Preliminary

Draft

Solipsys Corporation
Draft
SOL-01-085

[image: image1.png]SOLIPSYS

Interface Description Document

Exercise Scenario Real-time Integrated Test (ESPRIT) Tool Version 3.1 Interfaces

Prepared for:

Pacific Missile Range Facility

Kauai, HI

SOL-01-085

25 October, 2001

Prepared by:

[image: image4.jpg]

SOLIPSYS CORPORATION

6100 Chevy Chase Drive Suite 200 Laurel, MD 20707-2929

301/483-8900 voice 301/483-8901 fax

www.solipsys.com

Table of Contents

11.0
Introduction

32.0
Internal Interfaces

32.1
TDF

52.2
SoliNet

52.3
ESPRIT Server - ESPRIT GUI Messaging Interface

52.3.1
Messages sent from server to GUI

82.3.2
Messages sent from GUI to server

112.3.3
Message Formats

112.3.3.1
DxControlMsg

112.3.3.2
DxControlResponse

122.3.3.3
GUICertifiedPassword

122.3.3.4
GUIConvertTextModel

122.3.3.5
GUIRequestList

132.3.3.6
GUIRequestObject

132.3.3.7
GUIRequestVehicleReport

132.3.3.8
GUIRequestSNvsTime

132.3.3.9
GUIScenarioControl

142.3.3.10
GUIScenarioObject

152.3.3.11
GUISensor

152.3.3.12
GUISensorInformationTableRequest

162.3.3.13
GUISensorModeAssignment

162.3.3.14
GUISensorModel

172.3.3.15
GUITicInterval

172.3.3.16
GUITicReferencePoint

172.3.3.17
GUIVehicle

182.3.3.18
GUIVehicleAnnotation

182.3.3.19
GUIVehicleModel

192.3.3.20
GUIVehicleModifyModel

192.3.3.21
GUIVehicleStartTime

192.3.3.22
GUIVehicleSynch

192.3.3.23
GUIWaypointPosition

202.3.3.24
SrvCertifiedPasswordResponse

202.3.3.25
SrvDataSetConversionComplete

202.3.3.26
SrvDisplayTrackState

202.3.3.27
SrvListResponse

202.3.3.28
SrvLiveTrackUpdate

212.3.3.29
SrvPlannedPathDump

212.3.3.30
SrvPlannedTrackState

212.3.3.31
SrvScenarioControlResponse

222.3.3.32
SrvScenarioObjectResponse

222.3.3.33
SrvScenarioSynch

222.3.3.34
SrvSensorInformationTableDump

222.3.3.35
SrvSNvsTimeResponse

222.3.3.36
SrvSNError

232.3.3.37
SrvTicStatus

232.3.3.38
SrvTimeTic

232.3.3.39
SrvVehicleAnnotation

232.3.3.40
SrvVehicleReportComplete

232.3.3.41
SrvVehicleSynch

242.3.3.42
SrvWaypointError

242.3.3.43
SrvWaypointPath

242.3.3.44
SrvWaypointPosition

253.0
External System Interfaces

253.1
Data Fusion Messaging Interface

263.1.1
ContactUpdate

263.1.2
DropTrack

263.1.3
TrackUpdate

273.1.4
SrvBearingLine

273.1.5
SrvOwnshipReferencePos

283.2
Simulation Messaging Interface

283.2.1
Track Simulation using iNet Messages

283.2.1.1
iNet Track Data Message (MT 25)

303.2.1.2
iNet Track Data Message (MT 26)

313.2.2
Track Simulation using DIS Messages

313.2.3
Detection Simulation using DTE Messages

324.0
File Interfaces

324.1
GOG File

334.2
“Duck” Data Set

355.0
COTS Products

355.1
Java SDK

366.0
Appendix A – Sample gog file

List of Tables

2Figure 1-1 ESPRIT Distributed System Architecture at PMRF

4Figure 1-2 ESPRIT –TDF Relationship

6Table 2-1 Server to GUI Messages

9Table 2-2 GUI to Server Messages

26Table 3-1 Data Fusion to ESPRIT GUI Messages

28Table 3-2. iNet Message Layout

28Table 3‑3. Format for iNet Track Data Message 25.

29Table 3‑4. Field Definitions for iNet Track Data Message 25

30Table 3-5. Field Definitions for iNet Track Data Message 26

34Table 4‑1. “Duck” TBM Data Set Format

1.0 Introduction

This document defines the interfaces for the Pacific Missile Range Facility’s (PMRF) implementation of the Exercise Scenario Real-time Integrated Test (ESPRIT) Tool. The ESPRIT system supports scenario planning, scenario preview, event rehearsal, and real-time event monitoring for missions taking place at PMRF.

ESPRIT is architected as a message-based distributed system. The system consists of one or more ESPRIT clients connected via a TCP network to a single ESPRIT server by an assigned port number. The ESPRIT server, hosted on a system running Solaris or LINUX, performs the bulk of the processing as well as providing storage for scenarios, models, sensors, vehicles, etc. During planning, the ESPRIT GUI clients send messages to the server requesting that it store or download scenario information via the display network. During scenario preview, the server interprets the scenario and sends messages containing planned vehicle positions versus time to the client for display. The network is also monitored for live track information sent to the ESPRIT GUI for display from a Data Fusion application performing track correlation for all of the sensors at PMRF. During scenario rehearsal, the server can generate simulated radar detection and tracking messages to drive the client displays. Figure 1-1 depicts the ESPRIT architecture and ESPRIT’s external interfaces at PMRF.

Figure 1-1 ESPRIT Distributed System Architecture at PMRF

[image: image2.wmf]Fault-tolerant Server (Solaris)

LocalEspritNet

- processes non-

track related msgs

between client &

server

EspritClientModule

-processes track-

related msgs

Esprit Client (Solaris, LINUX, NT)

TDF TrackDatabase

(tracks cached in

memory)

Other Esprit-specific

plug-ins, e.g.

- Participant palette

- TAOS interface

- Altitude plot

- etc.

working &

certified

scenarios

certified

entities

certified

models

working

models

overlays

working

entities

gogs

iNet Track Display

(Model to View

bridge)

Esprit Track Display

(Model to View

bridge)

stick*

- smart router

between iNet & kNet

- listens for iNet

msgs 25, 26

- TrackManager

class manages track

database

Data Fusion

(C++)

(C++)

Esprit Server (Solaris/ LINUX)

(Java)

screen

TDF View

TDF ViewCanvas

SIS (Solaris)

____d*

- sensor-specific

data fusion daemon

(eg mk74d*, cosipd*,

stotsd*, etc.)

- listens for msg data

from Ethernet radar

interface

- puts iNet track data

msgs on kNet

(C++)

solid*

solid*

server -> GUI msgs

GUI -> server msgs

sensor

TBM &

intercepetor

datasets

spirited*

-server-side of

ESPRIT

solid*

- solinet daemon

listens for msgs on

a particular port &

distributes to

registered listeners

port, host

Display Net (TCP)

kNet (UDP)

Esprit Clients

...

iNet (UDP)

sensor

sensor

SIS

...

Internal Interfaces

ESPRIT’s internal interfaces include its embedded use of other Solipsys Corporation software, and the messages that are exchanged between the ESPRIT Graphical User Interface (GUI) and the ESPRIT server.

1.1 TDF

Version 3.1 of the ESPRIT GUI is built on the foundation of Solipsys Corporation’s Tactical Display Framework (TDF) Version 3.1, a visualization tool for the display of tactical Command and Control information. To promote portability and reusability, TDF is written in the Java programming language. TDF provides a reusable and extensible object-oriented display framework. Its dynamic loader mechanism can load Java classes into the TDF without prior knowledge of their existence. This allows application-specific functionality to be decoupled from the TDF core, allowing functionality to be extended or overridden, and changes and features to be added without ever touching the core TDF components.

TDF is distributed as a set of java archive files - .jar files. Sol.jar contains the essential framework for applications (color management, views, menus, etc). Geo.jar contains a collection of extensive classes that provide support for displaying imagery, projections, coordinates, terrain, etc. using precise WGS84-compliant two- and three-dimensional representations of geographic and vehicular data. The software supports most map and imagery database formats, including WVS, ADRG, CADRG, CIB, and DTED. Tdf.jar contains the code related to tactical display features, and includes a basic set of plugins to do track display and playback, history, hooks, details, tags, etc.

