which caller wishes to retrieve corresponding object name.

NAME	O	ADDRESS	Pointer to space allocated by caller to hold object name (a maximum of 31 characters) which corresponds to object ID.

STATUS	O	ST_STATUS	Returns SUCCESS or FAILURE to find name for given ID (global oht_errno is set in the event of failure).

DESCRIPTION:

This function copies the NULL-terminated string containing the name of the object that corresponds to the object ID input to the function. If the ID is invalid (i.e., it is not indexed), FAILURE is returned, the string is NULL-terminated, and the global oht_errno is set.

EXAMPLE:

with OHT;

use OHT;

with ST_SYSDEFS;

use ST_SYSDEFS;

with OT_DEFINES;

use OT_DEFINES;

with BASE_TYPES;

OBJECT_ID 	: BASE_TYPES.INT_32_TYPEINTEGER;

NAME 	: STRING(1..31);

STATUS 	: ST_STATUS;

STATUS := OHT_GETNAME (OBJECT_ID, NAME'ADDRESS);

�

FUNCTION: � tc " OHT_GETOBJECTCLASSDATA" \l 3 �OHT_GETOBJECTCLASSDATA�
IFA11006�
�
CALLING SEQUENCE:

OBJECT_DATA_STRUCT := OHT_GETOBJECTCLASSDATA (OBJECT_ID, SELECT_FLAG, ERROR_CODE)

PARAMETERS:

Name	I/O	Type	Description

OBJECT_ID	I	INT_32_TYPEINTEGER	Object ID.

SELECT_FLAG	I	INT_16_TYPESHORT_INTEGER 	Indicator specifying which Object Class data to return; predefined in out_defines.a.

ERROR_CODE	O	ST_STATUS_PTRADDRESS 	Address of error return code.

OBJECT_DATA_	O	OBJECT_CLASS_	Pointer to Object Class data

STRUCT		DATA_PTR	structure.

DESCRIPTION:

This function services a request for information about an object from the Object Class data file, which is managed by the Object Hierarchy Server process. The function accepts an object ID which references the Object Class data being requested, as well as a selection criteria flag used to indicate which fields to return. The function returns a pointer to an Object Class data structure. An error status flag is set by the function: 0 indicates no errors were encountered, -1 indicates an error was encountered in servicing the request. If no data is found or an error was encountered, a NULL pointer is returned and the global oht_errno is set. The caller needs to call oht_freeObjectClassData to free the space allocated by the function once data is no longer needed.

EXAMPLE:

with OHT;

use OHT;

with OHT_ERROR;

use OHT_ERROR;

with OT_DEFINES;

use OT_DEFINES;

with ULT_LIST;

use ULT_LIST;

with ST_SYSDEFS;

use ST_SYSDEFS;

with UNCHECKED_CONVERSION;

with TEXT_IO;

with BASE_TYPES;

 OBJECT_ID 	: BASE_TYPES.INT_32_TYPE INTEGER := 11;

	SELECT_FLAG 	: BASE_TYPES.INT_16_TYPE SHORT_INTEGER := 22;

	ERROR_CODE 	: ST_STATUSINTEGER;

	OBJECT 	: OBJECT_CLASS_DATA_PTR;

	type STR is

	 record

	 STRN 	: STRING(1..15);

 end record;

	type STR_PTR is access STR;

	NEW_STR : STR_PTR;

	function ADDR_TO_STR_PTR is new

		 UNCHECKED_CONVERSION(ADDRESS, STR_PTR);

begin

OBJECT := OHT_GETOBJECTCLASSDATA(OBJECT_ID,SELECT_FLAG,

				ERROR_CODE'ADDRESS);

ADDR_TO_INT(OBJECT.ID_FIELD)));

NEW_STR := ADDR_TO_STR_PTR(OBJECT.ID_FIELD);

TEXT_IO.PUT_LINE("OBJECT.ID_FIELD IS " & NEW_STR.STRN);

�

FUNCTION: � tc " OHT_GETOBJECTID" \l 3 �OHT_GETOBJECTID�
IFA11007�
�
CALLING SEQUENCE:

ID := OHT_GETOBJECTID (NAME)

PARAMETERS:

Name	I/O	Type	Description

NAME	I	ADDRESS 	Pointer to NULL-delimited character string containing object name.

