

function: � tc " awt_initTacWayptMenu " \l 3 �awt_initTacWayptMenu�
IFA9228�
�
CALLING SEQUENCE:

status = awt_initTacWayptMenu(mpm_table, waypoint_types, mpm_dir_name, verify_write_cb, vfy_write_client)

PARAMETERS:

Name	I/O	Type	Description

mpm_table	I/O	umt_table_item***	Address of menu item data structures. This should be the same address passed earlier to sit_init().

waypoint_types	I	const AWT_WAYPT_	Address of an array of data

		TYPE *	structures specifying the waypoint type information for this MPM. The array must end with an entry of AWT_WAYPT_TYPE_END.

mpm_dir_name	I	const char *	Directory name where MPM-specific symbols can be found. This string will be passed into int_createSymbolAnnDialog().

verify_write_cb	I	awt_WriteTacWayptFunc	Pointer to an MPM function that will be called to verify that a set of tactical waypoints is acceptable for writing to a Tactical Waypoint File.

vfy_write_client	I	XtPointer	Client data pointer that will be passed to the verify_write_cb function when it is called. This value may be passed as NULL if no client data is needed.

status	O	ST_STATUS	Function return status.

DESCRIPTION:

This function is called by an MPM to begin Tactical Waypoint processing. It adds the Tactical Waypoint pull-right menu to the Planning menu, and sets up the appropriate callbacks to be called for each of the menu items.

The waypoint_types parameter is used to identify what types are available for waypoints -- the names, type IDs, and default symbols for each type should be included in the array. The first symbol in the list will be the default type for newly created waypoints. The waypoint names will be used to fill the Waypoint Type list in the Edit Tactical Waypoint dialog; they will appear in the order in which they appear in this array. The type IDs will be stored in the Tactical Waypoint database, and the symbols will be used to display waypoints of that type that have not had a symbol assigned.

The verify_write_cb parameter specifies an MPM function that will be called when the user wants to write tactical waypoints to a Tactical Waypoint File. The function should verify that the waypoints are legally numbered, and can perform any other checks that are appropriate. It may also, if desired, write the tactical waypoint data to an external file (in addition to the Core function’s writing to the Tactical Waypoint File database). This function will be passed the list of waypoints to be written, the Tactical Waypoint File name, the dialog Widget ID (for error messages) and the vfy_write_client data pointer. It must return ST_SUCCESS if the waypoints are legally numbered and should be written to the Tactical Waypoint File database, or ST_FAILURE if the writing should be aborted. The callback function should display an error message to the user if writing is aborted. The callback function must not modify any of the Tactical Waypoint data structures passed in to it.

The callback function parameters are:

Name	I/O	Type	Description

waypt_list	I	LIST *	A LIST of pointers to AWT_TAC_WAYPT structures specifying the waypoints which are to be written to the Tactical Waypoint File. These structures should not be altered by the callback function in any way. Only waypoints which have been assigned numbers in the Write Tactical Waypoint dialog will be included in the list.

file_name	I	char *	The name of the Tactical Waypoint File to be written as entered by the user on the Write Tactical Waypoints dialog.

client	I	XtPointer	The value of the mpm_vfy_write_client parameter passed to awt_initTacWayptMenu.

status	O	ST_STATUS	If the waypoints passed all checks performed by the callback function, and any MPM-specific waypoint writing was completed successfully, then ST_SUCCESS should be returned by the callback function, and Core writing of the Tactical Waypoint File will continue. Otherwise, ST_FAILURE should be returned, and Core will not continue writing the Tactical Waypoint File. The Core routines will not display any error message in this case; it is up to the callback function to display an appropriate error message to the user.

The callback calling sequence is:

 if (mpm_verify_write_cb == NULL ||

 (*mpm_verify_write_cb)(waypt_list, file_name,

 mpm_vfy_write_client) == ST_SUCCESS)

 {

 /* continue writing Tactical Waypoint File */

 }

EXAMPLE:

#include “a_msn_plan/awt_structs.h”

#include “a_msn_plan/awt_proto.h”

const AWT_WAYPT_TYPE waypt_types[] = {

 { “General”, 1, “f14d/waypt_general.bmp” },

 { “SAM”, 9, “f14d/waypt_sam.bmp” },

 /* other waypoint types... */

 AWT_WAYPT_TYPE_END

};

umt_table_item **mpm_table;

ST_STATUS status;

extern ST_STATUS fwt_verifyTacWayptNos(const LIST *, const char *, Widget, XtPointer);

.

.

.

 status = awt_initTacWayptMenu(&mpm_table,

	waypt_types,

	“f14d”,

	fwt_verifyTacWayptNos,

	NULL);

�

function: � tc " awt_ registerAutoNumberCB " \l 3 �awt_ registerAutoNumberCB�
IFA9229�
�
CALLING SEQUENCE:

old_cb = awt_registerAutoNumberCB(auto_num_func)

PARAMETERS:

Name	I/O	Type	Description

auto_num_func	I	awt_AutoNumberCBFunc	Address of MPM function to be called to perform an AutoNumber operation.

old_cb	O	awt_AutoNumberCBFunc	Address of function previously registered, or NULL if no previous MPM-specific registration.