Also written in Java, the ESPRIT GUI builds on the TDF object hierarchy, with classes that extend from TDF classes or implement TDF interfaces. Functionality unique to ESPRIT is provided by means of plugins that are dynamically loaded into the TDF framework. Figure 1-2 depicts the relationship between the ESPRIT GUI and the TDF hierarchy.

Figure 1-2 ESPRIT –TDF Relationship

[image: image3.jpg]

1.2 SoliNet

ESPRIT relies on Solipsys Corporation’s SoliNet product to provide the message delivery system between the ESPRIT server and the ESPRIT/TDF displays on the client. Solinet’s message-passing model provides duplexed, multi-threaded client-server communication. The Solinet “Solid” process runs as a daemon on the ESPRIT Server, listening for messages and distributing them to registered listeners. Configuration files specify the port and the host on which communications is to take place.
1.3 ESPRIT Server - ESPRIT GUI Messaging Interface

ESPRIT’s distributed system architecture relies on the exchange of messages between the ESPRIT server, known as spirited, and the ESPRIT GUI running on the client. The SoliNet toolkit provides support for defining these messages using a meta-language approach. The Metagen tool parses the ASCII meta files corresponding to each message and generates source code that supports fully functional message object classes accessible from both the C++ server application and the Java application that comprises the ESPRIT client. The Cajun tool can be used to parse meta files that describe generic classes that are to be used as the building blocks for messages. If message formats change, only the meta files need be changed; code changes are effected by running Cajun and Metagen to regenerate the necessary C++ and Java source code.
The following sections define the messages used by the Esprit communications layer. The messages are grouped into two categories: those sent from the server to the client to communicate display information, and those sent from the client to the server to request information that is stored on the server or send updates back to the server when the user makes changes via the GUI.

1.3.1 Messages sent from server to GUI

The following bullets summarize the messages sent from the ESPRIT server to the GUI running on the client.

· DxControlResponse

· GUIScenarioObject

· GUISensor

· GUISensorModel

· GUISensorModeAssignment

· GUIVehicle

· GUIVehicleModel

· SrvCertifiedPasswordResponse

· SrvDataSetConversionComplete

· SrvDisplayTrackState

· SrvListResponse

· SrvLiveTrackUpdate

· SrvPlannedPathDump

· SrvPlannedTrackState

· SrvScenarioControlResponse

· SrvScenarioObjectResponse

· SrvScenarioSynch

· SrvSensorInformationTableDump

· SrvSNvsTimeResponse

· SrvSNError

· SrvTicStatus

· SrvTimeTic

· SrvVehicleAnnotation

· SrvVehicleReportComplete

· SrvVehicleSynch

· SrvWaypointError

· SrvWaypointPath

· SrvWaypointPosition

Table 2-1 describes each message sent from the ESPRIT server to the GUI running on the client, noting where it is used in the code on the server and in the GUI.
Table 2-1 Server to GUI Messages

	Msg
	Description
	Sent from server
	Processed in GUI

	DxControlResponse
	Sent by the server in response to a DxControlMsg indicating the status of the Dx start/stop request
	?
	ScenarioListener.

processSISDxResponse

	GUIScenarioObject
	Sent by the server to load a scenario object stored on the server (augmentation, overlay, vehicle model, sensor model, sensor entity)
	Scenario
	ScenarioListener.

processScenarioObjectMsg,

ListMsgListener.processGuiScenarioObject

	GUISensor
	Sent by the server when a scenario is loaded to communicate the scenario’s sensor entity information to the client
	Sensor, SensorInfo, SensorModel
	ScenarioListener.

processSensorEntityMsg

	GUISensorModel
	Sent by the server when a scenario is loaded to communicate the scenario’s sensor model information to the client
	Sensor, SensorModel
	ScenarioListener.

processSensorModelMsg

	GUISensorModeAssignment
	Sent by the server when a scenario is loaded to convey current sensor mode assignments for a particular sensor.
	Sensor, SensorMgr
	ScenarioListener.

ProcessSensorModeAssignmentMsg

	GUIVehicle
	Sent by the server when a scenario is loaded to communicate the scenario’s vehicle entity information to the client
	Kine, Scenario,SensorMgr, Vehicle, VehicleMgr
	ScenarioListener.

processVehicleEntityMsg

	GUIVehicleModel
	Sent by the server when a scenario is loaded to communicate the scenario’s vehicle model information to the client
	Vehicle, VehicleModel
	ScenarioListener.

processVehicleModelMsg

	SrvCertifiedPasswordResponse
	Sends success/failure status in response to a GuiCertifiedPassword
	Scenario
	Certification.

processCertifiedPasswordResponse

	SrvDataSetConversionComplete
	Sent by server to indicate success/failure of a GuiConvertTextModel request
	GeneralModelData
	ScenarioListener.

processDataSetConversionCompleted

	SrvDisplayTrackState
	Sent by the server to communicate track data when in local execution mode
	Sensor
	EspritClientModule.DisplayTrackState.

processMessage

	SrvListResponse
	Sent by the server in response to a GuiRequestList request; contains success/failure status and requested list data if request was successful
	Scenario
	ListMsgListener.

processSrvListResponse

	SrvPlannedPathDump
	Sent by server to describe planned path of a vehicle. Typically this message is sent at scenario load to describe the entire path of a TBM.
	ModelData
	ScenarioListener.

processPlannedPathDumpMsg

	SrvPlannedTrackState
	Sent by server to display a track’s planned position during scenario preview mode.
	Vehicle
	EspritClientModule.

PlannedTrackState.

processMessage

	SrvScenarioControlResponse
	Sent by the server in response to a GuiScenarioControl message. Hostname field indicates whether the scenario load messages that follow will be loading scenario information for this client or all clients. Type field indicates type of scenario action that was requested -- create, load, save, or delete a scenario (working or certified); control scenario preview or local execution mode; set simulation type or detection type during local execution mode; query, enable or disable live data; set the clock rate -- so that the client can perform the appropriate initializations, such as clearing the previous scenario or clearing the track database, and fire the appropriate scenario control event
	Scenario
	ScenarioListener.

processScenarioControlResponse,

fireScenarioControlEvent

	SrvScenarioObjectResponse
	Sends success/failure status in response to previous GuiScenarioObject request.
	Scenario
	ScenarioListener,

processScenarioObjectResponse

	SrvScenarioSynch
	Tells the GUI to synch a scenario by setting the scenario T0 and preview begin times.
	Scenario
	ScenarioListener.

processScenarioSycnh

	SrvSensorInformationTableDump
	Sent by the server in response to a GuiSensorInfoTableRequest. Contains pertinent model and sensor-specific data for each sensor specified as part of the scenario.
	SensorMgr, SensoInfoList
	*processing disabled! (code in ListMsgListener.

ProcessSensorInfoTableDump is commented out)

	SrvSNvsTimeResponse
	Sent by the server in response to a GuiRequestSNvsTime message
	SensorMgr
	ScenarioListener.

processSNMessage

	SrvSNError
	Sent by the server when an error was encountered while processing a GuiRequestSNvsTime message for a particular vehicle
	SensorMgr
	ScenarioListener.

processSNError

	SrvTicStatus
	Sent by the server when a scenario is loaded to indicate the time tic information for a vehicle
	VehicleMgr
	ScenarioListener.

processTicStatus

	SrvTimeTic
	Sent by the server when a scenario is loaded to indicate the time tic interval for a vehicle-waypoint pair.
	VehicleMgr
	ScenarioListener.

processTimeTicMsg

	SrvVehicleAnnotation
	Sent by the server to specify an annotation for a vehicle waypoint.
	KineStateGeneral
	ScenarioListener.

processVehicleAnnotationMsg

	SrvVehicleReportComplete
	Sent by server in response to a GuiRequestVehicleReport to indicate success/failure of the report request
	GeneralModel, Sensor, Vehicle, WaypointMgr
	ScenarioListener.

processVehicleReportCompleted

	SrvVehicleSynch
	Sent by the server during local execution mode to provide a list of vehicle/waypoint pairs that are to be synchronized in time.
	VehicleMgr
	ScenarioListener.

processVehicleSynchMsg

	SrvWaypointError
	Sent by the server to specify an error message related to a waypoint entered in the GUI (via GUIWaypointPosition message);

GUI responds by deleting the waypoint and alerting the user.
	Kine, WaypointManager
	ScenarioListener.

processWaypointErrorMsg

	SrvWaypointPath
	Sent by the server to describe the planned path for a vehicles planned using waypoints
	Waypoint
	ScenarioListener.

processPathMsg

	SrvWaypointPosition
	Sent by the server to tell the GUI to add a waypoint for a vehicle
	Waypoint
	ScenarioListener. processWaypointMsg

1.3.2 Messages sent from GUI to server

The following bullets summarize the messages sent from the GUI running the client to the ESPRIT server.