ID	O 	INT_32_TYPEINTEGER	Object ID associated with name.

DESCRIPTION:

This function returns the object ID associated with an object name received as input.

EXAMPLE:

with OHT;

use OHT;

with BASE_TYPES;

NAME 	: constant STRING := "NAME" & ASCII.NUL;

ID 	: BASE_TYPES.INT_32_TYPEINTEGER;

ID := OHT_GETOBJECTID (NAME'ADDRESS);

�

FUNCTION: � tc " OHT_GETPARENT" \l 3 �OHT_GETPARENT�
IFA11008�
�
CALLING SEQUENCE:

PARENT_ID := OHT_GETPARENT (OBJECT_ID)

PARAMETERS:

Name	I/O	Type	Description

OBJECT_ID	I	INT_32_TYPEINTEGER	Object ID.

PARENT_ID	O	INT_32_TYPEINTEGER	Parent ID of object identified by input parameter.

DESCRIPTION:

This function receives as input an object ID and returns the ID corresponding to the parent object. The parent ID of the first-level objects will be 0, indicating that the parent is root. The ID returned for invalid object IDs is -1. Note: a root ID of 0 is considered invalid since root has no parent.

EXAMPLE:

with OHT;

use OHT;

with BASE_TYPES;

OBJECT_ID 	: BASE_TYPES.INT_32_TYPEINTEGER;

PARENT_ID 	: BASE_TYPES.INT_32_TYPEINTEGER;

PARENT_ID := OHT_GETPARENT (OBJECT_ID);

�

FUNCTION: � tc " OHT_GETSIBLINGS" \l 3 �OHT_GETSIBLINGS�
IFA11009�
�
CALLING SEQUENCE:

SIBLINGS := OHT_GETSIBLINGS (OBJECT_ID)

PARAMETERS:

Name	I/O	Type	Description

OBJECT_ID	I	INT_32_TYPEINTEGER 	Object ID.

SIBLINGS	O	LIST_PTR 	Pointer to the root node of the linked list of pointers to the siblings' object IDs.

DESCRIPTION:

This function receives as input an object ID and returns a list of pointers to the IDs of its siblings. If no siblings exist for the object ID, a NULL pointer is returned. Note: After data in the list is no longer needed, the caller needs to call ult_lst_free to free the space allocated by oht_getSiblings.

EXAMPLE:

with OHT;

use OHT;

with ULT_LIST;

use ULT_LIST;

with BASE_TYPES;

OBJECT_ID 	: BASE_TYPES.INT_32_TYPEINTEGER;

SIBLINGS 	: LIST_PTR;

SIBLINGS := OHT_GETSIBLINGS (OBJECT_ID);

�

FUNCTION: � tc " OHT_VALIDATEOBJID" \l 3 �OHT_VALIDATEOBJID�
IFA11014�
�
CALLING SEQUENCE:

VALID := OHT_VALIDATEOBJID (OBJECT_ID)

PARAMETERS:

Name	I/O	Type	Description

OBJECT_ID	I	INT_32_TYPEINTEGER	Value of an object ID that caller wishes to verify references an object stored in the Object Class data file.

VALID	O	ST_STATUS	Returns SUCCESS or FAILURE.

DESCRIPTION:

This function checks to determine whether the object ID received as input corresponds to an object currently stored in the Object Class data file. If it is a valid object ID, a 0 is returned; otherwise, -1 is returned. Note: a root ID of 0 is considered invalid input, since this ID does not point to an actual Object Class data record.

EXAMPLE:

with OHT;

use OHT;

with OHT_ERROR;

use OHT_ERROR;

with ST_SYSDEFS;

use ST_SYSDEFS;

with BASE_TYPES;

OBJECT_ID 	: BASE_TYPES.INT_32_TYPEINTEGER;

VALID 	: ST_STATUS;

VALID := OHT_VALIDATEOBJID (OBJECT_ID);

Document No. 160008-IDD-6.1 - April 1997

(G.10.1)		176_A_28;7/8/97

