
function: � TC " amt_AddDisplayTarget " \l 3 �amt_AddDisplayTarget�IFA9259��CALLING SEQUENCE:
status = amt_AddDisplayTarget(hMsnPlan, hTarget)
PARAMETERS:
Name	I/O	Type	Description
hMsnPlan	I	UZT_HANDLE	Handle to a mission plan.
hTarget	I	UZT_HANDLE	Handle of target to add to the list of display objects that are to be added to the display buckets at a future time.
status	O	ST_STATUS	ST_SUCCESS if target was successfully added to the list of display objects that are to be added to the display buckets at a future time, otherwise, ST_FAILURE.
DESCRIPTION:
This function will create a display object for the target referenced by the input target handle and add it to a list of display objects that are to be displayed at a future time.

If an invalid parameter is passed in for either the mission plan handle or the target handle (i.e., a NULL value or an incorrect type of handle), then ST_FAILURE will be returned.

The newly created display object will be added to the list of display items that are to be displayed at a future time. When the item is displayed, it will be added to the “Targets” display bucket in the display layer for the mission plan referenced by the input mission plan handle when it is displayed on the screen.

Upon successful creation of the display object for the target symbol for the “Targets” display bucket, ST_SUCCESS will be returned; otherwise, ST_FAILURE will be returned.
EXAMPLE:
#include “a_msn_plan/aet_proto.h”
#include “a_msn_plan/axt_enum.h”
#include “a_msn_plan/axt_proto.h”
#include “util/uzt_structs.h”
#include “util/uzt_proto.h”

/* This example shows how to add a specified target to the display	*/
/* object queue for display at a future time.				*/

ST_STATUS my_AddTargetToAdditionQueue(UZT_HANDLE hTarget)
{
	UZT_HANDLE	hMissionPlan = NULL;
	ST_STATUS		status = ST_SUCCESS;
	uzt_Args		args[1];
	uzt_Cardinal		argcnt = 0;

	/* Get the handle to the current mission.				*/
	if ((hMissionPlan = axt_createHandle(AXT_MISSION_HANDLE,
						 args, argcnt)) == NULL) {
		printf(“Unable to retrieve current mission.\n”);
		return(ST_FAILURE);
	}

	if ((status = amt_AddDisplayTarget(hMissionPlan, hTarget) == ST_FAILURE) {
		printf(“Unable to add target to display.\n”);
	}
		
	/* Delete the handle to the mission.				*/
	if (hMissionPlan)
		axt_deleteHandle(hMissionPlan, AXT_MISSION_HANDLE);

	return(status);
}
�
function: � TC " amt_DeleteDisplayTarget " \l 3 �amt_DeleteDisplayTarget�IFA9260��CALLING SEQUENCE:
status = amt_DeleteDisplayTarget(hMsnPlan, hTarget)
PARAMETERS:
Name	I/O	Type	Description
hMsnPlan	I	UZT_HANDLE	Handle to mission plan.
hTarget	I	UZT_HANDLE	Handle of target to add to the list of display objects that are to be deleted from the display buckets at a future time.
status	O	ST_STATUS	ST_SUCCESS if the target was successfully added to the list of display objects that are to be removed from the display buckets at a future time, otherwise, ST_FAILURE.
DESCRIPTION:
This function will add the display object for the target referenced by the input target handle to a list of display objects that will be removed from the display buckets at a future time.

If an invalid parameter is passed in for either the mission plan handle or the target handle (i.e., a NULL value or an incorrect type of handle), then ST_FAILURE will be returned.

The list of display objects to be added to the display at a future time will first be checked to see if the desired display object for the target is there. If the display object for the target is in the list of display objects that are to be added to the display at a future time, then the display object is removed from the list, the resources used by the display object are freed, and ST_SUCCESS will be returned.

If the display object for the target was not in the list of objects that are to be added to the display at a future time, then the “Targets” display bucket in the display layer for the mission plan referenced by the input mission plan handle is checked to see if the desired display object for the target is already being displayed. If the display object for the target is already being displayed, then the display object is added to a list of display objects that are to be removed from the display at a future time, and ST_SUCCESS will be returned.

If the display object for the target is not found in the list of display objects that are to be displayed at a future time, or in the “Targets” display bucket in the display layer for the mission plan, then ST_FAILURE will be returned.
EXAMPLE:
#include “a_msn_plan/aet_proto.h”
#include “a_msn_plan/axt_enum.h”
#include “a_msn_plan/axt_proto.h”
#include “util/uzt_structs.h”
#include “util/uzt_proto.h”

/* This example shows how to add a specified target to the display	*/
/* object queue for removal from the display at a future time.	*/

ST_STATUS my_AddTargetToRemovalQueue(UZT_HANDLE hTarget)
{
	UZT_HANDLE	hMissionPlan = NULL;
	ST_STATUS		status = ST_SUCCESS;
	uzt_Args		args[1];
	uzt_Cardinal		argcnt = 0;

