SECTION G.1.13�AIRCRAFT MISSION PLANNING �HANDLES PROCESSING�(AXT) ADA BINDINGS

�

�

This page intentionally left blank.�

function: � TC " axt_FindFlightEvent " \l 3 �axt_FindFlightEvent�
IFA16255�
�
CALLING SEQUENCE:

handle := axt_FindFlightEvent(hWaypt, eventType)

PARAMETERS:

Name	I/O	Type	Description

hWaypt	I	UZT_STRUCTS.UZT_	Handle of waypoint to retrieve a

		HNDL_PTR	given flight event from.

eventType	I	BASE_TYPES.INT_	Type of flight event to retrieve.

		16_TYPE	

handle	O	UZT_STRUCTS.UZT_	Handle for flight event data.

		HNDL_PTR	NULL handle if the waypoint does not contain the specified flight event.

DESCRIPTION:

This function will attempt to retrieve the flight event specified by the input event type from the waypoint referenced by the input waypoint handle.

If an invalid parameter is passed in for the waypoint handle (i.e., a NULL value, or an incorrect type of handle), then a NULL flight event handle will be returned.

If the flight event is found, a data handle of type UZT_HANDLE will be created and returned for the specified flight event. This handle will be required to retrieve data for the flight event. When the handle (if not NULL) is no longer needed, the calling function should call axt_deleteHandle and free the returned data handle.

If the flight event is not found, a NULL flight event handle will be returned.

Pertinent constants for flight event types are shown below. These constants are located in src/bindings/aft_event_defs.a.

AFT_ATTACK_EVENT		: constant :=	1;

AFT_WEAPON_EVENT		: constant :=	2;

AFT_REFUEL_EVENT		: constant :=	3;

AFT_HOLD_EVENT 		: constant :=	4;

AFT_HACK_EVENT 		: constant :=	5;

AFL_GRND_EVENT		: constant :=	6;

AFT_NASP_EVENT 		: constant :=	7;

AFL_LZ_EVENT		: constant :=	8;

AFL_FARP_EVENT		: constant :=	9;

AFL_HOVR_EVENT		: constant :=	10;

AFL_EAF_EVENT		: constant :=	11;

AFT_LAUNCH_WEAPON_EVENT		: constant :=	21;

AFT_ACTION_PT_COORD_EVENT		: constant :=	22;

--AFT_RESERVED_EVENTS, 12-20

EXAMPLE:

with UZT_STRUCTS;

with BASE_TYPES;

HWAYPT	: UZT_STRUCTS.UZT_HNDL_PTR;

EVENTTYPE	: BASE_TYPES.INT_16_TYPE;

HANDLE	: UZT_STRUCTS.UZT_HNDL_PTR;

HANDLE := AXT_FINDFLIGHTEVENT (HWAYPT, EVENTTYPE);

�

function: � TC " axt_GenerateFlightEvent " \l 3 �axt_GenerateFlightEvent�
IFA16256�
�
CALLING SEQUENCE:

handle := axt_GenerateFlightEvent(hEvent, pData)

PARAMETERS:

Name	I/O	Type	Description

hEvent	I	UZT_STRUCTS.UZT_	Handle of event interface that

		HNDL_PTR	contains information about the flight event.

pData	I	SYSTEM.ADDRESS	Address of data specific to the flight event.

handle	O	UZT_STRUCTS.UZT_	Handle of the new flight event

		HNDL_PTR	data, a NULL handle if unable to add new flight event.

DESCRIPTION:

This function will generate a new flight event from the event interface data referenced by the input event interface handle for a waypoint.

If an invalid parameter is passed in for the event interface handle (i.e., a NULL value, or an incorrect type of handle), then a NULL flight event handle will be returned.

The waypoint that the flight event will be added to is determined by the event interface data and if it cannot be determined from that, then the current active waypoint is used.

If the new flight event was successfully created, a data handle of type UZT_HANDLE will be created and returned for the specified flight event. This handle will be required to retrieve data for the flight event. When the handle (if not NULL) is no longer needed, the calling function should call axt_deleteHandle and free the returned data handle.

If the flight event could not be created, a NULL flight event handle will be returned.

EXAMPLE:

with SYSTEM;

with UZT_STRUCTS;

HEVENT	: UZT_STRUCTS.UZT_HNDL_PTR;

PDATA	: SYSTEM.ADDRESS;

HANDLE	: UZT_STRUCTS.UZT_HNDL_PTR;

HANDLE := AXT_GENERATEFLIGHTEVENT (HEVENT, PDATA);

�

function: � TC " axt_insert " \l 1 � axt_insert�
IFA16257�
�
CALLING SEQUENCE:

status := axt_insert(listHandle, type, routeId, point)

PARAMETERS:

Name	I/O	Type	Description

listHandle	I	UZT_STRUCTS.UZT_	List containing handles to data

		HNDL_PTR	that are to be inserted into the route or attached to the specified waypoint.

handleType	I	BASE_TYPES.INT_	Type of handles that listHandle

		32_TYPE	contains.

routeId	I	BASE_TYPES.INT_	Route ID.

		32_TYPE	

point	I	BASE_TYPES.INT_	Existing waypoint to insert new

		32_TYPE	waypoints after.

status	O	ST_STATUS	Return status.

DESCRIPTION:

This function will insert waypoints into an existing route. The waypoint and nav point data will be retrieved from the listHandle parameter and inserted into the route specified in the routeId parameter. The new waypoints will be inserted after the waypoint specified in the point parameter.

In the waypoint structure (APT_ACTION_POINT_T) the point_type field (of type APT_POINTTYPE) will be set to APT_NAVPOINT_TYPE. In the nav point structure (APT_NAVPT_T) the only allowed values for the type field (type APT_NAVTYPE) are APT_COMPUTED_POINT, APT_NO_ADD_AFTER, APT_NO_DELETE, and APT_NAVIG. If it is not one of those values, it is set to APT_NAVIG.

EXAMPLE:

with UZT_STRUCTS;

with AXT_DEFINES;

with BASE_TYPES;

with ST_SYSDEFS;

LISTHANDLE	: UZT_STRUCTS.UZT_HNDL_PTR;

HANDLETYPE	: BASE_TYPES.INT_32_TYPE;

ROUTEID	: BASE_TYPES.INT_32_TYPE;

POINT	: BASE_TYPES.INT_32_TYPE;

STATUS	: ST_SYSDEFS.ST_STATUS;

STATUS := AXT_INSERT (LISTHANDLE, TYPE, ROUTEID, POINT);

Document No. 160008-IDD-6.1 - April 1997

(G.1-new)	174_A_11;7/30/97

I-�

(G.1-new)		174_A_11;7/30/97

Document No. 168021-IDD - September 1992

IDD.DOC,APNDX.B,Rev 14