· DxControlMsg

· GUIScenarioObject

· GUISensor

· GUISensorModel

· GUISensorModeAssignment

· GUIVehicle

· GUIVehicleModel

· GUICertifiedPassword

· GUIConvertTextModel

· GUIRequestList

· GUIRequestObject

· GUIRequestVehicleReport

· GUIRequestSNvsTime

· GUIScenarioControl

· GUISensorInformationTableRequest

· GUISensorModeAssignment

· GUITicInterval

· GUITicReferencePoint

· GUIVehicleAnnotation

· GUIVehicleModifyModes

· GUIVehicleStartTime

· GUIVehicleSynch

· GUIWaypointPosition

Table 2-2 describes each message sent from the ESPRIT server to the client GUI, noting where it is used in the code on the server and in the GUI.

Table 2-2 GUI to Server Messages

	Msg
	Description
	Sent from GUI
	Processed in server

	DxControlMsg
	Tells the server to start or stop playing a Dx
	LocalEspritNet.

controlSISDx
	?

	GUIScenarioObject
	Tells the server to update or delete a scenario object stored on the server (augmentation, overlay, vehicle model, sensor model, sensor entity)
	LocalEspritNet.

saveSensorEntity,

saveSensorModel,

saveVehicleModel

deleteSensorEntity

deleteSensorModel

deleteVehicleModel,

controlScenario,

controlJavaObjects
	Scenario

	GUISensor
	Tells the server to create, update or delete a sensor entity
	LocalEspritNet.

removeSensorEntity,

sendSensorEntity
	Sensor, SensorInfo, SensorModel

	GUISensorModel
	Tells the server to create, update or delete a sensor model
	LocalEspritNet.

sendSensorModel
	Sensor, SensorModel

	GUISensorModeAssignment
	Tells the server to update sensor mode assignments for the specified sensor
	LocalEspritNet.

sendSensorEntityAssignment
	Sensor, SensorMgr

	GUIVehicle
	Tells the server to create, update or delete a vehicle entity
	LocalEspritNet.

sendVehicleEntity,

sendTBM,

sendInterceptor
	Kine, Scenario, SensorMgr, Vehicle, VehicleModel

	GUIVehicleModel
	Tells the server to create, update or delete a vehicle model
	LocalEspritNet.

sendVehicleModel
	Vehicle, VehicleModel

	GUICertifiedPassword
	Requests the password used to certify model or resets the certified password
	LocalEspritNet.

ControlCertifiedPassword
	Scenario

	GUIConvertTextModel
	Tells the server to convert the text model identified by the specified name, interpreting it as the specified model type (e.g. TBM or intercept)
	LocalEspritNet.

convertAsciiFile
	GeneralModelData, Kine, Vehicle

	GUIRequestList
	Requests from the server a list of scenarios, sensor or vehicle models, sensor entities, or vehicle entities (including TBMs or interceptors) for display in a ListPanel
	LocalEspritNet.

getNames
	Scenario

	GUIRequestObject
	Requests a certified sensor model, vehicle model, or sensor entity from the server
	LocalEspritNet.

getScenarioObject
	Scenario

	GUIRequestVehicleReport
	Request that the server generate a vehicle report with waypoint timeline info, time interval info, planned position info, or sensor measurement info
	LocalEspritNet.

requestVehicleReport
	GeneralModel, Kine, Scenario, Sensor, Vehicle, Waypoint

	GUIRequestSNvsTime
	Requests signal-to-noise over time for the specified vehicle
	LocalEspritNet.

sendSNRequest
	SensorMgr

	GUIScenarioControl
	Tells the server to create, load, save, or delete a scenario (working or certified); control scenario preview or local execution mode; set simulation type or detection type during local execution mode; query, enable or disable live data; set the clock rate
	LocalEspritNet.

controlScenario
	Scenario

	GUISensorInformationTableRequest
	Requests the sensor information table from the server
	LocalEspritNet.

getSITList
	SensorMgr

	GUITicInterval
	Tells the server to set the tic interval and tic annotation interval
	LocalEspritNet.

controlTicInterval
	VehicleMgr

	GUITicReferencePoint
	Tells the server to set the specified vehicle waypoint to T0 or to a reference point
	LocalEspritNet.

controlTics
	VehicleMgr

	GUIVehicleAnnotation
	Sends an annotation for a vehicle at the specified waypoint
	LocalEspritNet.

sendVehicleSynchPoint
	Kine, Vehicle

	GUIVehicleModifyModel
	Tells the server to update the specified vehicle with a new start point, angle, and name
	LocalEspritNet.

modifyVehicle,

modifyTBM
	GeneralModelData, Kine, Vehicle

	GUIVehicleStartTime
	Tells the server to define a start time offset for a vehicle
	LocalEspritNet.

controlVehicleEntity
	VehicleMgr

	GUIVehicleSynch
	Tells the server to add, remove, delete, or synchronize a list of vehicle/waypoint pairs
	LocalEspritNet.

synchPoints
	VehicleMgr

	GUIWaypointPosition
	Tells the server to delete, update, move, or add a waypoint for a vehicle. TDF assigns a waypoint id that is unique over an entire scenario.
	LocalEspritNet.

fireWaypointPlaced,

updateWaypoint,

undoWaypoint,

deletePathDescriptorPoint
	Waypoint

1.3.3 Message Formats

The following sections specify the message formats for each of the messages used within ESPRIT. All messages are defined using MetaGen’s meta language syntax. General Esprit messages are defined in EspritMsg.Meta, Data Extract messages in DxMsg.Meta, and PMRF-specific messages in KnetMsg.meta.

Unless otherwise noted, the following units are used in the messages:

Angles: radians, -pi to pi

Distance: meters

Rates: meters / millisecond

Velocity: Earth centered X,Y,Z

Time: LSB is milliseconds
Messages defined in DxMsg.meta:

1.3.3.1 DxControlMsg

 message DxControlMsg tag = 3

 enum Action

 etag Invalid = 0

 etag Off = 1

 etag On = 2

 end enum Action

 // Explicitly defining the combinations -- recognize that not every

 // value need be tested for. This will get tedious if we have too many

 // different types of dxing to do, so don't rely on the interim values.

 enum Mask

 etag Debug = (1<<0) // 0001

 etag IO = (1<<1) // 0010

 etag Eng = (1<<2) // 0100

 end enum Mask

 member Jstring filename

 member int dbMask

 member int action // one of the enumerated actions

 end message DxControlMsg

1.3.3.2 DxControlResponse

 message DxControlResponse tag = 4

 // Action defined in DxControlMsg

 // Mask defined in DxControlMsg

 enum Status

 etag Failure = 0

 etag Success = 1

 end enum Status

 member Jstring filename

 member u_int dbMask

 member u_int action

 member u_int status

 member Jstring errorString // valid if status = Failure

 end message DxControlResponse

Messages defined in EspritMsg.meta:

1.3.3.3 GUICertifiedPassword

 message GuiCertifiedPassword tag = 49

 enum Action

 etag Invalid = 0

 etag Request = 1

 etag Set = 2

 end enum Action

 member u_int action

 member Jstring oldPassword

 member Jstring newPassword

 member Jstring requestedBy

 end message GuiCertifiedPassword

1.3.3.4 GUIConvertTextModel

 message GuiConvertTextModel tag = 35

 member u_int kineBehavior // from GuiVehicle message kineBehavior

 member Jstring textModelName

 member Jstring binaryModelName

 end message GuiConvertTextModel

1.3.3.5 GUIRequestList

 message GuiRequestList tag = 36

 enum Action

 etag Invalid = 0

 etag WorkingScenario = 1

 etag CertifiedScenario = 2

 etag CertifiedSensorModel = 3

 etag CertifiedVehicleModel = 4

 etag CertifiedSensorEntity = 5

 etag CertifiedVehicleEntity = 6

 etag TBM = 7

 etag TBMText = 8

 etag Interceptor = 9

 etag InterceptorText = 10

 etag TAOSType = 11

 etag TAOSTable = 12

 etag TAOSProblem = 13

 end enum Action

 member u_int action

 end message GuiRequestList

1.3.3.6 GUIRequestObject

 message GuiRequestObject tag = 37

 enum Type

 etag Invalid = 0

 etag SensorModelCertified = 1

 etag VehicleModelCertified = 2

 etag SensorEntityCertified = 3

 end enum Type

 member u_int type

 member Jstring name

 end message GuiRequestObject

1.3.3.7 GUIRequestVehicleReport

 message GuiRequestVehicleReport tag = 43

 enum Action

 etag Invalid = 0

 etag Timeline = 1

 etag Interval = 2

 etag PlannedPositions = 3

 etag SensorMeasurements = 4

 end enum Action

 member u_int action

 member int VID

 member int SID

 member int timeInterval

 member Time startTime

 member Time stopTime

 member Jstring filename

 end message GuiRequestVehicleReport

1.3.3.8 GUIRequestSNvsTime

 message GuiRequestSNvsTime tag = 45

 member int VID

 end message GuiRequestSNvsTime

1.3.3.9 GUIScenarioControl

 // scenarioName is only used for the following actions:

 // LoadScenario, SaveScenario

 //

 // clockRate is only valid for SetClockRate action.

 // 2 => twice real time, 0.5 => half real time, etc.

 // 0 => fastest rate possible -- typically used for test purposes

 //

 // LocalExecution and Preview cannot be running simultaneously.

 // Pause, Resume, and Stop affect one or the other, depending on

 // which is enabled at the current time. Preview and live data can

 // be enabled simultaneously.

 //

 // The following Actions are at least partially supported:

 //

 message GuiScenarioControl tag = 23

 enum Action

 etag Invalid = 0

 etag LoadCurrentScenario = 1

 etag LoadWorkingScenario = 2

 etag LoadCertifiedScenario = 3

 etag SaveWorkingScenario = 4

 etag SaveCertifiedScenario = 5

 etag NewScenario = 6 // clears currently defined scenario

 etag StartPreview = 7

 etag StartLocalExecution = 8

 etag Pause = 9 // for Preview or LocalExecution

 etag Resume = 10 // for Preview or LocalExecution

 etag Stop = 11 // for Preview or LocalExecution

 etag EnableLiveData = 12

 etag DisableLiveData = 13

 etag DisplayScenario = 14 // for server test purposes only

 etag SetClockRate = 15

 etag LiveDataEnabled = 16 // query: Is Live Data Enabled?

 etag SetScenarioStart = 17

 etag DeleteWorkingScenario = 18

 etag DeleteCertifiedScenario= 19

 etag SetSimType = 20

 etag SetDetectionType = 21

 etag RequestSimType = 22

 end enum Action

 enum SimType

 etag NO_SIM = 1

 etag iNet25 = 2

 etag iNet26 = 3

 etag iNetBoth = 4

 etag DIS = 5

 end enum SimType

 enum DetectionType

 etag NO_DETECTION = 1

 etag DTE = 2

 etag DTE_MSCT = 3

 end enum DetectionType

 member u_int action

 member Jstring name

 member float time

 member Jstring saveCertifiedPassword

 member u_int simType

 member u_int detectionType

 end message GuiScenarioControl

1.3.3.10 GUIScenarioObject

 message GuiScenarioObject tag = 47

 enum Type

 etag Invalid = 0

 etag Augmentation = 1

 etag Overlays = 2

 etag VehicleModel = 3

 etag SensorModel = 4

 etag SensorEntity = 5

 end enum Type

 enum Action

 // etag Invalid = 0 // already defined for GuiScenarioObject

 etag Save = 1

 etag Delete = 2

 etag ServerLoad = 3 // used when server is broadcasting to TDF

 end enum Action

 member u_int type

 member u_int action

 member Jstring name

 member Jstring saveCertifiedPassword // only used when saving or

 // deleting models and entities

 member SerializableJavaObj object

 end message GuiScenarioObject

1.3.3.11 GUISensor

 // If VID is zero, the sensor is stationary, the VID is unused, and

 // the position field identifies the position of the sensor. If VID

 // is nonzero, the sensor is on a vehicle and the position field

 // is unused

 //

 message GuiSensor tag = 25

 enum GuiSensorAction

 etag Invalid = 0

 etag NewSensor = 1

 etag UpdateSensor = 2

 etag DeleteSensor = 3

 etag ServerLoad = 4 // sent by server when new scenario is loaded

 end enum GuiSensorAction

 member u_int action

 member u_int VID

 member u_int priority

 member u_int primarySystemId

 member u_int secondarySystemId

 member u_int assignedVid

 member int SID

 member Jstring sensorName

 member Geodetic position

 member Jstring modelName

 member Jstring modelMode

 member Jstring description // e.g., "Makaha Ridge"

 member double shadowElev[360] // radians, index=azimuth in deg

 end message GuiSensor

1.3.3.12 GUISensorInformationTableRequest

 message GuiSensorInformationTableRequest tag = 30

 member Time time

 end message GuiSensorInformationTableRequest

1.3.3.13 GUISensorModeAssignment

 message GuiSensorModeAssignment tag = 50

 member int SID

 member SensorModeTableEntry sensorModeTable[]

 end message GuiSensorModeAssignment

1.3.3.14 GUISensorModel

 // The name and mode fields together uniquely identify the model

 //

 message GuiSensorModel tag = 24

 enum GuiSensorModelAction

 etag Invalid = 0

 etag NewSensorModel = 1

 etag UpdateSensorModel = 2

 etag DeleteSensorModel = 3

 etag ServerLoad = 4 // sent by server when new scenario is loaded

 end enum GuiSensorModelAction

 enum GuiSensorModelType

// etag Invalid = 0 // Previously Defined

 etag Tracking = 1

 etag Surveillance = 2

 etag BeaconTransmitter = 3

 etag BeaconReceiver = 4

 etag TelemetryTransmitter = 5

 etag TelemetryReceiver = 6

 etag ITCSTransmitter = 7

 etag ITCSReceiver = 8

 end enum GuiSensorModelType

 // This enum may not need to be defined, but these

 // are the frequency band ranges per Dave Furst

 enum GuiSensorModelFreqBand

// etag Invalid = 0 // Previously Defined

 etag L_Band = 1

 etag S_Band = 2

 etag C_Band = 3

 etag X_Band = 4

 etag Ku_Band = 5

 etag K_Band = 6

 etag Ka_Band = 7

 end enum GuiSensorModelFreqBand

 member Jstring name

 member Jstring mode

 member u_int action

 member u_int type

 member u_int updatePeriod // msec

 member u_int offTrackPeriod // msec

 member u_int dropTrackPeriod // msec

 member u_int maxNumTargets

 member SensorAccuracy accuracy

 member float minDetectThreshold // dB

 member float maxDetectThreshold // dB

 member float maxRange // m

 member float power // kW

 member float transmitAntennaGain // dB

 member float receiveAntennaGain // dB

 member float processingGain // dB

 member float noiseFigure // dB

 member float systemLoss // dB

 member float pulsewidth

 member int frequencyBand // see above

 member float maxBearingRate // radians/ms

 member float maxBearingAcceleration // radians/ms^2

 member float maxElevationRate // radians/ms

 member float maxElevationAcceleration // radians/ms^2

 member u_int useRFLoopGain

 member float RFLoopGain

 end message GuiSensorModel

1.3.3.15 GUITicInterval

 message GuiTicInterval tag = 33

 member u_int ticInterval // ms

 member u_int ticAnnotationInterval

 end message GuiTicInterval

1.3.3.16 GUITicReferencePoint

 message GuiTicReferencePoint tag = 32

 member u_int refType // 0:t0 1:reference point

 member int VID

 member u_int WPID

 end message GuiTicReferencePoint
1.3.3.17 GUIVehicle

 // If the kineBehavior field indicates TBM, the vehicleModelName

 // provides the name of the TBM model data. Otherwise the

 // vehicleModelName identifies the VehicleModel.