	/* Get the handle to the current mission.				*/
	if ((hMissionPlan = axt_createHandle(AXT_MISSION_HANDLE,
						 args, argcnt)) == NULL) {
		printf(“Unable to retrieve current mission.\n”);
		return(ST_FAILURE);
	}

	if ((status = amt_DeleteDisplayTarget(hMissionPlan, hTarget) ==
	 ST_FAILURE) {
		printf(“Unable to add target to deletion queue.\n”);
	}
		
	/* Delete the handle to the mission.				*/
	if (hMissionPlan)
		axt_deleteHandle(hMissionPlan, AXT_MISSION_HANDLE);

	return(status);
}
�
function: � TC " amt_GetRouteDeleted " \l 3 �amt_GetRouteDeleted�IFA9261��CALLING SEQUENCE:
routeId = amt_GetRouteDeleted()
PARAMETERS:
Name	I/O	Type	Description
routeId	O	int	The identification number of the route that is being deleted or has already been deleted.
DESCRIPTION:
This function returns the identification number of the route that is being deleted or has already been deleted.

If no route is being deleted or has been deleted, the function will return zero (0).
EXAMPLE:
#include “a_msn_plan/aet_proto.h”
#include “a_msn_plan/axt_enum.h”
#include “a_msn_plan/axt_proto.h”
#include “util/uzt_structs.h”
#include “util/uzt_proto.h”

/* This example shows how to check if the current route is	being	*/
/* deleted and if it is, remove all waypoints from the route.		*/

void my_RemoveAllWaypoints()
{
	UZT_HANDLE	hRoute = NULL;
	UZT_HANDLE	hWaypoint = NULL;
	uzt_Args		args[1];
	uzt_Cardinal		argcnt = 0;
	int			waypointNum = 0;
	int			lastWaypointNum = aet_GetLastActionPoint();

	/* Get the handle to the current route.				*/
	if ((hRoute = axt_createHandle(AXT_ROUTE_HEADER_HANDLE,
					 args, argcnt) == NULL) {
		printf(“Unable to retrieve current route.\n”);

		return;
	}

	/* Get the Id number for the route.				*/
	uzt_setArgs(args[argcnt], AXT_routeId, &routeId); argcnt++;

	uzt_getValues(hRoute, args, argcnt);

	/* Check if the current route is the one being deleted.		*/
	if (routeId == amt_GetRouteDeleted()) {
		/* Remove all waypoints from the route.			*/
		for (waypointNum = 1; waypointNum < lastWaypointNum;
		 waypointNum++) {
			argcnt = 0;
			uzt_setArgs(args[argcnt], AXT_actionPtId, &waypointNum);
			argcnt++;

			hWaypoint = axt_createHandle(AXT_ACTION_POINT_HANDLE,
							 args, argcnt);

			if (hWaypoint) {						
				aet_FreeWaypoint(&hWaypoint);
				/* There is no need to call			*/
				/* axt_deleteHandle since			*/
				/* aet_FreeWaypoint has freed the		*/
				/* handle.					*/
			}
		}
	}

	/* Delete the route handle.						*/
	if (hRoute)
		axt_deleteHandle(hRoute, AXT_ROUTE_HEADER_HANDLE);
}
�
function: � TC " amt_SetRouteDeleted " \l 3 �amt_SetRouteDeleted�IFA9262��CALLING SEQUENCE:
(void) amt_SetRouteDeleted(routeId)
PARAMETERS:
Name	I/O	Type	Description
routeId	I	int	The identification number of the route that is being deleted.
DESCRIPTION:
This function will set a static local variable that signifies the identification number of the route being deleted.

No return value is specified for this function.
EXAMPLE:
#include “a_msn_plan/aet_proto.h”
#include “a_msn_plan/axt_enum.h”
#include “a_msn_plan/axt_proto.h”
#include “util/uzt_structs.h”
#include “util/uzt_proto.h”

/* This example shows how to set the Id of the route that is being	*/
/* deleted, and use this information to delete all the waypoints	*/
/* for the route.								*/

void my_RemoveAllWaypoints();

void my_RemoveRoute(UZT_HANDLE hRoute)
{
	uzt_Args		args[1];
	uzt_Cardinal		argcnt = 0;
	int			routeId = 0;

	/* Get the route Id number.						*/
	uzt_setArgs(args[argcnt], AXT_routeId, &routeId); argcnt++;

	uzt_getValues(hRoute, args, argcnt);

	/* Set the route Id for the route being deleted.			*/
	amt_SetRouteDeleted(routeId);

	/* Delete the waypoints for the route.				*/
	my_RemoveAllWaypoints();
}

/* This function will remove all waypoints from the current	*/
/* route if the current route is the same as the route that is being	*/
/* deleted.									*/
void my_RemoveAllWaypoints()
{
	UZT_HANDLE	hRoute = NULL;
	UZT_HANDLE	hWaypoint = NULL;
	uzt_Args		args[1];
	uzt_Cardinal		argcnt = 0;
	int			waypointNum = 0;
	int			lastWaypointNum = aet_GetLastActionPoint();