DESCRIPTION:

This function can be called by an MPM to completely or partially override the standard AutoNumber operation (as described under awt_stdAutoNumber). If this function is called with a non-NULL callback function pointer, then that function will be called whenever the AutoNumber button is pressed in the Write Tactical Waypoints dialog.

The callback function will be called with two (2) parameters: a LIST containing the points to be numbered; and a second LIST containing all tactical waypoints. The callback function must not modify any data in the first list except for the Waypoint Number field, and it must not modify any data at all in the second list.

The callback function can assign waypoint numbers to some or all of the waypoints in the first list. If the callback function only assigns numbers to some of the waypoints, it can call awt_stdAutoNumber to assign waypoint numbers to the remaining waypoints. A common use is to search the first list for waypoints of a special type, assign reserved waypoint numbers to those waypoints, and then call awt_stdAutoNumber to complete the numbering.

The callback function parameters are:

Name	I/O	Type	Description

waypt_list	I	LIST *	A LIST of pointers to waypoint structures for the waypoints selected by the user. This LIST includes all waypoints selected in the Write Tactical Waypoints dialog, whether or not the waypoints have previously been assigned numbers. The callback function should not alter any part of this structure except the waypt_number field (and the tentative_number field, which can be used as temporary storage). A value of AWT_WAYPT_NOT_NUM (-1) in the waypt_number field means that the waypoint has not yet been assigned a number.

status	O	ST_STATUS	If all the waypoints in the waypt_list were successfully assigned numbers, then ST_SUCCESS should be returned. If some or all waypoints could not be assigned waypoints, then ST_FAILURE should be returned. Note that even if ST_FAILURE is returned, values that have been stored in the waypt_number field of the waypoint data structures will be used to update the waypoints in memory -- it is the callback function's responsibility to restore the numbers to their previous value if the waypoint should not be assigned a new number. It is also the callback function's responsibility to display an informative message to the user, if appropriate.

The callback calling sequence is:

 if (callbackFunc != NULL)

 status = (*callbackFunc)(waypt_list);

 else

 status = awt_stdAutoNumber(waypt_list);

EXAMPLE:

#include “a_msn_plan/awt_proto.h”

extern ST_STATUSvoid mpm_autoNumber(LIST *);, const LIST *);

. . .

 awt_registerAutoNumberCB(mpm_autoNumber);

�

function: � tc " awt_ registerTWWriteDialogCB " \l 3 �awt_ registerTWWriteDialogCB�
IFA9230�
�
CALLING SEQUENCE:

old_cb = awt_registerTWWriteDialogCB(mpm_write_func)

PARAMETERS:

Name	I/O	Type	Description

mpm_write_func	I	XtCallbackProc	Address of MPM function to be called when the Write Tactical Waypoints menu item is selected by the user.

old_cb	O	XtCallbackProc	Address of function previously registered, or NULL if no previous MPM-specific registration.

DESCRIPTION:

This function can be called by an MPM to completely override the Write Tactical Waypoints dialog and processing. If an MPM calls this function with a non-NULL callback function pointer, then that function will be called when the user selects the Write Tactical Waypoints menu item. The MPM callback function will then have all responsibility for displaying a dialog for the user to select and/or number the waypoints to be written, verifying the consistency of the waypoints, and writing the waypoint data to a file and/or database.

A LIST (cast to an XtPointer) will be passed in as the client data when the callback function is called. This LIST will contain all tactical waypoints displayed by this MPM. The tactical waypoint data in this LIST should not be modified by the MPM callback function.

It is not intended that the majority of MPMs call this function. It exists for the (hopefully rare) case where the default Write Tactical Waypoints dialog is entirely unsuitable for an MPM’s use.

The callback function parameters are:

Name	I/O	Type	Description

w	I	Widget	The widget ID of the menu button pushed. Not normally used by this function.

client	I	XtPointer	The value of the clientData parameter passed to awt_registerTWWriteDialogCB.

call	I	XtPointer	Motif callback data structure. Not normally used by this function.

