

function: � TC " aft_CheckFlightEventConflict " \l 3 �aft_CheckFlightEventConflict�
IFA9256�
�
CALLING SEQUENCE:

status = aft_CheckFlightEventConflict(hWaypt, hEvent)

PARAMETERS:

Name	I/O	Type	Description

hWaypt	I	UZT_HANDLE	Handle of waypoint whose flight events should be checked.

hEvent	I	UZT_HANDLE	Handle of event interface that specifies the event type to check.

status	O	ST_STATUS	ST_FAILURE if the flight event is incompatible with the current flight events, otherwise, ST_SUCCESS.

DESCRIPTION:

This function will check if the flight event referenced by the input event interface handle is compatible with the current flight events associated with the waypoint referenced by the input waypoint handle.

If an invalid parameter is passed in for the event interface handle (i.e., a NULL value or an incorrect type of handle), then ST_FAILURE will be returned.

If the input waypoint handle is NULL, or is an invalid waypoint handle, then the current waypoint will be used.

Each flight event has a compatibility type associated with it. Compatibility for flight events is summarized in the table below. An “X” indicates compatibility with flight events of the given compatibility type. As can be seen, flight events that have a compatibility type of AFT_SINGLE_EVENT are not compatible with other flight events.

New Flight Event �Compatibility Type�
Current Flight Event Compatibility Type

�
�
�
AFT_COMPATABLE_ANY_EVENT�
AFT_EXCLUSIVE_EVENT�
AFT_SINGLE_EVENT�
�
AFT_COMPATABLE_ANY_EVENT�
X�
X�
�
�
AFT_EXCLUSIVE_EVENT�
X�
�
�
�
AFT_SINGLE_EVENT�
�
�
�
�

Depending on the compatibility type associated with the event interface and the compatibility type of the flight events for the waypoint, ST_FAILURE will be returned if any of the current flight events are incompatible with the flight event specified by the input event interface, or ST_SUCCESS will be returned if the current flight events are compatible with the flight event specified by the input event interface.

Pertinent #defines for flight event types and compatibility types are shown below. #defines are located in a_msn_plan/aft_event_defs.h

/* Event compatibility defines. */

typedef enum {

	AFT_COMPATABLE_ANY_EVENT,	/* Compatible with any other event. */

	AFT_EXCLUSIVE_EVENT, 	/* Compatible with			 */

		/*AFT_COMPATABLE_ANY_EVENT */

	AFT_SINGLE_EVENT 	/* Not compatible with any other */

		/* event.					 */

} AFT_EVENT_COMPATABILITY;

/* Defines for "canned" flight event types. */

#define AFT_ATTACK_EVENT			1

#define AFT_WEAPON_EVENT			2

#define AFT_REFUEL_EVENT			3

#define AFT_HOLD_EVENT 				4

#define AFT_HACK_EVENT 				5

#define AFL_GRND_EVENT				6

#define AFT_NASP_EVENT 				7

#define AFL_LZ_EVENT				8

#define AFL_FARP_EVENT				9

#define AFL_HOVR_EVENT				10

#define AFL_EAF_EVENT				11

#define AFT_LAUNCH_WEAPON_EVENT		21

#define AFT_ACTION_PT_COORD_EVENT	22

EXAMPLE:

#include “a_msn_plan/aet_proto.h”

#include “a_msn_plan/axt_enum.h”

#include “a_msn_plan/axt_proto.h”

#include “util/uzt_structs.h”

#include “util/uzt_proto.h”

/* This example shows how to check if a user defined flight event	*/

/* is in conflict with any of the other flight events associated with	*/

/* a waypoint.								*/

#define	MY_FLIGHT_EVENT	100

typedef my_flight_data {

	double	loiterTime;

	void		*extraData;

} MY_FLIGHT_DATA;

UZT_HANDLE my_CreateFlightEvent(int wayptNum)

{

	UZT_HANDLE		hWaypoint = NULL;

	UZT_HANDLE		hEventInterface = NULL;

	UZT_HANDLE		hFlightEvent = NULL;

	MY_FLIGHT_DATA	*pEventData = NULL;

	uzt_Args			args[1];

	uzt_Cardinal			argcnt = 0;

	/* Allocate memory for the custom flight data.			*/

	if ((pEventData = (MY_FLIGHT_DATA *) calloc(1, sizeof(MY_FLIGHT_DATA))

	 == NULL) {

		printf(“Unable to allocate flight event data.\n”);

		return(hFlightEvent);

	}

	pEventData->loiterTime = 300;

	pEventData ->extraData = NULL;

