

function: � tc " uxt_ModifyVerifyCallback" \l 3 �uxt_ModifyVerifyCallback�
IFA8091�
�
CALLING SEQUENCE:

uxt_ModifyVerifyCallback(textWidgetw, ParseStringParseText, cbDatacall)

PARAMETERS:

Name	I/O	Type	Description

textWidgetw	I/O	Widget	The text widget to which callback should be added.

ParseStringParseText	I	char*	The parse string. (See below for a description of the specialized regular expression grammar).

cbDatacall	OI	XmTextVerifyCallbackStruct*	Contains the callback data.

DESCRIPTION:

This function is the main interface to the text -verification software. This function allows the applications developer to specify a text -verification string that will be used as a template for data entry by the user. If the user enters a character that is not allowed by the text -verification string, the application will beep and the character will not be entered in the XmText or XmTextField value string. The text verification string allows for regular expressions, as well as some predefined data entry templates. This function should be registered as a XmNmodifyVerifyCallback on the appropriate XmText or XmTextField widget with the text -verification string specified as the client data to the callback. Refer to the example below, as well as the regular expression grammar for more informationfor more detail.

Below is a description of the regular grammer which can be used for parseString. �

Basic Operations with Default Parameters

%d	An integer with a minimum of one (1) character and a maximum of eight (8) characters.

%|	An integer with a minimum of one (1) character and a maximum of 12 characters.

%s	A string with a minimum of one (1) characer and a maximum of 500 characters

%c	A single character.

Note: Each of the above may be modified further by adding a single number which specifies the number of characters that must be entered. The number of characters must be matched exactly.

For example:

%2d	A two (2)-digit number must be entered. The positive and negative signs are of no consequence.

A range may also be specified with a dash separating the two (2) modifiers.

%2-10s	At least two (2) characters, but no more than ten, may be entered.

If no positive or negative signs can be entered, a “+” should be placed after the %.

%+2-4d	A four (4)-digit integer with no sign

Operations involving Square Brackets []

A set of square brackets, “[]”, in the parseString allows the specification of anything inside of the square brackets to be matched, following the rules established by the regular expression compiler (re_comp).

[A-Za-z0-9]	Any letter, upper or lower, and any number.

If a dash, “-”, is wanted it must be the last character before the close bracket. If a close square bracket is wanted, it must be the first character after the open square bracket. If an open square bracket is wanted, it must NOT be the last character before the close square bracket.

If more than one (1) of the characters in the brackets are wanted, then an asterisk, “*”, can be placed after the close bracket.

[a-z]*	Will allow the user to type as many lower case letters as wanted, but at least one (1).

Operations involving Curly Brackets {}

A set of curly brackets, “{}”, in the parseString allows the specification of anything inside of the brackets to be matched, following the rules established by the regular expression compiler (re_comp). The difference between these and the square brackets is that with the square brackets at least one (1) character must match the set. With the curly brackets there is no minimum.

{A-Za-z0-9}	Any letter, upper or lower, any number, or a blank string.

If multiple characters in the bracket are wanted then an asterisk, “*”, can be placed after the close bracket.

{a-z}*	Will allow the user to type as many lower case letters as wanted, including NONE.

Other Special Parse Symbology

%M	A valid month must be entered 1-12.

%D	A valid day must be entered 1-31.

%H	A valid hour must be entered 0-23.

%N	A valid minute must be entered 0-59.

%S		A valid second must be entered 0-59.

%2s/%M/%D %H:%N:%S	Allow entry of “YY/MM/DD HH:MM:SS” format.

Ranges

%min-maxR	A number must be entered between min and max with the number of characters used for minimum being the number of characters that must be entered.

%0-100R	Numbers from zero (0) to 100 are valid.

%00-100R	Again, numbers from zero (0) to 100 are valid, but the number must contain at least two (2) digits and at most three (3) digits.

The Slash

	All other characters in the string must be typed, unless backslashed, in which case the character following the backslash must be entered, unless pop mode is turned on. Case DOES matter.