 //

 message GuiVehicle tag = 27

 // Update and delete are based on VID

 //

 enum Action

 etag Invalid = 0

 etag New = 1

 etag Update = 2

 etag Delete = 3

 etag ServerLoad = 4 // sent by server when new scenario is loaded

 end enum Action

 // Additional fields will probably need to be added to this message

 // to support Slaved, Intercept, and Racetrack vehicles.

 //

 enum KineBehavior

// etag Invalid = 0 // already defined for GuiVehicle

 etag Stationary = 1

 etag Slaved = 2

 etag Waypoints = 3

 etag TBM = 4

 etag Intercept = 5

 etag Racetrack = 6

 etag Interceptor = 7

 etag DynamicInterceptor = 8

 end enum KineBehavior

 member u_int action

 member Jstring vehicleName

 member Jstring vehicleModelName

 member int VID

 member int newVID

 member int kineBehavior

 member Geodetic position // only valid for Stationary vehicle

 member Augmentation vehicleAugmentation

 end message GuiVehicle

1.3.3.18 GUIVehicleAnnotation

 message GuiVehicleAnnotation tag = 31

 member int VID

 member u_int PointID // 0 -> N

 member Jstring Annotation

 end message GuiVehicleAnnotation

1.3.3.19 GUIVehicleModel

 message GuiVehicleModel tag = 26

 // Update and delete are based on model name

 //

 enum Action

 etag Invalid = 0

 etag New = 1

 etag Update = 2

 etag Delete = 3

 etag ServerLoad = 4 // sent by server when new scenario is loaded

 end enum Action

 enum Type

// etag Invalid = 0 // already defined for GuiVehicleModel

 etag Surface = 1

 etag MannedABT = 2

 etag UnmannedABT = 3

 end enum Type

 member u_int action

 member Jstring name

 member u_int type

 member float rcsHeadOn // m^2

 member float rcsSide // m^2

 member VehicleModelPerformance maximum

 member VehicleModelPerformance minimum

 member VehicleModelPerformance nominal

 member float dryWeight

 member float fuelCapacity // lbs

 member u_short pmrfVehicleType

 end message GuiVehicleModel

1.3.3.20 GUIVehicleModifyModel

 message GuiVehicleModifyModel tag = 34

 member int VID

 member Geodetic startPoint

 member double angle // rad

 member Jstring newName

 end message GuiVehicleModifyModel

1.3.3.21 GUIVehicleStartTime

 message GuiVehicleStartTime tag = 28

 member int vid

 member Time startTime

 end message GuiVehicleStartTime

1.3.3.22 GUIVehicleSynch

 message GuiVehicleSynch tag = 29

 enum Action

 etag Invalid = 0

 etag Add = 1

 etag Delete = 2

 etag Resynch = 3

 etag ResetAllTimes = 4

 etag UnsynchAll = 5

 etag RequestDelete = 6

 end enum Action

 member VehicleWaypointPairList vehiclesSynched

 member u_int action

 end message GuiVehicleSynch

1.3.3.23 GUIWaypointPosition

 message GuiWaypointPosition tag = 20

 enum Action

 etag Invalid = 0

 etag Predecessor = 1

 etag Successor = 2

 etag First = 3

 etag Move = 4

 etag Delete = 5

 etag Undo = 6

 end enum Action

 member int VID

 member u_int currentWPID // WPID is unique over entire scenario

 member u_int newWPID

 member Geodetic newPosition

 member double newSpeed // m/ms

 member double radiusOfCurve // m

 member double angleOfInclination // rad

 member double zRate // m/ms

 member u_int action

 member u_int straight

 member u_int fuelConsumptionRateOverride

 member double fuelConsumptionRate // lbs/min

 member u_int identity

 member Jstring annotation

 end message GuiWaypointPosition

1.3.3.24 SrvCertifiedPasswordResponse

 message SrvCertifiedPasswordResponse tag = 130

 member u_int action // echo action from GuiCertifiedPassword

 member u_int status // 1=>success 0=>failure

 member Jstring errorString // valid if status=0

 member Jstring currentPassword // may be "" if not set.

 member Jstring requestedBy

 end message SrvCertifiedPasswordResponse

1.3.3.25 SrvDataSetConversionComplete

 message SrvDatasetConversionCompleted tag = 132

 enum Status

 etag Failure = 0

 etag Success = 1

 end enum Status

 member u_int status

 member Jstring errorString

 end message SrvDatasetConversionCompleted

1.3.3.26 SrvDisplayTrackState

 message SrvDisplayTrackState tag = 104

 member u_int EID // uniquely identifies the track

 member u_int VID

 member u_int SID

 member Time validTime

 member Geodetic position

 member VelocityGeocentric speed // m/ms

 member u_char simFlag

 member char cat

 member u_short spare

 // this should have another spare like the other track states

 end message SrvDisplayTrackState

1.3.3.27 SrvListResponse

 message SrvListResponse tag = 118

 member u_int action // same as for GuiRequestList

 member u_int status // 1=>success 0=>failure

 member Jstring errorString // valid if status=0

 member Jstring nameList[]

 end message SrvListResponse

1.3.3.28 SrvLiveTrackUpdate

 message SrvLiveTrackUpdate tag = 122

 member u_int systemId

 member u_int EID

 member u_short VID

 member u_char SID

 member u_char securityLevel

 member u_short mode2Iff

 member u_short mode3Iff

 member u_short systemDef1

 member u_short systemDef2

 member u_short systemDef3

 member u_char systemDef4

 member u_char trackQuality

 member u_short vehicleType

 member Time validTime

 member Geodetic position

 member VelocityGeocentric velocity // m/ms

 end message SrvLiveTrackUpdate

1.3.3.29 SrvPlannedPathDump

 message SrvPlannedPathDump tag = 108

 member int VID

 member u_short msgNumber // message number in series of msgs

 member u_short msgTotal // number of msgs in this series

 member char cat

 member char spare1

 member u_short spare2

 member TrackStateList stateList // list of points

 end message SrvPlannedPathDump

1.3.3.30 SrvPlannedTrackState

 message SrvPlannedTrackState tag = 105

 member u_int EID

 member u_int VID

 member Time validTime

 member Geodetic position

 member VelocityGeocentric speed // m/ms

 member char cat

 member u_char spare1

 member u_short spare2

 end message SrvPlannedTrackState

1.3.3.31 SrvScenarioControlResponse

 // The list field is valid if action=GetScenarioList or GetTBMList and

 // status indicates success.

 //

 // Used by: Scenario

 //

 message SrvScenarioControlResponse tag = 102

 enum Status

 etag Failure = 0

 etag Success = 1

 etag Start = 2

 end enum Status

 member u_int action // echo action from GuiScenarioControl

 member u_int status

 member Jstring name

 member Jstring hostname // "" if sent to all

 member Jstring errorString // valid if status=0

 member float clockRate // used for playback

 member Time scenarioTime // used for playback

 member u_int simType

 member u_int detectionType

 end message SrvScenarioControlResponse

1.3.3.32 SrvScenarioObjectResponse

 message SrvScenarioObjectResponse tag = 128

 enum Status

 etag Failure = 0

 etag Success = 1

 end enum Status

 member u_int type // echo type from GuiScenarioObject

 member u_int status // 1=>success 0=>failure

 member u_int action

 member Jstring name

 member Jstring errorString // valid if status=0

 end message SrvScenarioObjectResponse

1.3.3.33 SrvScenarioSynch

 message SrvScenarioSynch tag = 119

 member u_int status

 member Jstring errorString

 member int scenarioBegin // mS relative to T0

 member int previewBegin // time to begin preview/exec

 member int scenarioEnd

 end message SrvScenarioSynch

1.3.3.34 SrvSensorInformationTableDump

 message SrvSensorInformationTableDump tag = 109

 member SensorInfoList sensorList

 member u_int dummy

 end message SrvSensorInformationTableDump

1.3.3.35 SrvSNvsTimeResponse

 message SrvSNvsTimeResponse tag = 121

 member int VID

 member int SID

 member u_int last

 member u_int numSamples

 member SNvsTime snSamples[]

 end message SrvSNvsTimeResponse

1.3.3.36 SrvSNError

 message SrvSNError tag = 133

 member Time time

 member Jstring errorString

 member u_int VID

 end message SrvSNError

1.3.3.37 SrvTicStatus

 message SrvTicStatus tag = 116

 member u_int refType // 0:t0 1:reference point

 member int VID

 member u_int WPID

 member u_int ticInterval // ms

 member u_int ticAnnotationInterval

 end message SrvTicStatus

1.3.3.38 SrvTimeTic

 message SrvTimeTic tag = 117

 member int VID

 member u_int resetTics // for this vehicle

 member u_short ticNumber // are these

 member u_short ticTotal // really necessary?