The callback calling sequence is:

 if (callbackFunc != NULL)

 (*callbackFunc)(w, clientData, call);

 else

 /* display Core Write Tactical Waypoint dialog */

EXAMPLE:

#include “a_msn_plan/awt_proto.h”

extern void mpm_displayMyWrite(Widget, XtPointer, XtPointer);

. . .

awt_registerTWWriteDialogCB(mpm_displayMyWrite);

�

function: � tc " awt_ setAutoNumberDefs " \l 3 �awt_ setAutoNumberDefs�
IFA9231�
�
CALLING SEQUENCE:

status = awt_setAutoNumberDefs(waypt_min, waypt_max, reserved, num_reserved, use_last, num_use_last)

PARAMETERS:

Name	I/O	Type	Description

waypt_min	I	int	The minimum waypoint number that should be assigned to a waypoint. This number must not be less than zero (0).

waypt_max	I	int	The maximum waypoint number that should be assigned to a waypoint. This number must not be less than the waypt_min value.

reserved	I	const int *	An array of waypoint numbers that will be considered reserved and will never be assigned to a waypoint by the Standard Auto Number function. This may be passed as NULL if num_reserved is zero (0).

num_reserved	I	unsigned	The number of waypoint numbers in the reserved array.

use_last	I	const int *	An array of waypoint numbers that should be assigned by the Standard Auto Number function only when all other waypoint numbers have been exhausted. This may be passed as NULL if num_use_last is zero (0).

num_use_last	I	unsigned	The number of waypoint numbers in the use_last array.

status	O	ST_STATUS	Function return value (ST_SUCCESS if all input values OK; ST_FAILURE if an error was detected).

DESCRIPTION:

This function is called by an MPM to control the behavior of the Standard Auto Number function (awt_stdAutoNumber). If this function is not called, then awt_stdAutoNumber will assume that waypt_min is one (1), waypt_max is INT_MAX, and there are no reserved or use_last numbers.

The waypt_max value is also used by the Write Tactical Waypoint dialog to display a warning message if the user manually enters a waypoint number larger than this value.

EXAMPLE:

#include “a_msn_plan/awt_proto.h”

const int reserved[] = { 1, 17, 20 };

.

.

.

 /* Waypoint numbers range from 1 to 100, */

 /* with 1, 17, and 20 reserved (no use-last). */

 awt_setAutoNumberDefs(1, 100, reserved, 3, NULL, 0);

�

function: � tc " awt_ stdAutoNumber " \l 3 �awt_ stdAutoNumber�
IFA9232�
�
CALLING SEQUENCE:

status = awt_stdAutoNumber (pts_to_number, all_pts)

PARAMETERS:

Name	I/O	Type	Description

pts_to_number	I/O	LIST *	LIST of waypoints selected in the Write Tactical Waypoints dialog to be numbered.

all_ptrs	I	const LIST *	LIST of all tactical waypoints displayed by this MPM.

status	O	ST_STATUS	ST_SUCCESS if all points in the pts_to_number list were successfully assigned a number; otherwise, ST_FAILURE.

DESCRIPTION:

This function is called when an MPM has not registered its own AutoNumber callback using awt_registerAutoNumberCB. It can also be called, if desired, by an MPM AutoNumber callback function to AutoNumber the remaining points after the MPM callback function has completed its processing -- in this case, the parameters passed to this function should be the parameters passed into the MPM callback function.

This function will be called with two (2) parameters: a LIST containing the points to be numbered; and a second LIST containing all tactical waypoints. This function will not modify any data in the first list except for the Waypoint Number field field, and it will not modify any data at all in the second list.

This function first tries to assign waypoint numbers by scanning the pts_to_number list. If a waypoint does not have a number, it is assigned the next available number (an available number is one which is not assigned to any waypoint, and is not on the reserved or use-last lists). If a waypoint does have a number, then the starting point for the “next available number” (which starts at the waypt_min value) is set to this waypoint’s number if this waypoint’s number is greater. If numbers have been assigned to all waypoints in the pts_to_number list without exceeding the waypt_max value, then the function returns.

For example, if a waypoint in the middle of the list has already been assigned the number 30, then waypoints following that one will be numbered 31, 32, etc. if those numbers are available, if assigned numbers have not already reached 30, and if numbering can be completed in this manner without reaching the maximum waypoint number.

Otherwise, the function removes any tentative number assignments made in the first step. It then calculates how many waypoints need numbers and how many numbers are available. If necessary, numbers from the front of the use-last list are considered to be available. It then re-scans the pts_to_number list. If a waypoint does not have a number, it is assigned the next available number. If a waypoint does have a number, it is ignored. If all waypoints can be assigned numbers in this manner, then the function returns ST_SUCCESS. Otherwise, as many waypoints as possible are assigned numbers, and the function returns ST_FAILURE.

EXAMPLE:

#include “a_msn_plan/awt_proto.h”

ST_STATUS mpm_doAutoNumber(LIST *pts_to_number,

 const LIST *all_pts)

{

 ST_STATUS status;

 /* search the pts_to_number list for special */

 /* cases, and assign numbers accordingly. */

.

.

.

 /* Now call the standard AutoNumber function */

 /* to handle the non-special cases. */

 status = awt_stdAutoNumber(pts_to_number, all_pts);

 return(status);

}

�

This page intentionally left blank.

Document No. 160008-IDD-6.1 - July 1996

(C.1)		140_C_1;9/3/96

Document No. 168021-IDD - September 1992

IDD.DOC,APNDX.B,Rev 14