“Slash = \\”	The user must enter “Slash = \”

Pop Mode

If you want the field separators to automatically pop up as the user enters the data, then the first character of the ParseString should be set to “\1” (the character with octal value 1). In order for this function to work, the XmValueChangedCallback MUST be set to uxt_ValueChangedCallback.

(WARNING: Some versions of MOTIF are missing the XmValueChangedCallback with the XmTextField Widget).

For example, in the Slash example above, once the user typed the ‘S,’ the rest of the string would just “Pop” right into the Widget. Pop mode will not work with uxt_CheckString.

Common Mode

Common Mode allows common field separators to be interchanged, thus allowing faster data entry. The interchangeable separators are the slash, colon, period, semicolon, space, and dash. To engage Common Mode, the first character of the parseString must be set to “\2” (the character with octal value 2). If common mode and Pop Mode are both required, then the first character should be set to”\3” (the character with octal value 3). In order for this function to work, the XmValueChangedCallback MUST be set to uxt_ValueChangedCallback.

Upcase Mode

Upcase mode, automatically upcases letters as they are typed. To engage Upcase Mode, the first character of the parseString must be “\4” (character with octal value 4). In order for this function to work, the XmValueChangedCallback MUST be set to uxt_ValueChangedCallback.

Additional Parse Examples

%+000-360R[nNsSeEwW]	Force a three (3) digit value to be entered between zero (0) and 360, followed by an N, S, E, or W either upper or lower case.

-%+4d %s END	Force a negative number to be entered followed by a string, and another space, and finally the word END must be entered.

\1-%+4d %s END	Force a negative number to be entered followed by a string, and another space. As soon as the space is entered the word “END” will pop up.

%d.%+d	Force the entry of a floating point number.

[]0-9A-Z]*[a-z]*[][]*	Allow multiple numbers, uppercase and left brackets followed by multiple lower case numbers, followed by multiple left and right brackets.

%0-180R%0-59R%0-59R[EW]	Sample parseString for longitude checking.

EXAMPLE:

#include <Xm/Xm.h>

#include "util/uxt_proto.h"

Widget	textField;	/* Pointer to a XmTextField widget */

char validStr[10];

/* This allows only alphabetic characters to be entered */

strcpy (validStr, "[a-zA-Z]");

/* Add any string validation checking if specified */

if (validStr != NULL) {

	 XtAddCallback (textField, XmNmodifyVerifyCallback,

		 uxt_ModifyVerifyCallback, validStr);

	/* Strings which have Popup, Common, Both, or Suppress Upcase attributes

	 need a value changed callback. */

	

if (validStr[0] <= 43) 	{

	 XtAddCallback 		(textField, XmNvalueChangedCallback,

 			uxt_vValueChangedCallback, validStr);

	}

}

�

function: � tc " uxt_setHourCursor" \l 3 �uxt_setHourCursor�
IFA8076�
�
CALLING SEQUENCE:

uxt_setHourCursor (w, set)

PARAMETERS:

Name	I/O	Type	Description

w	I	Widget	Widget ID of the menu button.

set	I	Boolean	Flag to determine whether to turn ON the hour glass or turn it OFF.

DESCRIPTION:

This function sets the cursor for the widget ID (window) passed in to an hourglass symbol, if the set parameter is set to TRUE, and sets it back to the default cursor (or the original) if it is set to FALSE.

MPMs should call this function to place the hourglass on the main map and on the top-most (visible) dialog.

EXAMPLE:

#include “util/uxt_proto.h”

void my_func(void)

{

	

 Widget myActiveWindow;

 uxt_setHourCursor(myActiveWindow, True); //Activate the hour glass

 // Process my database searches

 uxt_setHourCursor(myActiveWindow, False); // Deactivate the hour glass.

 return;

}

#include <Xm/Xm.h>

#include “uxt_proto.h”

Widget	mainWindow;

/* Change the cursor for the main window to a hour glass cursor */

uxt_setHourCursor (mainWindow, True);

/* Change the cursor for the main window back to the default cursor */

uxt_setHourCursor (mainWindow, False);

Document No. 160008-IDD-6.1 - July 1996

(C.15.7)		144_U_2;8/22/96