	/* Get an event interface handle for the registered custom	*/

	/* flight event.							*/

	uzt_setArgs(args[argcnt], AXT_eventType, MY_FLIGHT_EVENT); argcnt++;

	if ((hEventInterface = axt_createHandle(AXT_EVENT_INTERFACE_HANDLE,

							 args, argcnt) == NULL) {

		printf(“Unable to retrieve desired event type.\n”);

		return(hFlightEvent);

	}

	/* Get the handle to the desired waypoint.			*/

	uzt_setArgs(args[argcnt], AXT_actionPtId, &wayptNum); argcnt++;

	if ((hWaypoint = axt_createHandle(AXT_ACTION_POINT_HANDLE,

						 args, argcnt)) == NULL) {

		printf(“Unable to retrieve waypoint #%d.\n”, wayptNum);

		return(hFlightEvent);

	}

	/* Check for event conflicts.					*/

	if (aft_CheckFlightEventConflict(hWaypoint, hEventInterface) ==

	 ST_SUCCESS) {

		/* Generate a new flight event.				*/

		hFlightEvent = axt_GenerateFlightEvent(hEventInterface, pEventData);

	}

	/* Delete the handle to the event interface and waypoint that	*/

	/* were created.							*/

	if (hWaypoint)

		axt_deleteHandle(hWaypoint, AXT_ACTION_POINT_HANDLE);

	if (hEventInterface)

		axt_deleteHandle(hEventInterface,

				 AXT_EVENT_INTERFACE_HANDLE);

	return(hFlightEvent);

}

�

function: � TC " aft_DeleteAnyFlightEvent " \l 3 �aft_DeleteAnyFlightEvent�
IFA9257�
�
CALLING SEQUENCE:

status = aft_DeleteAnyFlightEvent(hWaypt, eventType)

PARAMETERS:

Name	I/O	Type	Description

hWaypt	I	UZT_HANDLE	Handle of waypoint to delete flight event from.

eventType	I	short	Type of flight event to delete.

status	O	ST_STATUS	ST_FAILURE for invalid waypoint handle values, otherwise, ST_SUCCESS.

DESCRIPTION:

This function will delete the flight event specified by the input event type from the waypoint referenced by the input waypoint handle.

If an invalid parameter is passed in for the waypoint handle (i.e., a NULL value or an incorrect type of handle), then ST_FAILURE will be returned.

This function will return ST_SUCCESS if the flight event of the given type does or does not exist for the given waypoint.

Pertinent #defines for flight event types are shown below. #defines are located in a_msn_plan/aft_event_defs.h

#define AFT_ATTACK_EVENT			1

#define AFT_WEAPON_EVENT			2

#define AFT_REFUEL_EVENT			3

#define AFT_HOLD_EVENT 				4

#define AFT_HACK_EVENT 				5

#define AFL_GRND_EVENT				6

#define AFT_NASP_EVENT 				7

#define AFL_LZ_EVENT				8

#define AFL_FARP_EVENT				9

#define AFL_HOVR_EVENT				10

#define AFL_EAF_EVENT				11

#define AFT_LAUNCH_WEAPON_EVENT		21

#define AFT_ACTION_PT_COORD_EVENT	22

EXAMPLE:

#include “a_msn_plan/aet_proto.h”

#include “a_msn_plan/axt_enum.h”

#include “a_msn_plan/axt_proto.h”

#include “util/uzt_structs.h”

#include “util/uzt_proto.h”

/* This example shows how to delete a specified flight event given	*/

/* the number of the waypoint and the enumeration representing	*/

/* the flight event.							*/

ST_STATUS my_DeleteFlightEvent(int wayptNum, short eventType)

{

	UZT_HANDLE	hWaypoint = NULL;

	ST_STATUS		status = ST_SUCCESS;

	uzt_Args		args[1];

	uzt_Cardinal		argcnt = 0;

	/* Get the handle to the desired waypoint.			*/

	uzt_setArgs(args[argcnt], AXT_actionPtId, &wayptNum); argcnt++;

	if ((hWaypoint = axt_createHandle(AXT_ACTION_POINT_HANDLE,

						 args, argcnt)) == NULL) {

		printf(“Unable to retrieve waypoint #%d.\n”, wayptNum);

		return(ST_FAILURE);

	}

	/* Delete the specified flight event from the waypoint.		*/

	if ((status = aft_DeleteAnyFlightEvent(hWaypoint, eventType) ==

	 ST_FAILURE) {

		printf(“Invalid waypoint specified.\n”);

	}

	/* Delete the handle to the waypoint that was created.		*/

	if (hWaypoint)

		axt_deleteHandle(hWaypoint, AXT_ACTION_POINT_HANDLE);

	return(status);

}

Document No. 160008-IDD-6.1 - April 1997

(C.1.5)		174_A_04;7/30/97