 member Time time

 member Geodetic position

 member double heading // rad

 member double horizontalSpeed // m/ms

 member double zRate // m/ms

 member double fuelConsumption // lbs

 member double fuelConsumptionPercent

 member Jstring annotation

 end message SrvTimeTic

1.3.3.39 SrvVehicleAnnotation

 message SrvVehicleAnnotation tag = 115

 member int VID

 member u_int PointID // 0 -> N

 member Jstring Annotation

 end message SrvVehicleAnnotation

1.3.3.40 SrvVehicleReportComplete

 message SrvVehicleReportCompleted tag = 131

 enum Status

 etag Failure = 0

 etag Success = 1

 end enum Status

 member u_int status

 member Jstring errorString

 end message SrvVehicleReportCompleted

1.3.3.41 SrvVehicleSynch

 message SrvVehicleSynch tag = 114

 enum Action

 etag Invalid = 0

 etag Add = 1

 etag Delete = 2

 end enum Action

 member VehicleWaypointPairList vehiclesSynched

 member u_int action

 end message SrvVehicleSynch

1.3.3.42 SrvWaypointError

 message SrvWaypointError tag = 110

 member u_int VID

 member u_int WPID

 member Jstring errorMessage

 end message SrvWaypointError

1.3.3.43 SrvWaypointPath

 message SrvWaypointPath tag = 100

 member int VID

 member u_int resetPath

 member u_short segmentNumber

 member u_short segmentTotal

 member u_int errorVerificationRequested

 member Geodetic centerCurve

 member double radiusOfCurve // m

 member double startBearingCurve // rad

 member double stopBearingCurve // rad

 member Geodetic startStraight

 member Geodetic stopStraight

 end message SrvWaypointPath

1.3.3.44 SrvWaypointPosition

 message SrvWaypointPosition tag = 101

 enum Identity

 etag Pending = 0

 etag Unknown = 1

 etag AssumedFriend = 2

 etag Friend = 3

 etag Neutral = 4

 etag Suspect = 5

 etag Hostile = 6

 etag Undefined = 7

 end enum Identity

 member int VID

 member int WPID

 member u_short waypointNumber

 member u_short waypointTotal

 member Geodetic position

 member double speed // m/ms

 member double radiusOfCurve // m

 member u_int direction

 member u_int straight

 member u_int calculated

 member double
 angleOfInclination // rad

 member double
 zRate // m/ms

 member Time time

 member double fuelConsumption // lbs

 member double fuelConsumptionPercent

 member u_int fuelConsumptionRateOverride

 member double fuelConsumptionRate // lbs/min

 member u_int identity

 member Jstring annotation

 end message SrvWaypointPosition

External System Interfaces

This section documents the interfaces between ESPRIT and external systems at PMRF. Communication with these external systems takes place by means of messages.

Sensors at the range are connected to either the Kahuna Net (kNet) via Sensor Integration Server (SIS) units, or directly to the PMRF Instrumentation Network (iNet), a distributed processing environment for range instrumentation data. A Fault Tolerant Server (FTS) hosts a Solipsys Corporation Data Fusion application that provides an iNet and a kNet interface, performing integration and correlation of track information received from sensors on both networks. Each SIS hosts a data fusion daemon that receives data from its sensor and broadcasts iNet MT 26 messages onto the kNet. Other legacy sensors broadcast data directly to the iNet in the form of iNet MT 25 messages. The Data Fusion process known as stick running on the FTS acts as a smart router between the iNet, the kNet, and the DisplayNet, transforming iNet messages from the iNet and kNet into the track-related messages that drive the ESPRIT displays.

1.4 Data Fusion Messaging Interface

Real-time event monitoring is typically accomplished by executing ESPRIT in Preview mode while observing actual events.

Stick, running on the Fault Tolerant Server, acts as the primary event source for the live track-related messages that drive the ESPRIT GUI. It monitors the kNet for iNet MT 26 messages and transforms them into iNet MT25 messages, which it then rebroadcasts on the iNet. From the iNet MT 25 and MT 26 messages, it also generates TrackUpdate messages that it puts on the Display Net.

The sensor-specific data fusion daemon running on the SIS listens for contact information from its sensor, and sends out ContactUpdate messages. It monitors the kNet and the iNet for track-related messages, translates them into the corresponding ContactUpdate, TrackUpdate, or DropTrack messages, and puts these translated messages on the DisplayNet. The ESPRIT server then passes the track data messages on to the GUI, where they are processed in the InetClientModule for display.

Table 3-1 summarizes the messages that are sent from Data Fusion processes running on the Fault Tolerant Server or on a SIS to the ESPRIT GUI.

Table 3-1 Data Fusion to ESPRIT GUI Messages

	Msg
	Description
	Origin
	Processed in GUI

	ContactUpdate
	Sent from the fault-tolerant server or SIS to the GUI for sensor contact display
	SIS data fusion daemon
	EspritClientModule,

ContactUpdateProcessor.processMessage

	DropTrack
	Sent by the server to instruct the GUI to drop a track
	SIS data fusion daemon – iNet Event message MT45
	EspritClientModule.DropTrackProcessor.processMessage

	TrackUpdate
	Sent from the fault-tolerant server to the GUI to tell it to display a track for situation awareness
	Stick –iNet message Track Data messages MT25, MT26
	EspritClientModule.LiveTrackState.processMessage

	SrvBearingLine
	Tells the GUI the position and bearing of Ownship.
	SIS data fusion daemon
	ScenarioListener.

processBearingLine

	SrvOwnshipReferencePos
	Tells the GUI to set the ownship reference position to the specified geodetic point.
	SIS data fusion daemon
	ScenarioListener.

processOwnshipReferencePos

The following subsections specify the message formats for each of the Data Fusion messages sent to the ESPRIT GUI. Like the ESPRIT Server-GUI messages, they are defined using MetaGen’s meta language syntax.

Messages defined in KNetMsg.meta:

1.4.1 ContactUpdate

 message ContactUpdate tag = 4

 member u_char SID

 member u_char spare1

 member u_short mode1IFF

 member u_short mode2IFF

 member u_short mode3AIFF

 member u_short mode4IFF

 member u_int modeCIFF

 member Time validTime

 member Geocentric position

 end message ContactUpdate

1.4.2 DropTrack

 message DropTrack tag = 5

 member u_int EID

 end message DropTrack

1.4.3 TrackUpdate

 message TrackUpdate tag = 3

 member u_int systemId

 member u_int EID // uniquely identifies the track

 member u_short VID

 member u_char SID

 member u_char securityLevel

 member u_short mode1IFF

 member u_short mode2IFF

 member u_short mode3IFF

 member u_short mode4IFF

 member u_char trackQuality

 member u_char spare

 member u_short vehicleType

 member Time validTime

 member Geocentric position

 member VelocityGeocentric velocity // m/ms

 end message TrackUpdate

Messages defined in EspritMsg.meta:

1.4.4 SrvBearingLine

 message SrvBearingLine tag = 125

 member u_int clear // 0 = dont clear

 // 1 = clear bearing line

 member double bearing

 member Geodetic position

 end message SrvBearingLine

1.4.5 SrvOwnshipReferencePos

 message SrvOwnshipReferencePos tag = 124

 member u_int clear // 0 = dont clear

 // 1 = clear ownship pos

 member Geodetic position

 end message SrvOwnshipReferencePos
1.5 Simulation Messaging Interface

During local execution, the rehearsal mode of ESPRIT, the ESPRIT can be set to generate simulated radar detection and/or radar tracking messages in addition to the planned vehicle positions. When detection simulation is enabled, the user can select whether messages in DTE format or in the MSCT variant of DTE format are to be generated.