	/* Get the handle to the current route.				*/
	if ((hRoute = axt_createHandle(AXT_ROUTE_HEADER_HANDLE,
					 args, argcnt) == NULL) {
		printf(“Unable to retrieve current route.\n”);

		return;
	}

	/* Get the Id number for the route.				*/
	uzt_setArgs(args[argcnt], AXT_routeId, &routeId); argcnt++;

	uzt_getValues(hRoute, args, argcnt);

	/* Check if the current route is the one being deleted.		*/
	if (routeId == amt_GetRouteDeleted()) {
		/* Remove all waypoints from the route.			*/
		for (waypointNum = 1; waypointNum < lastWaypointNum;
		 waypointNum++) {
			argcnt = 0;
			uzt_setArgs(args[argcnt], AXT_actionPtId, &waypointNum);
			argcnt++;

			hWaypoint = axt_createHandle(AXT_ACTION_POINT_HANDLE,
							 args, argcnt);

			if (hWaypoint) {						
				aet_FreeWaypoint(&hWaypoint);
				/* There is no need to call			*/
				/* axt_deleteHandle since			*/
				/* aet_FreeWaypoint has freed the		*/
				/* handle.					*/
			}
		}
	}

	/* Delete the route handle.						*/
	if (hRoute)
		axt_deleteHandle(hRoute, AXT_ROUTE_HEADER_HANDLE);
}�
function: � TC " amt_UpdateRouteDisplay " \l 3 �amt_UpdateRouteDisplay�IFA9263��CALLING SEQUENCE:
status = amt_UpdateRouteDisplay(hRoute)
PARAMETERS:
Name	I/O	Type	Description
hRoute	I	UZT_HANDLE	Handle to route.
status	O	ST_STATUS	ST_SUCCESS if the display queues for adding/deleting display objects have been processed correctly and the objects have been added/deleted to/from the corresponding display buckets, otherwise, ST_FAILURE.
DESCRIPTION:
This function removes a list of display objects from the display buckets and adds a list of display objects to the display buckets.

If an invalid parameter is passed in for the route handle (i.e., a NULL value or an incorrect type of handle), then ST_FAILURE will be returned.

Upon completion of processing the list of display objects that needed to be deleted from the display buckets and the list of display objects that needed to be added to the display buckets, the display objects on both lists will be removed, and ST_SUCCESS will be returned.
EXAMPLE:
#include “a_msn_plan/aet_proto.h”
#include “a_msn_plan/axt_enum.h”
#include “a_msn_plan/axt_proto.h”
#include “util/uzt_structs.h”
#include “util/uzt_proto.h”

/* This example shows how to add/remove a specified target to the	*/
/* display object queues and redisplay the route with the target added/
/* removed.									*/

ST_STATUS my_UpdateDisplayTargets(UZT_HANDLE hTarget, Boolean addTarget)
{
	UZT_HANDLE	hMissionPlan = NULL;
	UZT_HANDLE	hRoute = NULL;
	ST_STATUS		status = ST_SUCCESS;
	uzt_Args		args[1];
	uzt_Cardinal		argcnt = 0;

	/* Get the handle to the current mission.				*/
	if ((hMissionPlan = axt_createHandle(AXT_MISSION_HANDLE,
						 args, argcnt)) == NULL) {
		printf(“Unable to retrieve current mission.\n”);
		return(ST_FAILURE);
	}

	if (addTarget == True) {
		/* Add the target object to the queue to add display	*/
		/* objects to the display.					*/
		if ((status = amt_AddDisplayTarget(hMissionPlan, hTarget) ==
		 ST_FAILURE) {
			printf(“Unable to add target to display.\n”);

			status = ST_FAILURE;
		}
	}
	else {
		/* Add the target object to the queue to remove display	*/
		/* objects from the display.					*/
		if ((status = amt_DeleteDisplayTarget(hMissionPlan, hTarget) ==
		 ST_FAILURE) {
			printf(“Unable to remove target from display.\n”);

			status = ST_FAILURE;
		}
	}

	if (status == ST_SUCCESS) {
		/* Get the current active route.				*/
		if ((hRoute = axt_createHandle(AXT_ROUTE_HEADER_HANDLE,
						 args, argcnt) == ST_FAILURE) {
			printf(“Unable to retrieve current active route.\n”);

			status = ST_FAILURE;
		}
		else {
			/* Process the display object queues and		*/
			/* redisplay the route.				*/
			status = amt_UpdateRouteDisplay(hRoute);

			/* Delete the handle to the route.			*/
			axt_deleteHandle(hRoute, AXT_ROUTE_HEADER_HANDLE);
		}
	}

	/* Delete the handle to the mission.				*/
	if (hMissionPlan)
		axt_deleteHandle(hMissionPlan, AXT_MISSION_HANDLE);

	return(status);
Document No. 160008-IDD-6.1 - April 1997

(C.1.8)		174_A_06;7/30/97

Document No. 168021-IDD - September 1992

IDD.DOC,APNDX.B,Rev 14