For track simulation, the user can select whether track simulation is to be performed using Distributed Interactive Simulation (DIS) or by generating PMRF iNet messages.

1.5.1 Track Simulation using iNet Messages

When track simulation is enabled, the user can specify that ESPRIT generate iNet MT25, iNet MT26, or iNet MT25 & MT26 messages. Table 3-2 provides an overview of the iNet message layout, which consists of a 12 byte header, message data, and a 4-byte trailer.

Table 3-2. iNet Message Layout

31

 16 15 0

	Block Length
	Message Identifier

	Message Time (Seconds since beginning of year)

	Message Data Area

(0-1452 bytes)

	Trailer

1.5.1.1 iNet Track Data Message (MT 25)

The Track Data message is sent by sensors on the iNet to report track data. This message is comprised of header words, track data, and a message trailer, as shown in Table 2-1 above. A track is identified by a unique VID / SID pair in conjunction with a System ID (in the interface header). Table 3-3 shows the format of the Track Data Message 25. For further detail, refer to the PMRF iNet Interface Design Specification.

Table 3‑3. Format for iNet Track Data Message 25.

31 24 23 16 15 8 7 0 word

	VID
	SID Security Level
	0

	System Defined 1
	SystemDefined 2
	1

	System Defined 3
	System Defined 4 Track Quality
	2

	Data Time (Milliseconds)
	Vehicle Type
	3

	Time (Seconds since beginning of year)
	4

	X Position (feet)
	5

	Y Position (feet)
	6

	Z Position (feet)
	7

	X Velocity (feet/sec)
	8

	Y Velocity (feet/sec)
	9

	Z Velocity (feet/sec)
	10

Table 3-4 supplies the field definitions for the track data message 25.

Table 3‑4. Field Definitions for iNet Track Data Message 25

	Word
	Field Name and Description
	Units

	0

(bits 16-31)
	VID – Vehicle Identifier -- Integer from 1-999
	

	0

(bits 8-15)
	SID – Sensor Identifier -- Integer from 1-255
	

	0

(bits 0-7)
	Security Level – 1-5=Unclassified, 6-10=Confidential,

11-15=Secret
	

	1

(bits 16-31)
	System Defined 1
	

	1

(bits 0-15)
	System Defined 2
	

	2

(bits 16-31)
	System Defined 3
	

	2

(bits 8-15)
	System Defined 4
	

	2

(bits 0-7)
	Track Quality – 0=Invalid, 1-6=Data Valid (system-dependent),

7=Data Valid
	

	3

(bits 16-31)
	Data Time in milliseconds
	msec

	3

(bits 0-15)
	Vehicle Type – See PMRF INet IDS, appendix B
	

	4
	Data Time in seconds since the beginning of the year (coordinated universal time)
	sec

	5
	X Position –x coordinate of geocentric position referenced to the DOD-WGS-84 earth model (lsb = 1 ft)
	feet

	6
	Y Position –y coordinate of geocentric position referenced to the DOD-WGS-84 earth model (lsb = 1 ft)
	feet

	7
	Z Position –z coordinate of geocentric position referenced to the DOD-WGS-84 earth model (lsb = 1 ft)
	feet

	8
	X Velocity –x component of geocentric velocity referenced to the DOD-WGS-84 earth model (lsb = 1/256 ft/sec)
	Feet/second

	9
	Y Velocity –y component of geocentric velocity referenced to the DOD-WGS-84 earth model (lsb = 1/256 ft/sec)
	Feet/second

	10
	Z Velocity –z component of geocentric velocity referenced to the DOD-WGS-84 earth model (lsb = 1/256 ft/sec)
	Feet/second

1.5.1.2 iNet Track Data Message (MT 26)

The Track Data message 26 is sent by sensors on the kNet to report track data. It differs from the message 25 Track Data Format by being variable in size and content. However, elements 1 and 2 are required for each track. Table 3-5 supplies the field definitions for the track data message 26. For further detail, refer to the PMRF iNet Interface Design Specification.

Table 3-5. Field Definitions for iNet Track Data Message 26

	Element ID
	Length
	Data type
	Definition

	1
	var
	multi-element
	group of elements pertaining to one track

	2
	72
	struct
	id, time, position and velocity

	3
	32
	double (3)
	Acceleration (xyz geocentric)(feet/sec/sec)

	4
	16
	double (1)
	radar altimeter (feet)

	5
	16
	double (1)
	barometric altimeter (feet)

	6
	32
	double (3)
	Attitude (Euler – yaw pitch roll re: local horizontal plane)

(degrees)

yaw re: north; pitch re: horizontal; roll re: body axis

All are increasing positive during a climbing right turn.

	7
	32
	double (3)
	Radar variance (xyz) (feet)

	8
	32
	double (3)
	Processed - Range, Azimuth, Elevation

	9
	32
	double (3)
	Raw – Range, Azimuth, Elevation

	10
	32
	double (3)
	Bias Error - Range, Azimuth, Elevation

	11
	32
	double (3)
	Radar Correction error - Range, Elevation, Refractivity

	12
	24
	int (5)
	Radar Filter Sizes (# of data points of smoothing)

	13
	32
	double (3)
	Course, Speed, Altitude

	14
	32
	double (3)
	Latitude, Longitude, Altitude

	15
	24
	float (5)
	Radar temperature data

	16
	56
	double (6)
	3-state (geocentric position) symmetrical positive definite (6-element) covariance matrix (feet) Note2.

	17
	176
	double (21)
	6-state (geocentric position and velocity) symmetrical positive definite (21 elements) covariance matrix (feet) Note2.

	18
	368
	double (45)
	9-state (geocentric position, velocity, and acceleration) symmetrical positive definite (45 element) covariance matrix (feet) Note2.

	19
	
	
	Raw radar return (Spherical) (similar to #9?) (Solipsys)

	20
	16
	u short (4)
	SIF codes: This element contains the IFF data that is lifted from the system defined areas of a message 25 when the reporting system is either APIS or NTDS.(Solipsys)

	21
	
	struct ?
	Future for SHOTS variance? 20Feb2001 not used?

	22
	16
	double (1)
	Time to Intercept

	23
	32
	double (3)
	Acquisition - Range, Azimuth, Elevation

	24

	future expansion

1.5.2 Track Simulation using DIS Messages

Enabling DIS simulation will cause ESPRIT to broadcast DIS EntityStatePDU’s on the broadcast network defined by the environment variable DIS_NET (defaults to 10.0.1.255 or the primary interface) and the UDP port defined by the environment variable DIS_PORT (defaults to 3000). Please refer to the DIS Specification for a description of the EntityStatePDU format.

1.5.3 Detection Simulation using DTE Messages

Radar detections can be simulated using DTE messages, either in DTE format or in the MSCT variant of DTE format. Please refer to the DTE Specification for a description of the message format.

2.0 File Interfaces

ESPRIT allows the user to import and export scenario information using a variety of ASCII file formats. Currently, Johns Hopkins Advanced Physics Lab (APL) plans the Theater Ballistic Missile Defense missions that are conducted at PMRF, with Bill Millard supplying the models for target and interceptor trajectories. ESPRIT’s file interfaces are used to import scenario information when planning is performed outside of the tool.

2.1 GOG File

ESPRIT allows overlay information to be imported/exported via ASCII files that follow the Generalized Overlay Generator (GOG) file format. This file format, widely used at PMRF, can be output using the NTADS XY Geo Tracking Display. A GOG file specifies static overlay information that is to be drawn on the screen. As with NTADS, an overlay can be made dynamic by manually attaching it to a track so that it moves with the track.

ESPRIT uses GOG files to import information for TBMD operations that are planned by APL. APL supplies a participant location map in the form of an .xls file that is then massaged into GOG file format and used to import participant positions, annotations for participants, hazard regions, etc.

Overlays created in ESPRIT using the overlay editor can also be saved off in GOG file format.

The following bullets summarize the format rules for GOG files. Please refer to the sample GOG file in Appendix A for further details.

· each object starts with "start" and ends with "end"

· commands can be upper or lower case or mixture of both

· files cannot have blank lines -- use highly indented "comment" to provide appearance of blank lines

· maximums:

· 100 xy items per object

· 30 objects

· 5 files per program

· units

· lat/lon are in degrees

· xy are in yards

· valid commands

· comment

· start

· off - ignore object to end, place directly after start

· poly = polygon

· ellipse

· circle

· arc

· annotation

· line

· linesegs

· points

· linecolor = fillcolor

· filled

· centerxy

· centerll = centerlatlon

· ref = referencepoint

· majoraxis

· minoraxis

· radius

· xy

· ll = lat lon [alt – ignored if displaying in 2D]

· anglestart

· angleend

· angledeg

· rotate

· end

In order to be accessible from ESPRIT, GOG files should be placed on the client in a data/Esprit/gog subdirectory of the directory into which the ESPRIT client was installed, as depicted below:

${INSTALL_DIR}/

data/

Esprit/

gog/

2.2 “Duck” Data Set

“Duck” data set files are ASCII files that specify the Tactical Ballistic Missile (TBM) and interceptor models used for defining target and interceptor trajectories. The fixed format file consists of a one-line header specifying the name of each data element, followed by any number of fixed length records specifying the values corresponding to the data elements identified in the header. The final line of the file is signaled with a line containing the “@” character.

Table 4-1 summarizes the data format for each field in a “Duck” data set.

Table 4‑1. “Duck” TBM Data Set Format

	Header
	Data Format

	Time
	Time(s)

	Xecfc
	X position (m; geocentric coordinates)

	Yecfc
	Y position (m; geocentric coordinates)

	Zecfc
	Z position (m; geocentric coordinates)

	Xecfcdt
	X velocity (m/sec)

	Yecfcdt
	Y velocity (m/sec)

	Zecfcdt
	Z velocity (m/sec)

	Xecfcdt2
	X acceleration (m/sec^2)

	Yecfcdt2
	Y acceleration (m/sec^2)

	Zecfcdt2
	Z acceleration (m/sec^2)

	Pitch
	Pitch

	Yaw
	Yaw

	Roll
	Roll

The “Duck” data sets should be placed on the server in the esprit/tbmTextModels or esprit/interceptorTextModels subdirectory, as appropriate depending on whether the data set describes a TBM trajectory or an interceptor trajectory. Before a data set can be used within ESPRIT, it must be converted to a binary format. This is done in the GUI by selecting the Esprit -> Models -> Convert Data Set menu option. This allows the user to select the ASCII data file to be converted, select the corresponding Vehicle Type, and specify a name for the model; pressing the Convert button performs the necessary conversion, creating a file in the esprit/tbmModels or esprit/interceptorModels with the specified model name.

The described directory hierarchy is depicted below:

${INSTALL_DIR}/

esprit/

tbmTextModels/

interceptorTextModels/

tbmModels/

interceptorModels/

COTS Products

This section defines the dependencies of ESPRIT on COTS products.

2.3 Java SDK

The ESPRIT client relies on Java Developer’s Kit Version 1.3 (JDK 1.3) having been installed on the system and set to be the default version of Java.

3.0 Appendix A – Sample gog file

The following is a sample gog file.

comment this is a gog file with examples for various graphical objects

start

annotation SAMPLE_GOG_19Apr98

ll 23 -158.666

end

comment

comment the rules:

comment each object starts with "start"

comment and ends with "end"

comment commands can be upper or lower case or mixture of both

comment files cannot have blank lines

comment use highly indented "comment" to provide appearance of blank lines

 comment

comment maximums:

comment 100 xy items per object

comment 30 objects

comment 5 files per program

comment

comment lat/lon are in degrees

comment xy are in yards

comment

comment valid colors: linked to overlay colors

comment the color name means nothing,

comment the color that is displayed depends on the setting of the

comment overlay colors in xygeo

comment red, green, blue, yellow, orange, white

comment color2, color3, color4, color5, color6, color7

comment

comment valid commands:

comment comment

comment start

comment off - ignore object to end, place directly after start

comment poly = polygon

comment ellipse

comment circle

comment arc

comment annotation

comment line

comment linesegs

comment points

comment

comment linecolor = fillcolor

comment filled

comment centerxy

comment centerll = centerlatlon

comment ref = referencepoint

comment majoraxis

comment minoraxis

comment radius

comment xy

comment ll = latlon

comment anglestart

comment angleend

comment angledeg

comment rotate

comment end

comment

comment default options: (ignored)

comment linestyle solid

comment linewidth thin

comment

comment non-implemented options:

comment linewidth med

comment linewidth medium

comment linewidth thick

comment linestyle dash, dashed

comment linestyle dot, dotted

comment

 comment

start

comment box with lower left corner at 22:20:00 -160:40:00

comment drawn using xy method

line

ref 22.333333 -160.666667

xy 0 0

xy 10000 0

xy 10000 10000

xy 0 10000

xy 0 0

linewidth thin

linecolor white

end

 comment

start

comment box with lower left corner at 22:20:00 -160:40:00

comment drawn using xy method

line

ref 22.433333 -160.666667

xy 0 0

xy 10000 0

xy 10000 10000

xy 0 10000

xy 0 0

linewidth med

linecolor white

end

 comment

start

comment box with lower left corner at 22:20:00 -160:40:00

comment drawn using xy method

line

ref 22.533333 -160.666667

xy 0 0

xy 10000 0

xy 10000 10000

xy 0 10000

xy 0 0

linewidth thick

linecolor white

end

 comment

start

annotation thickline

ref 22.533333 -160.666667

xy 0 0

end

 comment

start

line

ref 23.1 -160

ll 23.1 -160

ll 23.1 -160.1

ll 23 -160.1

ll 23 -160

ll 23.1 -160

linecolor yellow

end

 comment

start

points

ref 23.5 -160.5

xy 0 -50000

linecolor yellow

end

 comment

comment annotation works better if a "_" starts the text

comment only 1 word is allowed, connect multiple words with a non-space "_"

 comment

start

annotation _Point_#1

ll 23.5 -160.5

end

 comment

start

points

xy 0 0

linecolor green

end

 comment

start

annotation _BC

xy 0 0

linecolor green

end

 comment

start

arc

ref 22.7 -159.5

centerxy 0 0

radius 20000

anglestart 180.0

comment clockwise around to 90 degrees

angledeg 270.0

comment (use angle+360 to draw arc through 360 degrees)

end

 comment

start

annotation .arc

ll 22.7 -159.5

end

 comment

start

line

ref 22.7 -159.5

xy 0 -20000

xy 0 0

xy 20000 0

linecolor orange

end

 comment

start

annotation _LINE

ref 22.7 -159.5

xy 0 -20000

linecolor orange

end

 comment

start

poly

xy -4000 -12000

xy 4000 -12000

xy 4000 -20000

xy -4000 -20000

linecolor orange

end

 comment

start

annotation _poly

xy 4000 -12000

linecolor orange

end

 comment

start

ellipse

ref 21.5 -160

centerxy 0 0

majoraxis 12000

minoraxis 6000

linecolor orange

end

 comment

start

annotation _ELLIPSE_12000x6000

ll 21.5 -160

end

 comment

start

ellipse

ref 21.5 -160.25

centerxy 0 0

majoraxis 12000

minoraxis 6000

linecolor green

filled

end

comment ---------

comment color sampler: red, green, blue, white, yellow, orange

comment ---------

start

annotation COLOR2(default)

ll 22.7 -158.666

end

Track

Database

Esprit

Track Display

iNet

Track Display

View

Canvas

(Component)

PMRF iNet (UDP)

Display Net (SoliNet - TCP)

World

Data Fusion Server

(C++)

Local Esprit Net

kNet

(SoliNet -UDP)

TDF

TDF

TDF

Display Net (SoliNet - TCP)

Scenario Planning

updates

New

Track

Esprit Server

(C++)

Esprit

Client Module

Geo Display

Data Files

Imagery Display

Imagery Database

Geo Database

Applications specific to Esprit:

Participant Palette

Model/Entity Definition Panels

TAOS interface

Custom Pointers for path planning

Data plots

TGO calculations

Notional Timeline

etc….

User Input

User

View

ESPRIT/TDF

Screen

Track DB

Data Fusion

PAGE
ii

_1065209821.vsd

